Skip to main content

Linear Matrix Inequalities and Spectrahedra

  • Chapter
  • First Online:
Geometry of Linear Matrix Inequalities

Abstract

In this chapter we introduce the notion of a spectrahedron, and thoroughly study its properties. We will see many examples, and learn methods to determine whether a given set is a spectrahedron or not. In most cases we will also obtain procedures to explicitly construct defining linear matrix inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    By the Nullstellensatz, this is equivalent to showing that the ideal generated by g and h is radical. This can be deduced from Bézout’s Theorem for curves, or directly from Max Noether’s AF + BG Theorem (see [29]).

References

  1. W.B. Arveson, Subalgebras of C-algebras. Acta Math. 123, 141–224 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Barvinok, A Course in Convexity. Graduate Studies in Mathematics, vol. 54 (American Mathematical Society, Providence, 2002)

    Google Scholar 

  3. H.H. Bauschke, O. Güler, A.S. Lewis, H.S. Sendov, Hyperbolic polynomials and convex analysis. Can. J. Math. 53(3), 470–488 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Ben-Tal, A. Nemirovski, On tractable approximations of uncertain linear matrix inequalities affected by interval uncertainty. SIAM J. Optim. 12(3), 811–833 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Bhardwaj, P. Rostalski, R. Sanyal, Deciding polyhedrality of spectrahedra. SIAM J. Optim. 25(3), 1873–1884 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Bochnak, M. Coste, M.-F. Roy, Real Algebraic Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 36 (Springer-Verlag, Berlin, 1998)

    Google Scholar 

  7. P. Brändén, Obstructions to determinantal representability. Adv. Math. 226(2), 1202–1212 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Brändén, Hyperbolicity cones of elementary symmetric polynomials are spectrahedral. Optim. Lett. 8(5), 1773–1782 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Y.-B. Choe, J.G. Oxley, A.D. Sokal, D.G. Wagner, Homogeneous multivariate polynomials with the half-plane property. Adv. Appl. Math. 32(1–2), 88–187 (2004). Special issue on the Tutte polynomial.

    Google Scholar 

  10. P. Dey, D. Plaumann, Testing Hyperbolicity of Real Polynomials. Math. Comput. Sci. 14(1), 111–121 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. A.C. Dixon, Note on the reduction of a ternary quantic to a symmetrical determinant. Camb. Proc. 11, 350–351 (1902)

    MATH  Google Scholar 

  12. E.G. Effros, S. Winkler, Matrix convexity: operator analogues of the bipolar and Hahn-Banach theorems. J. Funct. Anal. 144(1), 117–152 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Eisenbud, Commutative Algebra. Graduate Texts in Mathematics, vol. 150 (Springer-Verlag, New York, 1995). With a view toward algebraic geometry

    Google Scholar 

  14. T. Fritz, T. Netzer, A. Thom, Spectrahedral containment and operator systems with finite-dimensional realization. SIAM J. Appl. Algebra Geom. 1(1), 556–574 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. W. Fulton, Algebraic Curves. Advanced Book Classics (Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, 1989)

    MATH  Google Scholar 

  16. L. Gȧrding, An inequality for hyperbolic polynomials. J. Math. Mech. 8, 957–965 (1959)

    Google Scholar 

  17. L. Gårding, An inequality for hyperbolic polynomials. J. Math. Mech. 8, 95–965 (1959)

    MathSciNet  MATH  Google Scholar 

  18. A. Grinshpan, D.S. Kaliuzhnyi-Verbovetskyi, V. Vinnikov, H.J. Woerdeman, Stable and real-zero polynomials in two variables. Multidim. Syst. Sign. Process. 27(1), 1–26 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Gritzmann, V. Klee, On the complexity of some basic problems in computational convexity. I. Containment problems. Discrete Math. 136(1–3), 129–174 (1994). Trends in discrete mathematics.

    Google Scholar 

  20. O. Güler, Hyperbolic polynomials and interior point methods for convex programming. Math. Oper. Res. 22(2), 350–377 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. L. Gurvits, Hyperbolic polynomials approach to Van der Waerden/Schrijver-Valiant like conjectures: sharper bounds, simpler proofs and algorithmic applications, in STOC’06: Proceedings of the 38th Annual ACM Symposium on Theory of Computing (ACM, New York, 2006), pp. 417–426

    Google Scholar 

  22. J.W. Helton, I. Klep, S. McCullough, The matricial relaxation of a linear matrix inequality. Math. Program. 138(1–2, Ser. A), 401–445 (2013)

    Google Scholar 

  23. J.W. Helton, V.Vinnikov, Linear matrix inequality representation of sets. Commun. Pure Appl. Math. 60(5), 654–674 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Henrion, Detecting rigid convexity of bivariate polynomials. Linear Algebra Appl. 432(5), 1218–1233 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. O. Hesse, Über Determinanten und ihre Anwendung in der Geometrie, insbesondere auf Curven vierter Ordnung. J. Reine Angew. Math. 49, 243–264 (1855)

    MathSciNet  MATH  Google Scholar 

  26. L. Hörmander, Linear Partial Differential Operators. Die Grundlehren der Mathematischen Wissenschaften, Bd. 116 (Academic Press Inc/Springer-Verlag, New York/Berlin-Göttingen-Heidelberg 1963)

    Google Scholar 

  27. K. Kellner, T. Theobald, C. Trabandt, Containment problems for polytopes and spectrahedra. SIAM J. Optim. 23(2), 1000–1020 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. G. Kirchhoff, Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird. Ann. Phys. Chem. 72, 497–508 (1847)

    Article  Google Scholar 

  29. M. Kummer, A note on the hyperbolicity cone of the specialized Vámos polynomial. Acta Appl. Math. 144, 11–15 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Kummer, Spectral linear matrix inequalities (2020). arXiv:2008.13452

    Google Scholar 

  31. P.D. Lax, Differential equations, difference equations and matrix theory. Commun. Pure Appl. Math. 11, 175–194 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Marshall, Positive Polynomials and Sums of Squares. Mathematical Surveys and Monographs, vol. 146 (American Mathematical Society, Providence, 2008)

    Google Scholar 

  33. T. Netzer, D. Plaumann, A. Thom, Determinantal representations and the Hermite matrix. Mich. Math. J. 62(2), 407–420 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. T. Netzer, A. Thom, Polynomials with and without determinantal representations. Linear Algebra Appl. 437(7), 1579–1595 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. J. Nie, P.A. Parrilo, B. Sturmfels, Semidefinite representation of the k-ellipse, in Algorithms in Algebraic Geometry The IMA Volumes in Mathematics and its Applications, vol. 146 (Springer, New York, 2008), pp. 117–132

    MATH  Google Scholar 

  36. W. Nuij, A note on hyperbolic polynomials. Math. Scand. 23, 69–72 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  37. V. Paulsen, Completely Bounded Maps and Operator Algebras. Cambridge Studies in Advanced Mathematics, vol. 78 (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  38. D. Plaumann, C. Vinzant, Determinantal representations of hyperbolic plane curves: an elementary approach. J. Symb. Comput. 57, 48–60 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. A. Prestel, C.N. Delzell, Positive Polynomials. Springer Monographs in Mathematics (Springer-Verlag, Berlin, 2001)

    Google Scholar 

  40. P. Raghavendra, N. Ryder, N. Srivastava, Real stability testing, in 8th Innovations in Theoretical Computer Science Conference. LIPICS - Leibniz International Proceedings in Informatics, vol. 67 (Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern, 2017), Article No. 5, pp. 15.

    Google Scholar 

  41. M. Ramana, A.J. Goldman, Some geometric results in semidefinite programming. J. Global Optim. 7(1), 33–50 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  42. M.V. Ramana, Polyhedra, spectrahedra, and semidefinite programming, in Topics in Semidefinite and Interior-Point Methods (Toronto, ON, 1996). Fields Institute Communications, vol. 18 (American Mathematical Society, Providence, 1998), pp. 27–38

    Google Scholar 

  43. J. Renegar, Hyperbolic programs, and their derivative relaxations. Found. Comput. Math. 6(1), 59–79 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. R. Sanyal, On the derivative cones of polyhedral cones. Adv. Geom. 13(2), 315–321 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. J. Saunderson, A spectrahedral representation of the first derivative relaxation of the positive semidefinite cone. Optim. Lett. 12(7), 1475–1486 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. J. Saunderson, Certifying polynomial nonnegativity via hyperbolic optimization. SIAM J. Appl. Algebra Geom. 3(4), 661–690 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  47. I.R. Shafarevich, A.O. Remizov, Linear Algebra and Geometry (Springer, Heidelberg, 2013). Translated from the 2009 Russian original by David Kramer and Lena Nekludova

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Netzer, T., Plaumann, D. (2023). Linear Matrix Inequalities and Spectrahedra. In: Geometry of Linear Matrix Inequalities. Compact Textbooks in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-26455-9_2

Download citation

Publish with us

Policies and ethics