Skip to main content
Log in

Testing Hyperbolicity of Real Polynomials

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

Hyperbolic polynomials are real multivariate polynomials with only real roots along a fixed pencil of lines. Testing whether a given polynomial is hyperbolic is a difficult task in general. We examine different ways of translating hyperbolicity into nonnegativity conditions, which can then be tested via sum-of-squares relaxations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 36. Springer, Berlin (1998). Translated from the 1987 French original; Revised by the authors

    Book  Google Scholar 

  2. Dey, P., Pillai, H.K.: A complete characterization of determinantal quadratic polynomials. Linear Algebra Appl. 543, 106–124 (2018)

    Article  MathSciNet  Google Scholar 

  3. Dey, P.: Definite Determinantal Representations via Orthostochastic Matrices. (2019). arXiv:1708.09559

  4. Dey, P.: Definite determinantal representations of multivariate polynomials. J. Algebra Appl. 2050129 (2020)

  5. Gelfand, I.M., Kapranov, M., Zelevinsky, A.: Discriminants, Resultants, and Multidimensional Determinants. Birkhäuser, Boston (1994)

    Book  Google Scholar 

  6. Gondard, D., Ribenboim, P.: Le 17e probleme de Hilbert pour les matrices. Bull. Sci. Math. 2(98), 1 (1974)

    MathSciNet  MATH  Google Scholar 

  7. Grayson, D.R., Stillman, M.E.: Macaulay2, a Software System for Research in Algebraic Geometry (2002)

  8. Grinshpan, A., Kaliuzhnyi-Verbovetskyi, D.S., Vinnikov, V., Woerdeman, H.J.: Stable and real-zero polynomials in two variables. Multidimens. Syst. Signal Process. 27(1), 1–26 (2014)

    Article  MathSciNet  Google Scholar 

  9. Henrion, D.: Detecting rigid convexity of bivariate polynomials. Linear Algebra Appl. 432(5), 1218–1233 (2010)

    Article  MathSciNet  Google Scholar 

  10. Helton, J.W., Vinnikov, V.: Linear matrix inequality representation of sets. Commun. Pure Appl. Math. 60(5), 654–674 (2007)

    Article  MathSciNet  Google Scholar 

  11. Hörmander, L.: Linear Partial Differential Operators, Die Grundlehren der mathematischen Wissenschaften. Academic Press Inc., Publishers, Springer, New York, Berlin (1963)

    Book  Google Scholar 

  12. Krein, M.G., Naimark, M.A.: The method of symmetric and Hermitian forms in the theory of the separation of the roots of algebraic equations. Linear Multilinear Algebra 10(4), 265–308 (1981)

    Article  MathSciNet  Google Scholar 

  13. Lombardi, H., Perrucci, D., Roy, M.-F.: An elementary recursive bound for effective Positivstellensatz and Hilbert 17-th problem. p. 113. (2020)

  14. Leykin, A., Plaumann, D.: Determinantal representations of hyperbolic curves via polynomial homotopy continuation. Math. Comput. 86(308), 2877–2888 (2017)

    Article  MathSciNet  Google Scholar 

  15. Marshall, M.: Positive polynomials and sums of squares. In: Mathematical Surveys and Monographs, 146. American Mathematical Society, Providence (2008)

    Chapter  Google Scholar 

  16. Marshall, M.: Polynomials non-negative on a strip. Proc. Am. Math. Soc. 138(5), 1559–1567 (2010)

    Article  MathSciNet  Google Scholar 

  17. Netzer, T., Plaumann, D., Thom, A.: Determinantal representations and the Hermite matrix. Mich. Math. J. 62(2), 407–420 (2013)

    Article  MathSciNet  Google Scholar 

  18. Netzer, T., Thom, A.: Polynomials with and without determinantal representations. Linear Algebra Appl. 437(7), 1579–1595 (2012)

    Article  MathSciNet  Google Scholar 

  19. Nuij, W.: A note on hyperbolic polynomials. Math. Scand. 23(1968), 69–72 (1969)

    MathSciNet  MATH  Google Scholar 

  20. Peyrl, H., Parrilo, P.A.: Computing sum of squares decompositions with rational coefficients. Theor. Comput. Sci. 409(2), 269–281 (2008)

    Article  MathSciNet  Google Scholar 

  21. Plaumann, D., Sturmfels, B., Vinzant, C.: Computing linear matrix representations of Helton–Vinnikov curves. In: Mathematical Methods in Systems, Optimization, and Control. Oper. Theory Adv. Appl., vol. 222, pp. 259–277. Birkhäuser/Springer Basel AG, Basel (2012)

    Chapter  Google Scholar 

  22. Saunderson, J.: Certifying Polynomial Nonnegativity via Hyperbolic Optimization. arXiv:1904.00491 (2019)

    Article  MathSciNet  Google Scholar 

  23. Raghavendra, P., Ryder, N., Srivastava, N.: Real stability testing. In: 8th Innovations in Theoretical Computer Science Conference, LIPIcs. Leibniz Int. Proc. Inform., vol. 67, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, Art. No. 5, 15 (2017)

  24. Vinnikov, V.: LMI representations of convex semialgebraic sets and determinantal representations of algebraic hypersurfaces: past, present, and future. Oper. Theory: Adv. Appl. 222, 325–348 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Amir Ali Ahmadi, Diego Cifuentes and especially Elias Tsigaridas for helpful discussions on the subject of this paper. We also thank the referees for their careful reading and useful comments. Much of the work on this paper has been supported by the National Science Foundation under Grant No. DMS-1439786 while both authors were in residence at the Institute for Computational and Experimental Research in Mathematics in Providence, RI, during the Fall 2018 Nonlinear Algebra program. The first author also gratefully acknowledges support through the Max Planck Institute for Mathematics in the Sciences in Leipzig.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Papri Dey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, P., Plaumann, D. Testing Hyperbolicity of Real Polynomials. Math.Comput.Sci. 14, 111–121 (2020). https://doi.org/10.1007/s11786-019-00449-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-019-00449-w

Keywords

Mathematics Subject Classification

Navigation