Skip to main content

Metabolism of Dietary Substrates by Intestinal Bacteria and Consequences for the Host Intestine

  • Chapter
  • First Online:
Metabolism of Alimentary Compounds by the Intestinal Microbiota and Health
  • 329 Accesses

Abstract

Numerous substrates from alimentary origin are metabolized by the gut microbiota. Their luminal concentrations are the net result of production, utilization, and absorption through the intestinal epithelium. Undigested proteins in the colon are degraded into amino acids by the bacteria which utilize them for their own protein synthesis and for other metabolic pathways, giving rise to numerous bacterial metabolites. Several among them, including formate, oxaloacetate, p-cresol, and indole are used for microbial communication. Others like lactate and hydrogen sulfide are used as fuels by colonocytes. Some like branched-chain fatty acids are involved in electrolyte transport. Indole and indole-related compounds represent beneficial bacterial metabolites for the colonic mucosa physiology, while bacterial metabolites like ammonia, p-cresol, and hydrogen sulfide affect energy metabolism in colonocytes when present in excess. Polyamines produced by intestinal bacteria are involved in bacterial growth and epithelium renewal, but excessive concentrations of putrescine exert deleterious effects on the intestinal barrier function. The intestinal microbiota produces compounds with neurotransmitter functions in the host. Norepinephrine for instance is involved in bacterial communication, while dopamine and tryptamine are involved in colon physiology. Consumption of high-protein diet by volunteers modifies the bacterial metabolite profile as well as the expression of genes involved in the epithelium renewal processes in rectal biopsies. Regarding indigestible polysaccharides, they are metabolized by the intestinal microbiota giving rise to short-chain fatty acid production. Among these latter, butyrate is highly metabolized in the mitochondria of colonocytes, allowing energy production and regulation of the cytosolic concentration of butyrate. Such regulation appears crucial for determining the effects of butyrate on gene expression. In addition, short-chain fatty acids are involved in different aspects of colon physiology, including notably the regulation of the intestinal immune system. Lower intake of indigestible polysaccharides shifts the metabolic activity of the intestinal bacteria to other sources of substrates like amino acids and lipids. Regarding lipids, few proportions of them are usually transferred from the small to the large intestine. The effects of lipid-derived bacterial metabolites on the colonic epithelium have been little investigated. The effects of phytochemicals, notably polyphenols, on the colon epithelium have been investigated, and beneficial effects of several polyphenol-derived bacterial metabolites have been reported in different experimental situations. Regarding vitamins of the B group, although the intestinal bacteria use primarily these compounds for their own metabolism and growth, a part of bacteria-derived vitamins B may remain available for the host. Lastly, it has been shown that several food additives and compounds produced during cooking processes are metabolized by the intestinal microbiota giving rise to bacterial metabolites with biological activities on the colonic epithelium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stephen AM, Cummings JH. The microbial contribution to human fecal mass. J Med Microbiol. 1980;13(1):45–56.

    Article  CAS  PubMed  Google Scholar 

  2. Blachier F, Beaumont M, Andriamihaja M, Davila AM, Lan A, Grauso M, Armand L, Benamouzig R, Tomé D. Changes in the luminal environment of the colonic epithelial cells and physiopathological consequences. Am J Pathol. 2017;187(3):476–86.

    Article  CAS  PubMed  Google Scholar 

  3. Libao-Mercado AJO, Zhu CL, Cant JP, Lapierre H, Thibault JN, Sève B, Fuller MF, de Lange CFM. Dietary and endogenous amino acids are the main contributors to microbial protein synthesis in the upper gut of normally nourished pigs. J Nutr. 2009;139(6):1088–94.

    Article  CAS  PubMed  Google Scholar 

  4. Blachier F, Andriamihaja M, Kong X. Fate of undigested proteins in the pig large intestine: what impact on the colon epithelium? Anim Nutr. 2021a;9:110–8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yin L, Yang H, Li J, Ding X, Wu G, Yin Y. Pig models on intestinal development and therapeutics. Amino Acids. 2017;49(12):2099–106.

    Article  CAS  PubMed  Google Scholar 

  6. Chalvon-Demersay T, Blachier F, Tomé D, Blais A. Animal models for the study of the relationships between diet and obesity: a focus on dietary protein and estrogen deficiency. Front Nutr. 2017;4:5.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mudd AT, Dilger RN. Early-life nutrition and neurodevelopment: use of the piglet as a translational model. Adv Nutr. 2017;8(1):92–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Patterson JK, Len XG, Miller DD. The pig as an experimental model for elucidating the mechanisms governing dietary influence on mineral absorption. Exp Biol Med (Maywood). 2008;233(6):651–64.

    Article  CAS  PubMed  Google Scholar 

  9. Blachier F, M’Rabet H, Posho L, Darcy-Vrillon B, Duée PH. Intestinal arginine metabolism during development. Evidence for de novo synthesis of L-arginine in newborn pig enterocytes. Eur J Biochem. 1993;216(1):109–17.

    Article  CAS  PubMed  Google Scholar 

  10. Kararli TT. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispo. 1995;16(5):351–80.

    Article  CAS  Google Scholar 

  11. Xiao L, Estellé J, Kiilerich P, Ramavo-Caldas Y, Xia Z, Feng Q, Liang S, Pedersen AO, Jorgen Kjeldsen N, Liu C, Maguin E, Doré J, Pons N, Le Chatelier E, Prifti E, Li J, Jia H, Liu X, Xu X, Ehrlich SD, Madsen L, Kristiansen K, Rogel-Gaillard C, Wang J. A reference gene catalogue of the pig gut microbiome. Nat Microbiol. 2016;1:16161.

    Article  CAS  PubMed  Google Scholar 

  12. Gaudichon C, Bos C, Morens C, Petzke KJ, Mariotti F, Everwand J, Benamouzig R, Daré S, Tomé D, Metges CC. Ileal losses of nitrogen and amino acids in humans and their importance to the assessment of amino acid requirement. Gastroenterology. 2002;123(1):50–9.

    Article  CAS  PubMed  Google Scholar 

  13. Davila AM, Blachier F, Gotteland M, Andriamihaja M, Benetti PH, Sanz Y, Tomé D. Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacol Res. 2013;68(1):95–107.

    Article  CAS  PubMed  Google Scholar 

  14. Baglieri A, Mahe S, Zidi S, Huneau JF, Thuillier F, Marteau P, Tomé D. Gastro-jejunal digestion of soya-bean-milk protein in humans. Br J Nutr. 1994;72(4):519–32.

    Article  CAS  PubMed  Google Scholar 

  15. Bos C, Juillet B, Fouillet H, Turlan L, Daré S, Luengo C, N’tounda R, Benamouzig R, Gausserès N, Tomé D, Gaudichon C. Postprandial metabolic utilization of wheat protein in humans. Am J Clin Nutr. 2005;81(1):87–94.

    Article  CAS  PubMed  Google Scholar 

  16. Gaudichon C, Mahé S, Benamouzig R, Luengo C, Fouillet H, Daré S, Van Oycke M, Ferrière F, Rautureau J, Tomé D. Net postprandial utilization of 15N-labeled milk protein nitrogen is influenced by diet composition in humans. J Nutr. 1999;129(4):890–5.

    Article  CAS  PubMed  Google Scholar 

  17. Gausseres N, Mahé S, Benamouzig R, Luengo C, Drouet H, Rautureau J, tomé D. The gastro-ileal digestion of 15N-labelled pea nitrogen in adult humans. Br J Nutr. 1996;76(1):75–85.

    Article  CAS  PubMed  Google Scholar 

  18. Mariotti F, Pueyno ME, Tomé D, Berot S, Benamouzig R, Mahé S. The influence of the albumin fraction on the bioavailability and postprandial utilization of pea protein given selectively to humans. J Nutr. 2001;131(6):1706–13.

    Article  CAS  PubMed  Google Scholar 

  19. Blachier F, Mariotti F, Huneau JF, Tomé D. Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids. 2007a;33(4):547–62.

    Article  CAS  PubMed  Google Scholar 

  20. Yao C, Muir JG, Gibson PR. Review article: insights into colonic protein fermentation, its modulation and potential health implications. Aliment Pharmacol Ther. 2016;43(2):181–96.

    Article  CAS  PubMed  Google Scholar 

  21. Gibson JA, Sladen GE, Dawson AM. Protein absorption and ammonia production: the effects of dietary protein and removal of the colon. Br J Nutr. 1976;35(1):61–5.

    Article  CAS  PubMed  Google Scholar 

  22. Kramer P. The effect of varying sodium loads on the ileal excreta of human ileostomized subjects. J Clin Invest. 1966;45(11):1710–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Smiddy FG, Gregory SD, Smith IB, Goligher JC. Fecal loss of fluid, electrolytes, and nitrogen in colitis before and after ileostomy. Lancet. 1960;1(7114):14–9.

    Article  CAS  PubMed  Google Scholar 

  24. Dubuisson C, Lioret S, Touvier M, Dufour A, Calamassi-Tran G, Volatier JL, Lafay L. Trends in food and nutritional intakes of French adults from 1999 to 2007: results from the INCA surveys. Br J Nutr. 2010;103(7):1035–8.

    Article  CAS  PubMed  Google Scholar 

  25. Pasiakos SM, Agarwal S, Lieberman HR, Fulgoni VL 3rd. Sources and amounts of animal, dairy, and plant protein intake of US adults in 2007-2010. Nutrients. 2015;7(8):7058–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kaman WE, Hays JP, Endtz HP, Bikker FJ. Bacterial proteases: targets for diagnosis and therapy. Eur J Clin Microbiol Infect Dis. 2014;33(7):1081–7.

    Article  CAS  PubMed  Google Scholar 

  27. van der Wielen N, Moughan PJ, Mensink M. Amino acid absorption in the large intestine of human and porcine models. J Nutr. 2017;147(8):1493–8.

    Article  PubMed  Google Scholar 

  28. James PS, Smith MV. Methionine transport by pig colonic mucosa measured during early post-natal development. J Physiol. 1976;262(1):151–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Just A, Jorgensen H, Fernandez JA. The digestive capacity of the caecum-colon and the value of the nitrogen absorbed from the hind gut for protein synthesis in pigs. Br J Nutr. 1981;46(1):209–19.

    Article  CAS  PubMed  Google Scholar 

  30. Sepulveda FV, Smith MW. Different mechanisms for neutral amino acid uptake by new-born colon. J Physiol. 1979;286:479–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nyangale EP, Mottram DS, Gibson GR. Gut microbial activity, implications for health and disease: the potential role of metabolite analysis. J Proteome Res. 2012;11(12):5573–85.

    Article  CAS  PubMed  Google Scholar 

  32. Metges CC. Contribution of microbial amino acids to amino acid homeostasis. J Nutr. 2000;130(7):1857S–64S.

    Article  CAS  PubMed  Google Scholar 

  33. Gietzen DW, Rogers QR. Nutritional homeostasis and indispensable amino acid sensing: a new solution to an old puzzle. Trends Neurosci. 2006;29(2):91–9.

    Article  CAS  PubMed  Google Scholar 

  34. Reeds PJ. Dispensable and indispensable amino acids for humans. J Nutr. 2000;130(7):1835S–40S.

    Article  CAS  PubMed  Google Scholar 

  35. Blachier F, Blais A, Elango R, Saito K, Shimomura Y, Kadowaki M, Matsumoto H. Tolerable amounts of amino acids for human supplementation: summary and lessons from published peer-reviewed studies. Amino Acids. 2021c;53(9):1313–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fürst P, Stehle P. What are the essential elements needed for the determination of amino acid requirement in humans? J Nutr. 2004;134(6):1558S–65S.

    Article  PubMed  Google Scholar 

  37. Torrallardona D, Harris CI, Coates ME, Fuller MF. Microbial amino acid synthesis and utilization in rats: incorporation of 15N from 15NH4Cl into lysine in the tissue of germ-free and conventional rats. Br J Nutr. 1996;76(5):689–700.

    Article  CAS  PubMed  Google Scholar 

  38. Backes G, Hennig U, Petzke KJ, Elsner A, Junghans P, Nurnberg G, Metges CC. Contribution of intestinal microbiota lysine to lysine homeostasis is reduced in minipigs fed a wheat gluten-based diet. Am J Clin Nutr. 2002;76(6):1317–25.

    Article  CAS  PubMed  Google Scholar 

  39. Millward DJ, Forrester T, Ah-Sing E, Yeboah N, Gibson N, Badaloo A, Boyne M, Reade M, Persaud C, Jackson A. The transfer of 15N from urea to lysine in the human infant. Br J Nutr. 2000;83(5):505–12.

    Article  CAS  PubMed  Google Scholar 

  40. Metges CC, Petzke KJ, El-Khoury AE, Henneman L, Grant I, Bedry S, Regan MM, Fuller MF, Young VR. Incorporation of urea and ammonia nitrogen into ileal and fecal microbial proteins and plasma free amino acids in normal men and ileostomates. Am J Clin Nutr. 1999;70(6):1046–58.

    Article  CAS  PubMed  Google Scholar 

  41. Abubucker S, Segata N, Goll J, Schubert AM, Izard J, Cantarel BL, Rodriguez-Mueller B, Zucker J, Thiagarajan M, Henrissiat B, White O, Kelley ST, Methé B, Schloss PD, Gevers D, Mitreva M, Huttenhower C. Metabolic reconstruction of metagenomic data and its application to the human microbiome. PLoS Comput Biol. 2012;8(6):e1002358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bergen WG. Small-intestinal or colonic microbiota as a potential amino acid source in animals. Amino Acids. 2015;47(2):251–8.

    Article  CAS  PubMed  Google Scholar 

  43. Chen L, Li P, Wang J, Li X, Gao H, Yin Y, Hou Y, Wu G. Catabolism of nutritionally essential amino acids in developing porcine enterocytes. Amino Acids. 2009;37(1):143–52.

    Article  CAS  PubMed  Google Scholar 

  44. Stoll B, Henry J, Reeds PJ, Yu H, Jahoor F, Burrin DG. Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets (1998). J Nutr. 1998;128(3):606–14.

    Article  CAS  PubMed  Google Scholar 

  45. Bergen WG, Wu G. Intestinal nitrogen recycling and utilization in health and disease. J Nutr. 2009;139(5):821–5.

    Article  CAS  PubMed  Google Scholar 

  46. Grohmann U, Bronte V. Control of immune response by amino acid metabolism. Immunol Rev. 2010;236:243–64.

    Article  CAS  PubMed  Google Scholar 

  47. Riedijk MA, Stoll B, Chacko S, Schierbeek H, Sunehag AL, van Goudoever JB, Burrin DG. Methionine transmethylation and transsulfuration in the piglet gastrointestinal tract. Proc Natl Acad Sci U S A. 2007;104(9):3408–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shoveller AK, Brunton JA, Pencharz PB, Ball RO. The methionine requirement is lower in neonatal piglets fed parenterally than in those fed enterally. J Nutr. 2003;133(5):1387–90.

    Article  Google Scholar 

  49. Portune KJ, Beaumont M, Davila AM, Tomé D, Blachier F, Sanz Y. Gut microbiota role in dietary protein metabolism and health-related outcomes: the two sides of the coin. Trends Food Sci Technol. 2016;57:213–32.

    Article  CAS  Google Scholar 

  50. Shimizu T, Ohtani K, Hirakawa H, Ohshima K, Yamashita A, Shiba T, Ogasawara N, Hattori M, Kuhara S, Hayashi S. Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc Natl Acad Sci U S A. 2002;99(2):996–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pridmore RD, Berger B, Desiere F, Vilanova D, Barretto C, Pittet AC, Zwallen MC, Rouvet M, Altermann E, Barrangou R, Mollet B, Mercenier A, Klaenhammer T, Arigoni F, Schell MA. The genome sequence of the probiotic intestinal bacterium lactobacillus johnsonii NCC 533. Proc Natl Acad Sci U S A. 2004;101(8):2512–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yu XJ, Walker DH, Liu Y, Zhang L. Amino acid biosynthesis deficiency in bacteria associated with human and animal hosts. Infect Genet Evol. 2009;9(4):514–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nolling J, Breton G, Omeichenko MV, Marakova KS, Zeng Q, Gibson R, Lee HM, Dubois D, Qiu D, Hitti J, Wolf YI, Tatusov LR, Sabathe L, Doucette-Stam P, Soucaille P, Daly MJ, Bennett GM, Koonin EJ, Smith DR. Genome sequence and comparative analysis of the solvent-producing bacterium clostridium acetobutylicum. J Bacteriol. 2001;183(16):4823–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A. The complete genome sequence of the lactic acid bacterium Lactococcus lactis spp. lactis IL1403. Genome Res. 2011;11(5):731–53.

    Article  Google Scholar 

  55. Godon JJ, Delorme C, Bardowski J, Chopin MC, Ehrlich SD, Renault P. Gene inactivation in Lactococcus lactis: branched-chain amino acid biosynthesis. J Bacteriol. 1993;175(14):4383–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fichman Y, Gerdes SY, Kovacs H, Szabados L, Zilbersein A, Csonka LN. Evolution of proline biosynthesis: Enzymology, bioinformatics, genetics, and transcriptional regulation. Biol Rev Camb Philos Soc. 2015;90(4):1065–99.

    Article  PubMed  Google Scholar 

  57. Fischbach MA, Sonnenburg JL. Eating for two: how metabolism establishes interspecies interactions in the gut. Cell Host Microbe. 2011;10(4):336–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xu Y, Labedan B, Glansdorff N. Surprising arginine biosynthesis: a reappraisal of the enzymology and evolution of the pathway in microorganisms. Microbiol Mol Biol Rev. 2007;71(1):36–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Peters-Wendisch P, Stolz M, Etterich H, Kennerknecht N, Sahm H, Eggeling L. Metabolic engineering of Corynebacterium glutamicum for L-serine production. Appl Environ Microbiol. 2005;71(11):7139–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Trivedi V, Gupta A, Jala VR, Saravanan P, Rao GS, Rao NA. Crystal structure of binary and ternary complexes of serine hydroxymethyltransferase from Bacillus stearothermophilus: insights into the catalytic mechanism. J Biol Chem. 2002;277(19):17161–9.

    Article  CAS  PubMed  Google Scholar 

  61. Min B, Pelaschier JT, Graham DE, Tumbula-Hansen D, Soll D. Transfer RNA-dependent amino acid biosynthesis: an essential route to asparagine formation. Proc Natl Acad Sci U S A. 2002;99(5):2678–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS. Comparative genomics of the methionine metabolism in gram-positive bacteria: a variety of regulatory systems. Nucleic Acids Res. 2004;32(11):3340–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vitreschak AG, Lyubetskaya EV, Shirshin MA, Gelfand MS, Lyubetsky A. Attenuation regulation of amino acid biosynthesis operons in proteobacteria. FEMS Microbiol Lett. 2004;234(2):357–70.

    Article  CAS  PubMed  Google Scholar 

  64. Allison MJ, Baetz AL, Wiegel J. Alternative pathways for biosynthesis of leucine and other amino acids in Bacteorides ruminicola and Bacteroides fragilis. Appl Environ Microbiol. 1984;48(6):1111–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Xi G, Keyhani NO, Bonner CA, Jensen RA. Ancient origin of the tryptophan operon and the dynamics of evolutionary change. Microbiol Mol Biol Rev. 2003;67(3):303–42.

    Article  Google Scholar 

  66. Kulis-Horn RK, Persicke M, Kalinowski J. Histidine biosynthesis, its regulation and biotechnological application in Corynebacterium glutamicum. Microb Biotechnol. 2014;7(1):5–25.

    Article  CAS  PubMed  Google Scholar 

  67. Macfarlane GT, Macfarlane S. Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int. 2012;95(1):50–60.

    Article  CAS  PubMed  Google Scholar 

  68. Wang X, Gibson GR, Costabile A, Sailer M, Theis S, Rastall RA. Prebiotic supplementation of in vitro fecal fermentations inhibits proteolysis by gut bacteria, and host diet shapes gut bacterial metabolism and response to intervention. Appl Environ Microbiol. 2019;85(9):e02749–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pessione E. Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows. Front Cell Infect Microbiol. 2012;2:86.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Liu M, Bayjanov JR, Renckens B, Nauta A, Siezen RJ. The proteolytic system of lactic acid bacteria revisited: a genomic comparison. BMC Genomics. 2010;11:36.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Steiner HY, Naider F, Becker JM. The PTR family: a new group of peptide transporters. Mol Microbiol. 1995;16(5):825–34.

    Article  CAS  PubMed  Google Scholar 

  72. Saier MH Jr. Families of transmembrane transporters selective for amino acids and their derivatives. Microbiology (Reading). 2000;146(8):1775–95.

    CAS  PubMed  Google Scholar 

  73. Eggeling L, Sahm H. New ubiquitous translocators: amino acid export by Corynebacterium glutamicum and Escherichia coli. Arch Microbiol. 2003;180(3):155–60.

    Article  CAS  PubMed  Google Scholar 

  74. Dai ZL, Li XL, Xi PB, Zhang J, Wu G, Zhu WY. Metabolism of select amino acids in bacteria from the pig small intestine. Amino Acids. 2012;42(5):1597–608.

    Article  CAS  PubMed  Google Scholar 

  75. Sengupta C, Ray S, Chowdhury R. Fine tuning of virulence regulatory pathways in enteric bacteria in response to varying bile and oxygen concentrations in the gastrointestinal tract. Gut Pathol. 2014;6:38.

    Article  Google Scholar 

  76. Riggottier-Gois L. Dysbiosis in inflammatory bowel diseases: the oxygen hypothesis. ISME J. 2013;7(7):1256–61.

    Article  Google Scholar 

  77. Lu Z, Imlay JA. When anaerobes encounter oxygen: mechanisms of oxygen toxicity, tolerance and defence. Nat Rev Microbiol. 2021;19(12):774–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim J, Hetzel M, Boiangiu CD, Buckel W. Dehydration of (R)-2-hydroxyacyl-CoA to enoyl-CoA in the fermentation of alpha-amino acids by anaerobic bacteria. FEMS Microbiol Rev. 2004;28(4):455–68.

    Article  CAS  PubMed  Google Scholar 

  79. Fonknechten N, Chaussonnerie S, Tricot S, Lajus A, Andreesen JR, Perchat N, Pelletier E, Gouyvenoux M, Barbe V, Salanoubat M, Le Paslier P, Weissenbach J, Cohen GN, Kreimeyer A. Clostridium stricklandii, a specialist in amino acid degradation: revisiting its metabolism through its genome sequence. BMC Genomics. 2010;11:555.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Smith EA, Macfarlane GT. Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J Appl Bacteriol. 1996;81(3):288–302.

    Article  CAS  PubMed  Google Scholar 

  81. Birkett A, Muir J, Phillips J, Jones G, O’Dea K. Resistant starch lowers fecal concentrations of ammonia and phenol in humans. Am J Clin Nutr. 1996;63(5):766–72.

    Article  CAS  PubMed  Google Scholar 

  82. Geboes KP, De Hertogh G, De Preter V, Luypaerts A, Bammens B, Evenepoel P, Ghoss Y, Geboes K, Rutgeerts P, Verbeke K. The influence of inulin on the absorption of nitrogen and the production of metabolites of protein fermentation in the colon. Br J Nutr. 2006;96(6):1078–86.

    Article  CAS  PubMed  Google Scholar 

  83. Windey K, De Preter V, Huys G, Broekaert WF, Delcour JA, Louat T, Herman J, Verbeke K. Wheat bran extract alters colonic fermentation and microbial composition but does not affect faecal water toxicity: a randomized controlled trial in healthy subjects. Br J Nutr. 2015;113(2):225–38.

    Article  CAS  PubMed  Google Scholar 

  84. Macfarlane GT, Gibson GR, Cummings JH. Comparison of fermentation reactions in different regions of the human colon. J Appl Bacteriol. 1992;72(1):57–64.

    CAS  PubMed  Google Scholar 

  85. Macfarlane GT, Cummings JH, Macfarlane S, Gibson GR. Influence of retention time on degradation of pancreatic enzymes by human colonic bacteria grown in a 3-stage continuous system. J Appl Bacteriol. 1989;67(5):520–7.

    Article  CAS  PubMed  Google Scholar 

  86. Roager HM, Hansen LBS, Bahl MI, Frandsen HL, Carvalho V, Gobel RJ, Dalgaard MD, Plichta DR, Sparholt MH, Vestergaard H, Hansen T, Sicheritz-Ponten T, Bjorn Nielsen H, Pedersen O, Lauritzen L, Kristensen M, Gupta R, Licht TR. Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut. Nature Microbiol. 2016;1(9):16093.

    Article  CAS  Google Scholar 

  87. Sridharan GV, Choi K, Klemashevich C, Wu C, Prabakaran D, Pan LB, Steimeyer S, Mueller C, Yousofshani M, Alaniz RC, Lee K, Jayaraman A. Prediction and quantification of bioactive microbiota metabolites in the mouse. Nat Commun. 2014;5:5492.

    Article  CAS  PubMed  Google Scholar 

  88. Rechkemmer G, Rönnau K, von Engelhardt W. Fermentation of polysaccharides and absorption of short-chain fatty acids in the mammalian hindgut. Comp Biochem Physiol A Comp Physiol. 1988;90(4):563–8.

    Article  CAS  PubMed  Google Scholar 

  89. Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther. 2008;27(2):104–19.

    Article  CAS  PubMed  Google Scholar 

  90. Laparra JM, Sanz Y. Interactions of gut microbiota with functional food components and nutraceuticals. Pharm Res. 2010;61(3):219–25.

    Article  CAS  Google Scholar 

  91. Neis EPJG, Dejong CHC, Rensen SS. The role of microbial amino acid metabolism in host metabolism. Nutrients. 2015;7(4):2930–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu X, Blouin JM, Santacruz A, Lan A, Andriamihaja M, Wilkanowicz S, Benetti PH, Tomé D, Sanz Y, Blachier F, Davila AM. High-protein diet modifies colonic microbiota and luminal environment but not colonocyte metabolism: the increased luminal bulk connection. Am J Phys. 2014;307(4):G459–70.

    CAS  Google Scholar 

  93. Cummings JH, Macfarlane GT. The control and consequences of bacterial fermentation in the human colon. J Appl Microbiol. 1991;70(6):443–59.

    CAS  Google Scholar 

  94. Rios-Covian D, Gonzalez S, Nogacka AM, Arboleya S, Salazar N, Gueimonde M, de Los Reyes-Gavilan CG. An overview on fecal branched short-chain fatty acids along human life and as related with body mass index: associated dietary and anthropometric factors. Front Microbiol. 2020;11:973.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Trefflich I, Dietrich S, Braune A, Abraham K, Weikert C. Short- and branched-chain fatty acids as fecal markers for microbiota activity in vegans and omnivores. Nutrients. 2021;13(6):1808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Musch MW, Bookstein C, Xie Y, Sellin JH, Chang EB. SCFA increase intestinal Na absorption by induction of NHE3 in rat colon and human intestinal C2/bbe cells. Am J Phys. 2001;280(4):G687–93.

    CAS  Google Scholar 

  97. Diener M, Helmle-Kolb C, Murer H, Scharrer E. Effect of short-chain fatty acids on cell volume and intracellular pH in rat distal colon. Pflugers Arch. 1993;424(3–4):216–23.

    Article  CAS  PubMed  Google Scholar 

  98. Zaharia V, Varzescu M, Djavadi I, Newman E, Egnor RW, Alexander-Chacko J, Charney AN. Effects of short-chain fatty acids on colonic Na+ absorption and enzyme activity. Comp Biochem Physiol. 2001;128(2):335–47.

    Article  CAS  Google Scholar 

  99. Charney AN, Giannella RA, Egnor RW. Effect of short-chain fatty acids on cyclic 3′,5′-guanosine monophosphate-mediated chloride secretion. Comp Biochem Physiol A Mol Integr Physiol. 1999;124(2):169–78.

    Article  CAS  PubMed  Google Scholar 

  100. Dagher PC, Egnor RW, Taglietta-Kohlbrecher A, Charney AN. Short-chain fatty acids inhibits cAMP-mediated chloride secretion in rat colon. Am J Phys. 1996;271(6):1853–60.

    Article  Google Scholar 

  101. Chu S, Montrose MH. Extracellular pH regulation in microdomains of colonic crypts: effects of short-chain fatty acids. Proc Natl Acad Sci U S A. 1995;92(8):3303–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jaskiewicz J, Zhao Y, Hawes JW, Shimomura Y, Crabb DW, Harris RA. Catabolism of isobutyrate by colonocytes. Arch Biochem Biophys. 1996;327(2):265–70.

    Article  CAS  PubMed  Google Scholar 

  103. Boudry G, Jamin A, Chatelais L, Gras-Le Guen C, Michel C, Le Huërou-Luron I. Dietary protein excess during neonatal life alters colonic microbiota and mucosal response to inflammatory mediators later in life in female pigs. J Nutr. 2013;143(8):1225–32.

    Article  CAS  PubMed  Google Scholar 

  104. Petry N, Egli N, Chassard C, Lacroix C, Hurrell R. Inulin modifies the bifidobacteria population, fecal lactate concentration, and fecal pH but does not influence iron absorption in women with low iron status. Am J Clin Nutr. 2017;96(2):325–31.

    Article  Google Scholar 

  105. Belenguer A, Duncan SH, Holtrop G, Anderson SE, Lobley GE, Flint HJ. Impact of pH on lactate formation and utilization by human fecal microbial communities. Appl Environ Microbiol. 2007;73(20):6526–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. De Vadder F, Kovatcheva-Datchary P, Zitoun C, Duchampt A, Bäcked F, Mithieux G. Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis. Cell Metab. 2016;24(1):151–7.

    Article  PubMed  Google Scholar 

  107. Miller TL, Wolin MJ. Fermentations by saccharolytic intestinal bacteria. Am J Clin Nutr. 1979;32(1):164–72.

    Article  CAS  PubMed  Google Scholar 

  108. Serena C, Ceperuelo-Mallafré V, Keiran N, Queipo-Ortuno MI, Bernal R, Gomez-Huelgas R, Urpi-Sarda M, Sabater M, Perez-Brocal V, Andrés-Lacueva C, Moya A, Tinahones F, Fernandez-Real JM, Vendrell J, Fernandez-Veledo S. Elevated circulating levels of succinate in human obesity are linked to specific gut microbiota. ISME J. 2018;12(7):1642–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Koestler BJ, Fisher CR, Payne SM. Formate promotes shigella intercellular spread and virulence gene expression. MBio. 2018;9(5):e01777–18.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Shaulov Y, Shimokawa C, Trebicz-Geffren M, Nagaraja S, Methling K, Lalk M, Weiss-Cerem L, Lamm AT, Hisaeda H, Ankri S. Escherichia coli mediated resistance of Entamoeba histolytica to oxidative stress is triggered by oxaloacetate. PLoS Pathog. 2018;14(10):e1007295.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Stanley SL, Reed SL. Microbes and microbial toxins: paradigms for microbial-mucosal interactions. VI. Entamoeba histolytica: parasite-host interactions. Am J Phys. 2001;280(6):G1049–54.

    CAS  Google Scholar 

  112. Felmlee MA, Jones RS, Rodriguez-Cruz V, Follman KE, Morris ME. Monocarboxylate transporters (SLC16): function, regulation, and role in health and disease. Pharmacol Res. 2020;72(2):466–85.

    CAS  Google Scholar 

  113. Darcy-Vrillon B, Morel MT, Cherbuy C, Bernard F, Posho L, Blachier F, Meslin JC, Duée PH. Metabolic characteristics of pig colonocytes after adaptation to a high fiber diet. J Nutr. 1993;123(2):234–43.

    CAS  PubMed  Google Scholar 

  114. Nadjsombati MS, McGinty JW, Lyons-Cohen MR, Jaffe JB, DiPeso L, Schneider C, Miller CN, Pollack JN, Nagana Gowda GA, Fontana MF, Erle DJ, Anderson MS, Locksley RM, Raftery D, van Moltke J. Detection of succinate by intestinal tuft cells triggers a type 2 innate immune circuit. Immunity. 2018;49(1):33–41.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Banerjee A, Herring CA, Chen B, Kim H, Simmons AJ, Southard-Smith AN, Allaman MM, White JR, Macedonia MC, Mckinley ET, Ramirez-Solano MA, Scoville EA, Liu Q, Wilson KT, Coffey RJ, Washington MK, Goettel JA, Lau KS. Succinate produced by intestinal microbes promotes specification of tuft cells to suppress ileal inflammation. Gastroenterology. 2020;159(6):2101–15.

    Article  CAS  PubMed  Google Scholar 

  116. Mouillé B, Robert V, Blachier F. Adaptative increase of ornithine production and decrease of ammonia metabolism in rat colonocytes following hyperproteic diet ingestion. Am J Phys. 2004;287(2):G344–51.

    Google Scholar 

  117. Wrong O, Metcalfgibson A. The electrolyte content faeces. Proc R Soc Med. 1965;58(12):1007–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Warren KS, Newton WL. Portal and peripheral blood ammonia concentrations in germ-free and conventional Guinea pigs. Am J Phys. 1959;197:717–20.

    Article  CAS  Google Scholar 

  119. Mora D, Arioli S. Microbial urease in health and disease. PLoS Pathog. 2014;10(12):e1004472.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Ni J, Shen TCD, Chen EZ, Bittinger K, Bailey A, Roggiani M, Sirota-Madi A, Friedman ES, Chau L, Lin A, Nissim I, Scott J, Lauder A, Hoffmann C, Rivas G, Albenberg L, Baldassano RN, Braun J, Xavier RJ, Clish CB, Yudkoff M, Li H, Goulian M, Bushman FD, Lewis JD, Wu GD. A role of bacterial urease in gut dysbiosis and Crohn’s disease. Sci Transl Med. 2017;9(416):eaah6888.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Ryvchin R, Dubinsky V, Rabinowitz K, Wasserberg N, Dotan I, Gophna U. Alteration in urease-producing bacteria in the gut microbiomes of patients with inflammatory bowel diseases. J Crohns Colitis. 2021;15(12):2066–77.

    Article  PubMed  Google Scholar 

  122. Codina J, Pressley TA, Dubose TD Jr. The colonic H+,K+ ATPase functions as a Na+−dependent K+(NH4+)-ATPase in apical membranes from rat distal colon. J Biol Chem. 1999;274(28):19693–8.

    Article  CAS  PubMed  Google Scholar 

  123. Eklou-Lawson M, Bernard F, Neveux N, Chaumontet C, Bos C, Davila-Gay AM, Tomé D, Cynober L, Blachier F. Colonic luminal ammonia and portal blood L-glutamine and L-arginine concentrations: a possible link between colon mucosa and liver ureagenesis. Amino Acids. 2009;37(4):751–60.

    Article  CAS  PubMed  Google Scholar 

  124. Hall MC, Koch MO, McDougal WS. Mechanisms of ammonium transport by intestinal segments following urinary diversion: evidence for ionized NH4+ transport via K(+)-pathways. J Urol. 1992;148(1):453–7.

    Article  CAS  PubMed  Google Scholar 

  125. Handlogten ME, Hong SP, Zhang L, Vander AW, Steinbaum ML, Campbell-Thompson M, Weiner ID. Expression of the ammonia transporter proteins rh B glycoprotein and rh C glycoprotein in the intestinal tract. Am J Phys. 2005;288(5):G1036–47.

    CAS  Google Scholar 

  126. McDougal WS, Stampfer DS, Kirley S, Bennett PM, Lin CW. Intestinal ammonium transport by ammonium and hydrogen exchange. J Am Coll Surg. 1995;181(3):241–8.

    CAS  PubMed  Google Scholar 

  127. Singh SK, Binder HJ, Geibel JP, Boron WF. An apical permeability barrier to NH3/NH4+ in isolated, perfused colonic crypts. Proc Natl Acad Sci U S A. 1995;92(25):11573–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Summerskill and Wolpert. Ammonia metabolism in gut. Am J Clin Nutr. 1970;23(5):633–9.

    Article  PubMed  Google Scholar 

  129. Stewart GS, Fenton RA, Thévenod F, Smith CP. Urea movement across mouse colonic plasma membranes is mediated by UT-A urea transporters. Gastroenterology. 2004;126(3):765–73.

    Article  CAS  PubMed  Google Scholar 

  130. Andriamihaja M, Davila AM, Eklou-Lawson M, Petit N, Delpal S, Allek F, Blais A, Delteil C, Tomé D, Blachier F. Colon luminal content and epithelial cell morphology are markedly modified in rats fed with a high-protein diet. Am J Phys. 2010;299(5):G1030–7.

    CAS  Google Scholar 

  131. Cremin JD Jr, Fitch MD, Fleming SE. Glucose alleviates ammonia-induced inhibition of short-chain fatty acid metabolism in rat colonic epithelial cells. Am J Phys. 2003;285(1):G105–14.

    CAS  Google Scholar 

  132. Darcy-Vrillon B, Cherbuy C, Morel MT, Durand M, Duée PH. Short-chain fatty acid and glucose metabolism in isolated pig colonocytes. Mol Cell Biochem. 1996;156(2):145–51.

    Article  CAS  PubMed  Google Scholar 

  133. Mouillé B, Morel E, Robert V, Guihot-Joubrel G, Blachier F. Metabolic capacity for L-citrulline synthesis from ammonia in rat isolated colonocytes. Biochim Biophys Acta. 1999;1427(3):401–7.

    Article  PubMed  Google Scholar 

  134. Roediger WE. The colonic epithelium in ulcerative colitis: an energy-deficiency disease? Lancet. 1980;2(8197):712–5.

    Article  CAS  PubMed  Google Scholar 

  135. Hughes R, Kurth MJ, McGilligan V, McGlynn H, Rowland I. Effect of colonic bacterial metabolites on Caco-2 cell paracellular permeability in vitro. Nutr Cancer. 2008;60(2):259–66.

    Article  CAS  PubMed  Google Scholar 

  136. Macfarlane GT, Cummings JH. The colonic flora, fermentation, and large bowel digestive function. In: Phillips SF, Pemberton JH, Shorter RG, editors. The large intestine: physiology, pathophysiology, and disease. New York: Raven Press; 1991.

    Google Scholar 

  137. Bone E, Tamm A, Hill M. The production of urinary phenols by gut bacteria and their possible role in the causation of large bowel cancer. Am J Clin Nutr. 1976;29(12):1448–54.

    Article  CAS  PubMed  Google Scholar 

  138. Hughes R, Magee EA, Bingham S. Protein degradation in the large intestine: relevance to colorectal cancer. Curr Issues Intest Microbiol. 2000;1(2):51–8.

    CAS  PubMed  Google Scholar 

  139. Pedersen G, Brynskov J, Saermark T. Phenol toxicity and conjugation in human colonic epithelial cells. Scand J Gastroenterol. 2002;37(1):74–9.

    Article  CAS  PubMed  Google Scholar 

  140. McCall IC, Betanzos A, Weber DA, Nava P, Miller GW, Parkos CA. Effects of phenol on barrier function of a human intestinal epithelial cell line correlate with altered tight junction protein localization. Toxicol Appl Pharmacol. 2009;241(1):61–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Gostner A, Blaut M, Schäffer V, Kozianowski G, Theis S, Klingeberg M, Drombrowski Y, Martin D, Erhrardt S, Taras D, Schwiertz A, Kleesen B, Lürhs H, Schauber J, Dorbath D, Menzel T, Scheppach W. Effect of isomalt consumption on faecal microflora and colonic metabolism in healthy volunteers. Br J Nutr. 2006;95(1):40–50.

    Article  CAS  PubMed  Google Scholar 

  142. Gryp T, De Paepe K, Vanholder R, Kerckhof FM, Van Biesen W, Van de Wiele T, Verbeke F, Speeckaert M, Joossens M, Couttenye MM, Vaneechoutte M, Glorieux G. Gut microbiota generation of protein-bound uremic toxins and related metabolites is not altered at different stages of chronic kidney disease. Kidney Int. 2020;97(6):1230–42.

    Article  CAS  PubMed  Google Scholar 

  143. King RA, May BL, Davies DA, Bird AR. Measurement of phenol and p-cresol in urine and feces using vacuum microdistillation and high-performance liquid chromatography. Anal Biochem. 2009;384(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  144. Windey K, François I, Broekaert W, De Preter V, Delcour JA, Louat T, Herman J, Verbeke K. High dose of probiotics reduces fecal water cytotoxicity in healthy subjects. Mol Nutr Food Res. 2014;58(11):2206–18.

    Article  CAS  PubMed  Google Scholar 

  145. Geypens B, Claus D, Evenepoel P, Hiele M, Maes B, Peeters M, Rutgeers P, Ghoos Y. Influence of dietary protein supplements on the formation of bacterial metabolites in the colon. Gut. 1997;41(1):70–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Toden S, Bird AR, Topping DL, Conlon MA. Resistant starch attenuates colonic DNA damage induced by higher dietary protein in rats. Nutr Cancer. 2005;51(1):45–51.

    Article  CAS  PubMed  Google Scholar 

  147. Paturi G, Nyanhanda T, Butts CA, Herath TD, Monro JA, Ansell J. Effects of potato fiber and potato-resistant starch on biomarkers of colonic health in rats fed diets containing red meat. J Food Sci. 2012;77(10):H216–23.

    Article  CAS  PubMed  Google Scholar 

  148. Taciak M, Barszcz M, Swiech E, Tusnio A, Bachanek I. Interactive effects of protein and carbohydrates on production of microbial metabolites in the large intestine of growing pigs. Arch Anim Nutr. 2017;71(3):192–209.

    Article  CAS  PubMed  Google Scholar 

  149. Saito Y, Sato T, Nomoto K, Tsuji H. Identification of phenol- and p-cresol-producing intestinal bacteria by using media supplemented with tyrosine and its metabolites. FEMS Microbiol Ecol. 2018;94(9):fiy125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ji M, Du H, Xu Y. Structural and metabolic performance of p-cresol producing bacteria in different carbon sources. Food Res Int. 2020;132:109049.

    Article  CAS  PubMed  Google Scholar 

  151. Passmore IJ, Letertre MPM, Preston MD, Bianconi I, Harrison MA, Nasher F, Kaur H, Hong HA, Baines HD, Cutting SM, Swann JR, Wren BW, Dawson LF. Para-cresol production by Clostridium difficile affects microbial diversity and membrane integrity of gram-negative bacteria. PLoS Pathog. 2018;14(9):e1007191.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Abt MC, McKenney PT, Pamer EG. Clostridium difficile colitis: pathogenesis and host defence. Nat Rev Microbiol. 2016;14(10):609–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hafiz S, Oakley CL. Clostridium difficile: isolation and characteristics. J Med Microbiol. 1976;9(2):129–36.

    Article  CAS  PubMed  Google Scholar 

  154. Dawson LF, Donahue EH, Cartman ST, Barton RH, Bundy J, McNerney R, Minton NP, Wren BW. The analysis of para-cresol production and tolerance in Clostridium difficile 027 and 012 strains. BMC Microbiol. 2011;11:86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Patel M, Fowler D, Sizer J, Walton C. Fecal volatile biomarkers of Clostridium difficile infection. PLoS One. 2019;14(4):e0215256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Mercer KE, Ten Have GAM, Pack L, Lan R, Deutz NEP, Adams SH, Piccolo BD. Net release and uptake of xenometabolites across intestinal, hepatic, muscle, and renal tissue beds in healthy conscious pigs. Am J Phys. 2020;319(2):G133–41.

    CAS  Google Scholar 

  157. Ramakrishna BS, Gee D, Weiss A, Pannall P, Roberts-Thomson IC, Roediger WE. Estimation of phenolic conjugation by colonic mucosa. J Clin Pathol. 1989;42(6):620–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Schepers E, Glorieux G, Vanholder R. The gut: the forgotten organ in uremia. Blood Purif. 2010;29(2):130–6.

    Article  PubMed  Google Scholar 

  159. Aronov PA, Luo FJG, Plummer NS, Quan Z, Holmes S, Hostetter TH, Meyer TW. Colonic contribution to uremic solutes. J Am Soc Nephrol. 2011;22(9):1769–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zeng Y, Lin Y, Li L, Zhang X, Wang M, Chen Y, Luo L, Lu B, Xie Z, Liao Q. Targeted metabolomics for the quantitative measurement of 9 gut microbiota-host co-metabolites in rat serum, urine and feces by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2019;1110-1111:133–43.

    Article  CAS  PubMed  Google Scholar 

  161. Andriamihaja M, Lan A, Beaumont M, Audebert M, Wong X, Yamada K, Yin Y, Tomé D, Carrasco-Pozo C, Gotteland M, Kong X, Blachier F. The deleterious metabolic and genotoxic effects of the bacterial metabolite p-cresol on colonic epithelial cells. Free Radic Biol Med. 2015;85:219–27.

    Article  CAS  PubMed  Google Scholar 

  162. Wong X, Carrasco-Pozo C, Escobar E, Navarrete P, Blachier F, Andriamihaja M, Lan A, Tomé D, Cires MJ, Pastene E, Gotteland M. Deleterious effect of p-cresol on human colonic epithelial cells prevented by proanthocyanidin-containing polyphenol extracts from fruits and proanthocyanidin bacterial metabolites. J Agric Food Chem. 2016;64(18):3574–83.

    Article  CAS  PubMed  Google Scholar 

  163. Gao J, Xu K, Liu H, Liu G, Bai M, Peng C, Li T, Yin Y. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front Cell Infect Microbiol. 2018;8:13.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Lee JY, Wood TK, Lee J. Roles of indole as an interspecies and interkingdom signaling molecule. Trends Microbiol. 2015;23(11):707–18.

    Article  CAS  PubMed  Google Scholar 

  165. Keszthelyi D, Troost FJ, Masclee AA. Understanding the role of tryptophan and serotonin metabolism in gastrointestinal function. Neurogastroenterol Motil. 2009;21(12):1239–49.

    Article  CAS  PubMed  Google Scholar 

  166. Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat Commun. 2018;9(1):3294.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Dong F, Perdew GH. The aryl hydrocarbon receptor as a mediator of host-microbiota interplay. Gut Microbes. 2020;12(1):1859812.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Hyland NP, Cavanaugh CR, Hornby PJ. Emerging effects of tryptophan pathway metabolites and intestinal microbiota on metabolism and intestinal function. Amino Acids. 2022;54(1):57–70.

    Article  CAS  PubMed  Google Scholar 

  169. Jensen MT, Cox RP, Jensen BB. 3-methylindole (skatole) and indole production by mixed populations of pig fecal bacteria. Appl Environ Microbiol. 1995;61(8):3180–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Oliphant K, Allen-Vercoe E. Macronutrient metabolism by the human gut microbiome major fermentation by-products and their impact on host health. Microbiome. 2019;7(1):91.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Taleb S. Tryptophan dietary impacts gut barrier and metabolic diseases. Front Immunol. 2019;10:2113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Dodd D, Spitzer MH, Van Treuren W, Merrill BD, Hryckowian AJ, Higginbottom SK, Le A, Cowan TM, Nolan GP, Fischbach MA, Sonnenburg JL. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature. 2017;551(7682):648–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G. Metabolomics analysis reveals large effects of gut microbiota on mammalian blood metabolites. Proc Natl Acad Sci U S A. 2009;106(10):3698–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Chappell CL, Darkoh C, Shimmin L, Farhana N, Kim DK, Okhuysen PC, Hixson J. Fecale indole as a biomarker of susceptibility to cryptosporidium infection. Infect Immun. 2016;84(8):2299–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Darkoh C, Chappell C, Gonzales C, Okhuysen P. A rapid and specific method for the detection of indole in complex biological samples. Appl Environ Microbiol. 2015;81(23):8093–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Leong SC, Sirich TL. Indoxyl sulfate. Review of toxicity and therapeutic strategies. Toxins (Basel). 2016;8(12):358.

    Article  PubMed  Google Scholar 

  177. Huc T, Konop M, Onyszkiewicz M, Podsadni P, Szczepanska A, Turlo J, Ufnal M. Colonic indole, gut bacteria metabolite of tryptophan, increases portal blood pressure in rats. Am J Phys. 2018;315(4):R646–55.

    CAS  Google Scholar 

  178. Whitt DD, Demoss RD. Effect of microflora on the free amino acid distribution in various regions of the mouse gastrointestinal tract. Appl Microbiol. 1975;30(4):609–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Kim J, Park W. Indole: a signaling molecule or a mere metabolic byproduct that alters bacterial physiology at a high concentration? J Microbiol. 2015;53(7):421–8.

    Article  CAS  PubMed  Google Scholar 

  180. Lee JH, Lee J. Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev. 2010;34(4):426–44.

    Article  CAS  PubMed  Google Scholar 

  181. Vega NM, Allison KR, Samuels AN, Klempner MS, Collins JJ. Salmonella typhimurium intercepts Escherichia coli signaling to enhance antibiotic resistance. Proc Natl Acad Sci U S A. 2013;110(35):14420–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Rattanaphan P, Mittraparp-Arthorn P, Srinoun K, Vuddhakul V, Tansila N. Indole signaling decreases biofilm formation and related virulence of listeria monocytogenes. FEMS Microbiol Lett. 2020;367(14):fnaa116.

    Article  CAS  PubMed  Google Scholar 

  183. Li G, Young KD. Indole production by the tryptophanase TnaA in Escherichia coli is determined by the amount of exogenous tryptophan. Microbiology (Reading). 2013;159(2):402–10.

    Article  CAS  PubMed  Google Scholar 

  184. Bansal T, Englert D, Lee J, Hedge M, Wood TK, Jayaraman A. Differential effects of epinephrine, norepinephrine, and indole on Escherichia coli O157:H7 chemotaxis, colonization, and gene expression. Infect Immun. 2007;75(9):4597–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Nowak A, Libudzisz Z. Influence of phenol, p-cresol and indole on growth and survival of intestinal lactic acid bacteria. Anaerobe. 2006;12(2):80–4.

    Article  CAS  PubMed  Google Scholar 

  186. Ledala N, Malik M, Rezaul K, Paveglio S, Provatas A, Kiel A, Caimano M, Zhou Y, Lindgren J, Krasulova K, Illes P, Dvorak Z, Kortagere S, Kienesberger S, Cosic A, Pöltl L, Zechner EL, Ghosh S, Mani S, Radolf JD, Matson AP. Bacterial indole as a multifunctional regulator of Klebsiella oxytoca complex enterotoxicity. MBio. 2022;13(1):e0375221.

    Article  PubMed  Google Scholar 

  187. Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe. 2018;23(6):716–24.

    Article  CAS  PubMed  Google Scholar 

  188. Permonian L, Duarte-Silva M, de Barros R, Cardoso C. The aryl hydrocarbon receptor (AHR) as a potential target for the control of intestinal inflammation: insights from an immune and bacteria sensor receptor. Clin Rev Allergy Immunol. 2020;59(3):382–90.

    Article  Google Scholar 

  189. Hubbard TD, Murray IA, Perdew GH. Indole and tryptophan metabolism: endogenous and dietary routes to Ah receptor activation. Drug Metab Dispos. 2015;43(10):1522–35.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Lamas B, Richard ML, Leducq V, Pham HP, Michel ML, Da Costa G, Bridonneau C, Jegou S, Hoffmann TW, Natividad JM, Brot L, Taleb S, Couturier-Maillard A, Nion-Larmurier L, Merabtene F, Selsik P, Bourrier A, Cosnes J, Ryffel B, Beaugerie L, Launay JM, Langella P, Xavier RJ, Sokol H. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med. 2016;22(6):598–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Wlodarska M, Luo C, Kolde R, d’Hennezel E, Annand JW, Heim CE, Krastel P, Schmitt EK, Omar AS, Creasey EA, Garner AL, Mohammadi S, O’Connell DJ, Abubucker S, Arthur TD, Franzosa EA, Huttenhower C, Murphy LO, Haiser HJ, Vlamakis H, Porter JA, Xavier RJ. Indoleacrylic acid produced by commensal Peptostreptococcus species suppresses inflammation. Cell Host Microbe. 2017;22(1):25–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Zelante T, Iannitis RG, Cunha C, De Luca A, Giovannini G, Pieraccini G, Zecchi R, D’Angelo C, Massi-Benedetti C, Fallarino F, Carvalho A, Puccetti P, Romani L. Tryptophan catabolites from microbiota engage hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013;39(2):372–85.

    Article  CAS  PubMed  Google Scholar 

  193. Natividad JM, Agus A, Planchais JA, Lamas B, Jarry AC, Martin R, Michel ML, Chong-Nguyen C, Roussel R, Straube M, Jegou S, McQuitty C, Le Gall M, da Costa G, Lecornet G, Michaudel C, Modoux M, Glodt J, Bridonneau C, Sovran B, Dupraz L, Bado A, Richard ML, Langella P, Hansel B, Launay JM, Xavier RJ, Duboc H, Sokol H. Impaired aryl hydrocarbon receptor ligand production by the gut microbiota is a key factor in metabolic syndrome. Cell Metab. 2018;28(5):737–749.e4.

    Article  CAS  PubMed  Google Scholar 

  194. Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007;87(4):1409–39.

    Article  CAS  PubMed  Google Scholar 

  195. Bansal T, Alaniz RC, Wood TK, Jayaraman A. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc Natl Acad Sci U S A. 2010;107(1):228–33.

    Article  CAS  PubMed  Google Scholar 

  196. Shimada Y, Kinoshita M, Harada K, Mizutani M, Masahata K, Kayama H, Takeda K. Commensal bacteria-dependent indole production enhances epithelial barrier function in the colon. PLoS One. 2013;8(11):e80604.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Armand L, Fofana M, Couturier-Becavin K, Andriamihaja M, Blachier F. Dual effects of the tryptophan-derived bacterial metabolite indole on colonic epithelial cell metabolism and physiology: comparison with its co-metabolite indoxyl sulfate. Amino Acids. 2022;54(10):1371–82.

    Article  CAS  PubMed  Google Scholar 

  198. Chimerel C, Emery E, Summers DK, Keyser U, Gribble FM, Reimann F. Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell Rep. 2014;9(4):1202–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Karlin DA, Mastromarino AJ, Jones RD, Stroehlein JR, Lorentz O. Fecal skatole and indole and breath methane and hydrogen in patients with large bowel polyps or cancer. J Cancer Res Clin Oncol. 1985;109(2):135–41.

    Article  CAS  PubMed  Google Scholar 

  200. Yokoyama MT, Carlson JR. Microbial metabolites of tryptophan in the intestinal tract with special reference to skatole. Am J Clin Nutr. 1979;32(1):173–8.

    Article  CAS  PubMed  Google Scholar 

  201. Cook KL, Rothrock MJ Jr, Loughrin JH, Doerner KC. Characterization of skatole-producing microbial populations in enriched swine lagoon slurry. FEMS Microbiol Ecol. 2007;60(2):329–40.

    Article  CAS  PubMed  Google Scholar 

  202. Whitehead TR, Price NP, Drake HL, Cotta MA. Catabolic pathway for the production of skatole and indoleacetic acid by the acetogen Clostridium drakei, clostridium scatologenes, and swine manure. Appl Environ Microbiol. 2008;74(6):1950–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Choi SH, Kim Y, Oh S, Oh S, Chun T, Kim T, Kim SH. Inhibitory effect of skatole (3-methylindole) on enterohemorrhagic Escherichia coli O157:H7 ATCC 43894 biofilm formation mediated by elevated endogenous oxidative stress. Lett Appl Microbiol. 2014;58(5):454–61.

    Article  CAS  PubMed  Google Scholar 

  204. Deng Z, Luo XM, Liu J, Wang H. Quorum sensing, biofilm, and intestinal mucosal barrier: involvement the role of probiotic. Front Cell Infect Microbiol. 2020;10:538077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Probert HM, Gibson GR. Bacterial biofilms in the human gastrointestinal tract. Curr Issues Intest Microbiol. 2002;3(2):23–7.

    CAS  PubMed  Google Scholar 

  206. Witte F, Pajic A, Menger F, Tomasevic I, Schubert DC, Visscher C, Terjung N. Preliminary test of the reduction capacity for the intestinal absorption of skatole and indole in weaning piglets by pure and coated charcoal. Animals (Basel). 2021;11(9):2720.

    Article  PubMed  Google Scholar 

  207. Claus R, Raab S. Influence on skatole formation from tryptophan in the pig colon. Adv Exp Med Biol. 1999;467:679–84.

    Article  CAS  PubMed  Google Scholar 

  208. Kurata K, Kawahara H, Nishimura K, Jisaka M, Yokota K, Shimizu H. Skatole regulates intestinal epithelial cellular functions through activating aryl hydrocarbon receptors and p38. Biochem Biophys Res Commun. 2019;510(4):649–55.

    Article  CAS  PubMed  Google Scholar 

  209. Blachier F, Davila AM, Mimoun S, Benetti PH, Atanasiu C, Andriamihaja M, Benamouzig R, Bouillaud F, Tomé D. Luminal sulfide and large intestine mucosa: friend or foe? Amino Acids. 2010;39(2):335–47.

    Article  CAS  PubMed  Google Scholar 

  210. Barton LL, Ritz NL, Fauque GD, Lin HC. Sulfur cycling and the intestinal microbiome. Dig Dis Sci. 2017;62(9):2241–57.

    Article  CAS  PubMed  Google Scholar 

  211. Basic A, Blomqvist M, Dahlen G, Svensäter G. The proteins of fusobacterium spp. involved in hydrogen sulfide production from L-cysteine. BMC Microbiol. 2017;17(1):61.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Linden DR. Hydrogen sulfide signaling in the gastrointestinal tract. Antioxid Redox Signal. 2014;20(5):818–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Tittsler RP. The effects of temperature upon the production of hydrogen sulphide by salmonella pullorum. J Bacteriol. 1931;21(2):111–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Ohge H, Furne JK, Springfield J, Sueda T, Madoff RD, Levitt MD. The effects of antibiotics and bismuth on fecal hydrogen sulfide and sulfate-reducing bacteria in the rat. FEMS Microbiol Lett. 2003;228(1):137–42.

    Article  CAS  PubMed  Google Scholar 

  215. Rowan FE, Docherty NG, Coffey JC, O’Connell PR. Sulphate-reducing bacteria and hydrogen sulphide in the aetiology of ulcerative colitis. Br J Surg. 2009;96(2):151–8.

    Article  CAS  PubMed  Google Scholar 

  216. Florin T, Neale G, Gibson GR, Christl SU, Cummings JH. Metabolism of dietary sulphate: absorption and excretion in humans. Gut. 1991;32(7):766–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Lewis S, Cochrane S. Alteration of sulfate and hydrogen metabolism in the human colon by changing intestinal transit rate. Am J Gastroenterol. 2007;102(3):624–33.

    Article  CAS  PubMed  Google Scholar 

  218. Pal VK, Bandyopadhyay P, Singh A. Hydrogen sulfide in physiology and pathogenesis of bacteria and viruses. IUBMB Life. 2018;70(5):393–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Shatalin K, Shatalina E, Mironov A, Nudler E. H2S: a universal defense against antibiotics in bacteria. Science. 2011;334(6058):986–90.

    Article  CAS  PubMed  Google Scholar 

  220. Forte E, Borisov VB, Falabella M, Colaço HG, Tinajero-Trejo M, Poole RK, Vicente JB, Sarti P, Giuffrè A. The terminal oxidase cytochrome bd promotes sulfide-resistant bacterial respiration and growth. Sci Rep. 2016;6:23788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Andriamihaja M, Lan A, Beaumont M, Grauso M, Gotteland M, Pastene E, Cires MJ, Carrasco-Pozo C, Tomé D, Blachier F. Proanthocyanidin-containing polyphenol extracts from fruits prevent the inhibitory effect of hydrogen sulfide on human colonocyte oxygen consumption. Amino Acids. 2018;50(6):755–63.

    Article  CAS  PubMed  Google Scholar 

  222. Gasaly N, Gotteland M. Interference of dietary polyphenols with potentially toxic amino acid metabolites derived from the colonic microbiota. Amino Acids. 2022;54(3):311–24.

    Article  CAS  PubMed  Google Scholar 

  223. Mimoun S, Andriamihaja M, Chaumontet C, Atanasiu C, Benamouzig R, Blouin JM, Tomé D, Bouillaud F, Blachier F. Detoxification of H2S by differentiated colonic epithelial cells: implication of the sulfide oxidizing unit and of the cell respiratory capacity. Antioxid Redox Signal. 2012;17(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  224. Lönnerdal B. Dietary factors influencing zinc absorption. J Nutr. 2000;130(5):1378S–83S.

    Article  PubMed  Google Scholar 

  225. Manach C, Williamson G, Morand C, Scalbert A, Rémésy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr. 2005;81(1):230S–42S.

    Article  CAS  PubMed  Google Scholar 

  226. Shen X, Carlström M, Borniquel S, Jädert C, Kevil CG, Lundberg JO. Microbial regulation of host hydrogen sulfide bioavailability and metabolism. Free Radic Biol Med. 2013;60:195–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Blachier F, Beaumont M, Kim E. Cysteine-derived hydrogen sulfide and gut health: a matter of endogenous or bacterial origin. Curr Opin Clin Nutr Metab Care. 2019;22(1):68–75.

    Article  CAS  PubMed  Google Scholar 

  228. Guo FF, Yu TC, Hong J, Fang JY. Emerging roles of hydrogen sulfide in inflammatory and neoplastic colonic diseases. Front Physiol. 2016;7:156.

    Article  PubMed  PubMed Central  Google Scholar 

  229. Beaumont M, Andriamihaja M, Lan A, Khodorova N, Audebert M, Blouin JM, Grauso M, Lancha L, Benetti PH, Benamouzig R, Tomé D, Bouillaud F, Davila AM, Blachier F. Detrimental effects for colonocytes of an increased exposure to luminal hydrogen sulfide: the adaptive response. Free Radic Biol Med. 2016;93:155–64.

    Article  CAS  PubMed  Google Scholar 

  230. Goubern M, Andriamihaja M, Nübel T, Blachier F, Bouillaud F. Sulfide, the first inorganic substrate for human cells. FASEB J. 2007;21(8):1699–706.

    Article  CAS  PubMed  Google Scholar 

  231. Bouillaud F, Blachier F. Mitochondria and sulfide: a very old story of poisoning, feeding, and signaling? Antioxid Redox Signal. 2011;15(2):379–91.

    Article  CAS  PubMed  Google Scholar 

  232. Grieshaber MK, Völkel S. Animal adaptations for tolerance and exploitation of poisonous sulfide. Annu Rev Physiol. 1998;60:33–53.

    Article  CAS  PubMed  Google Scholar 

  233. Giuffrè A, Vicente JB. Hydrogen sulfide biochemistry and interplay with other gaseous mediators in mammalian physiology. Oxid Med Cell Longev. 2018;2018:6290931.

    Article  PubMed  PubMed Central  Google Scholar 

  234. Lagoutte E, Mimoun S, Andriamihaja M, Chaumontet C, Blachier F, Bouillaud F. Oxidation of hydrogen sulfide remains a priority in mammalian cells and causes reverse electron transfer in colonocytes. Biochim Biophys Acta. 2010;1797(8):1500–11.

    Article  CAS  PubMed  Google Scholar 

  235. Leschelle X, Goubern M, Andriamihaja M, Blottière HM, Couplan E, Gonzalez-Barroso MDM, Petit C, Pagniez A, Chaumontet C, Mignotte B, Bouillaud F, Blachier F. Adaptative metabolic response of human colonic epithelial cells to the adverse effects of the luminal compound sulfide. Biochim Biophys Acta. 2005;1725(2):201–12.

    Article  CAS  PubMed  Google Scholar 

  236. Pichette J, Fynn-Sackey N, Gagnon J. Hydrogen sulfide and sulfate prebiotic stimulate the secretion of GLP-1 and improve glycemia in male mice. Endocrinology. 2017;158(10):3416–25.

    Article  CAS  PubMed  Google Scholar 

  237. Gilbert MP, Pratley RE. GLP-1 analogs and DPP-4 inhibitors in type 2 diabetes therapy: review of head-to-head clinical trials. Front Endocrinol (Lausanne). 2020;11:178.

    Article  PubMed  Google Scholar 

  238. Di Martino ML, Campilongo R, Casalino M, Micheli G, Colonna B, Prosseda G. Polyamines: emerging players in bacteria-host interactions. Int J Med Microbiol. 2013;303(8):484–91.

    Article  PubMed  Google Scholar 

  239. Blachier F, Davila AM, Benamouzig R, Tomé D. Chanelling of arginine in NO and polyamine pathways in colonocytes and consequences. Front Biosci (Landmark Ed). 2011;16(4):1331–43.

    Article  CAS  PubMed  Google Scholar 

  240. Pegg AE. Mammalian polyamine metabolism and function. IUBMB Life. 2009;61(9):880–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Thomas TJ, Tajmir-Riahi HA, Thomas T. Polyamine-DNA interactions and development of gene delivery vehicles. Amino Acids. 2016;48(10):2423–31.

    Article  CAS  PubMed  Google Scholar 

  242. Williams K. Interactions of polyamines with ion channels. Biochem J. 1997;325(2):289–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Igarashi K, Kashiwagi K. Modulation of cellular function by polyamines. Int J Biochem Cell Biol. 2010;42(1):39–51.

    Article  CAS  PubMed  Google Scholar 

  244. Ramos-Molina B, Queipo-Ortuno MI, Lambertos A, Tinahones FJ, Penafiel R. Dietary and gut microbiota polyamines in obesity- and age-related diseases. Front Nutr. 2019;6:24.

    Article  PubMed  PubMed Central  Google Scholar 

  245. Shah P, Swiatlo E. A multifaceted role for polyamines in bacterial pathogens. Mol Microbiol. 2008;68(1):4–16.

    Article  CAS  PubMed  Google Scholar 

  246. Tabor CW, Tabor H. Polyamines in microorganisms. Microbiol Rev. 1985;49(1):81–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Allison C, Macfarlane GT. Influence of pH, nutrient availability, and growth rate on amine production by Bacteroides fragilis and Clostridium perfringens. Appl Environ Microbiol. 1989;55(11):2894–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Landete JM, Arena ME, Pardo I, Manca de Nadra MC, Ferrer S. Comparative survey of putrescine production from agmatine deamination in different bacteria. Food Microbiol. 2008a;25(7):882–7.

    Article  CAS  PubMed  Google Scholar 

  249. Nakamura A, Ooga T, Matsumoto M. Intestinal luminal putrescine is produced by collective biosynthetic pathways of the commensal microbiome. Gut Microbes. 2019;10(2):159–71.

    Article  CAS  PubMed  Google Scholar 

  250. Kitada Y, Muramatsu K, Toju H, Kibe R, Benno Y, Kurihara S, Matsumoto M. Bioactive polyamine production by a novel hybrid system comprising multiple indigenous gut bacterial strategies. Sci Adv. 2018;4(6):eaat0062.

    Article  PubMed  PubMed Central  Google Scholar 

  251. Noack J, Dongowski G, Hartmann L, Blaut M. The human gut bacteria Bacteroides thetaiomicron and fusobacterium varium produce putrescine and spermidine in cecum of pectin-fed gnotobiotic rats. J Nutr. 2000;130(5):1225–31.

    Article  CAS  PubMed  Google Scholar 

  252. Michael AJ. Polyamine function in archaea and bacteria. J Biol Chem. 2018;293(48):18693–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Griswold AR, Jameson-Lee M, Burne RA. Regulation and physiological significance of the agmatine deiminase system of Streptococcus mutans UA 159. J Bacteriol. 2006;188(3):834–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Higashi K, Ishigure H, Demizu R, Uemura T, Nishino K, Yamaguchi A, Kashiwagi K, Igarashi K. Identification of spermidine excretion protein complex (MdtJI) in Escherichia coli. J Bacteriol. 2008;190(3):872–8.

    Article  CAS  PubMed  Google Scholar 

  255. Osborne DL, Seidel ER. Gastrointestinal luminal polyamines: cellular accumulation and enterohepatic circulation. Am J Phys. 1990;258(4):G576–84.

    CAS  Google Scholar 

  256. Bardocz S. The role of dietary polyamines. Eur J Clin Nutr. 1993;47(10):683–90.

    CAS  PubMed  Google Scholar 

  257. Bamba T, Vaja S, Murphy GM, Dowling RH. Effect of fasting and feeding on polyamines and related enzymes along the villus: crypt axis. Digestion. 1990;46(S2):424–9.

    Article  CAS  PubMed  Google Scholar 

  258. Blachier F, Darcy-Vrillon B, Sener A, Duée PH, Malaisse WJ. Arginine metabolism in rat enterocytes. Biochim Biophys Acta. 1991;1092(3):304–10.

    Article  CAS  PubMed  Google Scholar 

  259. Fitzpatrick LR, Wang P, Eikenburg BE, Haddox MK, Johnson LR. Effect of refeeding on polyamine biosynthesis in isolated enterocytes. Am J Phys. 1986;250(5):G709–13.

    CAS  Google Scholar 

  260. Porter CW, Dworaczyk D, Ganis B, Weiser MM. Polyamines and biosynthetic enzymes in the rat intestinal mucosa and the influence of methylglyoxal-bis(guanylhydrazone). Cancer Res. 1980;40(7):2330–5.

    CAS  PubMed  Google Scholar 

  261. Bekebrede AF, Keijer J, Gerrits WJJ, de Boer VCJ. The molecular and physiological effects of protein-derived polyamines in the intestine. Nutrients. 2020;12(1):197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Blachier F, M’Rabet-Touil H, Posho L, Morel MT, Bernard F, Darcy-Vrillon B, Duée PH. Polyamine metabolism in enterocytes isolated from newborn pigs. Biochim Biophys Acta. 1992;1175(1):21–6.

    Article  CAS  PubMed  Google Scholar 

  263. Madeo F, Eisenberg T, Pietrocola F, Kroemer G. Spermidine in health and disease. Science. 2018;359(6374):eaan2788.

    Article  PubMed  Google Scholar 

  264. Bartos F, Bartos D, Grettie DP, Campbell RA. Polyamine levels in normal human serum. Comparison of analytical methods. Biochem Biophys Res Commun. 1977;75(4):915–9.

    Article  CAS  PubMed  Google Scholar 

  265. Elitsur Y, Gesell M, Luk GD. ODC activity and polyamine levels in isolated human colonocytes. Life Sci. 1993;53(11):945–52.

    Article  CAS  PubMed  Google Scholar 

  266. Uda K, Tsujikawa T, Fujiyama Y, Bamba T. Rapid absorption of luminal polyamines in a rat small intestine ex vivo model. J Gastroenterol Hepatol. 2003;18(5):554–9.

    Article  CAS  PubMed  Google Scholar 

  267. Matsumoto M, Kibe R, Ooga T, Aiba Y, Kurihara S, Sawaki E, Koga Y, Benno Y. Impact of intestinal microbiota on intestinal luminal metabolome. Sci Rep. 2012;2:233.

    Article  PubMed  PubMed Central  Google Scholar 

  268. Cheng SX, Geibel JP, Hebert SC. Extracellular polyamines regulate fluid secretion in rat colonic crypts via the extracellular calcium-sensing receptor. Gastroenterology. 2004;126(1):148–58.

    Article  CAS  PubMed  Google Scholar 

  269. Fioramonti J, Fargeas MJ, Bertrand V, Pradayrol L, Buéno L. Induction of postprandial intestinal motility and release of cholecystokinin by polyamines in rats. Am J Phys. 1994;267(6):G960–5.

    CAS  Google Scholar 

  270. Ma L, Ni Y, Wang Z, Tu W, Ni L, Zhuge F, Zheng A, Hu L, Zhao Y, Zheng L, Fu Z. Spermidine improves gut barrier integrity and gut microbiota function in diet-induced obese mice. Gut Microbes. 2020;12(1):1–19.

    Article  PubMed  Google Scholar 

  271. Ginty DD, Osborne DL, Seidel ER. Putrescine stimulates DNA synthesis in intestinal epithelial cells. Am J Phys. 1989;257(1):G145–50.

    CAS  Google Scholar 

  272. McCormack SA, Viar MJ, Johnson LR. Polyamines are necessary for cell migration by a small intestinal crypt cell line. Am J Phys. 1993;264(2):G367–74.

    CAS  Google Scholar 

  273. Rao JN, Xiao L, Wang JY. Polyamines in gut epithelial renewal and barrier function. Physiology (Bethesda). 2020;35(5):328–37.

    CAS  PubMed  Google Scholar 

  274. Timmons J, Chang ET, Wang JY, Rao JN. Polyamines and gut mucosal homeostasis. J Gastrointest Dig Syst. 2012;2(7):001.

    PubMed  PubMed Central  Google Scholar 

  275. Wang JY. Polyamines and mRNA stability in regulation of intestinal mucosal growth. Amino Acids. 2007;33(2):241–52.

    Article  CAS  PubMed  Google Scholar 

  276. Löser C, Eisel A, Harms D, Fölsch UR. Dietary polyamines are essential luminal growth factors for small intestinal and colonic mucosal growth and development. Gut. 1999;44(1):12–6.

    Article  PubMed  PubMed Central  Google Scholar 

  277. Nakamura A, Kurihara S, Takahashi D, Ohashi W, Nakamura Y, Kimura S, Onuki M, Kume A, Sasazawa Y, Furusawa Y, Obata Y, Fukuda S, Saiki S, Matsumoto M, Hase K. Symbiotic polyamine metabolism regulates epithelial proliferation and macrophage differentiation in the colon. Nat Commun. 2021;12(1):2105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Gamet L, Cazenave Y, Trocheris V, Denis-Pouxviel C, Murat JC. Involvement of ornithine decarboxylase in the control of proliferation of the HT29 human colon cancer cell line. Effect of vasoactive intestinal peptide on enzyme activity. Int J Cancer. 1991;47(4):633–8.

    Article  CAS  PubMed  Google Scholar 

  279. Mayeur C, Veuillet G, Michaud M, Raul F, Blottière HM, Blachier F. Effects of agmatine accumulation in human colon carcinoma cells on polyamine metabolism, DNA synthesis and the cell cycle. Biochim Biophys Acta. 2005;1745(1):111–23.

    Article  CAS  PubMed  Google Scholar 

  280. Grosheva I, Zheng D, Levy M, Polansky O, Lichtenstein A, Golani O, Dori-Bachash M, Moresi C, Shapiro H, Del Mare-Roumani S, Valdes-Mas R, He Y, Karbi H, Chen M, Harmelin A, Straussman R, Yissachar N, Elinav E, Geiger B. High-throughput screen identifies host and microbiota regulators of intestinal barrier function. Gastroenterology. 2020;159(5):1807–23.

    Article  CAS  PubMed  Google Scholar 

  281. Mantziari A, Mannila E, Collado MC, Salminen S, Gomez-Gallego C. Exogenous polyamines influence in vitro microbial adhesion to human mucus according to the age of mucus donor. Microorganisms. 2021;9(6):1239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Chu H, Duan Y, Yang L, Schnabl B. Small metabolites, possible big changes: a microbiota-centered view of non-alcoholic fatty liver disease. Gut. 2019;68(2):359–70.

    Article  CAS  PubMed  Google Scholar 

  283. Cope K, Risby T, Diehl AM. Increased gastrointestinal ethanol production in obese mice: implications for fatty liver disease pathogenesis. Gastroenterology. 2000;119(5):1340–7.

    Article  CAS  PubMed  Google Scholar 

  284. Zhu L, Baker SS, Gill C, Liu W, Alkhouri R, Baker RD, Gill SR. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology. 2013;57(2):601–9.

    Article  CAS  PubMed  Google Scholar 

  285. Baraona E, Julkunen R, Tannenbaum L, Lieber CS. Role of intestinal bacterial overgrowth in ethanol production and metabolism in rats. Gastroenterology. 1986;90(1):103–10.

    Article  CAS  PubMed  Google Scholar 

  286. Salaspuro MP. Acetaldehyde, microbes, and cancer of the digestive tract. Crit Rev Clin Lab Sci. 2003;40(2):183–208.

    Article  CAS  PubMed  Google Scholar 

  287. Yokoyama S, Takeuchi K, Shibata Y, Kageyama S, Matsumi R, Takeshita T, Yamashita Y. Characterization of oral microbiota and acetaldehyde production. J Oral Microbiol. 2018;10(1):1492316.

    Article  PubMed  PubMed Central  Google Scholar 

  288. Seitz HK, Simanovski UA, Garzon FT, Rideout JM, Peters TJ, Koch A, Berger MR, Einecke H, Maiwald M. Possible role of acetaldehyde in ethanol-related rectal cocarcinogenesis in the rat. Gastroenterology. 1990;98(2):406–13.

    Article  CAS  PubMed  Google Scholar 

  289. Jokelainen K, Nosova T, Koivisto T, Väkeväinen S, Jousiemies-Somer H, Heine R, Salaspuro M. Inhibition of bacteriocolonic pathway for ethanol oxidation by ciprofloxacin in rats. Life Sci. 1997;61(18):1755–62.

    Article  CAS  PubMed  Google Scholar 

  290. Tillonen J, Homann N, Rautio M, Jousimies-Somer H, Salaspuro M. Ciprofloxacin decreases the rate of ethanol elimination in humans. Gut. 1999;44(3):347–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Jokelainen K, Matysiak-Budnik T, Mäkisolo H, Höckerstedt K, Salaspuro M. High intracolonic acetaldehyde values produced by a bacteriocolonic pathway for ethanol oxidation in piglets. Gut. 1996;39(1):100–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Xie G, Zhong W, Zheng X, Li Q, Qiu Y, Li H, Chen Y, Zhou Z, Jia W. Chronic ethanol consumption alters mammalian gastrointestinal content metabolites. J Proteome Res. 2013;12(7):3297–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Couch RD, Dailey A, Zaidi F, Navarro K, Forsyth CB, Mutlu E, Engen PA, Keshavarzian A. Alcohol induced alterations to the human fecal VOC metabolome. PLoS One. 2015;10(3):e0119362.

    Article  PubMed  PubMed Central  Google Scholar 

  294. Wang Y, Tong J, Chang B, Wang B, Zhang B, Wang B. Effects of alcohol on intestinal epithelial barrier permeability and expression of tight junction-associated proteins. Mol Med Rep. 2014;9(6):2352–6.

    Article  CAS  PubMed  Google Scholar 

  295. Elamin E, Masclee A, Troost F, Pieters HJ, Keszthelyi D, Aleksa K, Dekker J, Jonkers D. Ethanol impairs intestinal barrier function in humans through mitogen activated protein kinase signaling: a combined in vivo and in vitro approach. PLoS One. 2014b;9(9):e107421.

    Article  PubMed  PubMed Central  Google Scholar 

  296. Elamin E, Masclee A, Troost F, Dekker J, Jonkers D. Cytotoxicity and metabolic stress induced by acetaldehyde in human intestinal LS174T goblet-like cells. Am J Phys. 2014a;307(3):G286–94.

    CAS  Google Scholar 

  297. Basuroy S, Sheth P, Mansbach CM, Rao RK. Acetaldehyde disrupts tight junctions and adherens junctions in human colonic mucosa: protection by EGF and L-glutamine. Am J Phys. 2005;289(2):G367–75.

    CAS  Google Scholar 

  298. Margolis KG, Cryan JF, Mayer EA. The microbiota-gut-brain axis: from motility to mood. Gastroenterology. 2021;160(5):1486–501.

    Article  CAS  PubMed  Google Scholar 

  299. Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693(B):128–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Wall R, Cryan JF, Ross RP, Fitzgerald GF, Dinan TG, Stanton C. Bacterial neuroactive compounds produced by psychobiotics. Adv Exp Med Biol. 2014;817:221–39.

    Article  CAS  PubMed  Google Scholar 

  301. Ngo DH, Vo TS. An updated review on pharmaceutical properties of gamma-aminobutyric acid. Molecules. 2019;24(15):2678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Hyland NP, Cryan JF. A gut feeling about GABA: focus on GABA(B) receptors. Front Pharmacol. 2010;1:124.

    Article  PubMed  PubMed Central  Google Scholar 

  303. Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C. ϒ-aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol. 2012;113(2):411–7.

    Article  CAS  PubMed  Google Scholar 

  304. Nomura M, Nakajima I, Fujita Y, Kobayashi M, Kimoto H, Suzuki I, Aso H. Lactococcus lactis contains only one glutamate decarboxylase gene. Microbiology (Reading). 1999;145(6):1375–80.

    Article  CAS  PubMed  Google Scholar 

  305. Siragusa S, De Angelis M, Di Cagno R, Rizzello CG, Coda R, Gobbetti M. Synthesis of gamma-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Appl Environ Microbiol. 2007;73(22):7283–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Feehily C, Karatzas KAG. Role of glutamate metabolism in bacterial responses towards acid and other stresses. J Appl Microbiol. 2013;114(1):11–24.

    Article  CAS  PubMed  Google Scholar 

  307. Karatzas KA, Brennan O, Heavin S, Morrissey J, O’Byrne CP. Intracellular accumulation of high levels of gamma-aminobutyrate by listeria monocytogenes 10403S in response to low pH: uncoupling of gamma-aminobutyrate synthesis from efflux in a chemically defined medium. Appl Environ Microbiol. 2010;76(11):3529–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Matsumoto M, Kibe R, Ooga T, Aiba Y, Sawaki E, Koga Y, Benno Y. Cerebral low-molecular metabolites influenced by intestinal microbiota. Front Syst Neurosci. 2013;7:9.

    Article  PubMed  PubMed Central  Google Scholar 

  309. Aston-Jones G, Waterhouse B. Locus coeruleus: from global projection system to adaptive regulation and behavior. Brain Res. 2016;1645:75–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Gregersen H, Dall FH, Jorgensen CS, Jensen SL, Ahren JB. Effects of noradrenaline and galanin on duodenal motility in the isolated perfused porcine pancreatico-duodenal block. Regul Pept. 1992;39(2–3):157–67.

    Article  CAS  PubMed  Google Scholar 

  311. Kurahashi M, Kito Y, Hara M, Takeyama H, Sanders KM, Hashitani H. Norepinephrine has dual effects on human colonic contractions through distinct subtypes of alpha 1 adrenoceptors. Cell Mol Gastroenterol Hepatol. 2020;10(3):658–71.

    Article  PubMed  PubMed Central  Google Scholar 

  312. Boyanova L. Stress hormone epinephrine (adrenaline) and norepinephrine (noradrenaline) effects on the anaerobic bacteria. Anaerobe. 2017;44:13–9.

    Article  CAS  PubMed  Google Scholar 

  313. Lustri BC, Sperandio V, Moreira CG. Bacterial chat: intestinal metabolites and signals in host-microbiota-pathogen interactions. Infect Immun. 2017;85(12):e00476–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. O’Donnell PM, Aviles H, Lyte M, Sonnenfeld G. Enhancement of in vitro growth of pathogenic bacteria by norepinephrine: importance of inoculum density and role of transferrin. Appl Environ Microbiol. 2006;72(7):5097–9.

    Article  PubMed  PubMed Central  Google Scholar 

  315. Asano Y, Hiramoto T, Nishino R, Aiba Y, Kimura T, Yoshihara K, Koga Y, Sudo N. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Phys. 2012;303(11):G1288–95.

    CAS  Google Scholar 

  316. Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, Correa RG. Dopamine: functions, signaling, and association with neurological diseases. Cell Mol Neurobiol. 2019;39(1):31–59.

    Article  PubMed  Google Scholar 

  317. Claus H, Decker H. Bacterial tyrosinases. Syst Appl Microbiol. 2006;29(1):3–14.

    Article  CAS  PubMed  Google Scholar 

  318. Li Y, Zhang Y, Zhang XL, Feng XY, Liu CZ, Zhang XN, Quan ZS, Yan JT, Zhu JX. Dopamine promotes colonic mucus secretion through dopamine D5 receptor in rats. Am J Phys. 2019;316(3):C393–403.

    Article  CAS  Google Scholar 

  319. Baronio D, Gonchoroski T, Castro K, Zanatta G, Gottfried C, Riesgo R. Histaminergic system in brain disorders: lessons from the translational approach and future perspectives. Ann General Psychiatry. 2014;13(1):34.

    Article  Google Scholar 

  320. Maintz L, Novak N. Histamine and histamine intolerance. Am J Clin Nutr. 2007;85(5):1185–96.

    Article  CAS  PubMed  Google Scholar 

  321. Guihot G, Blachier F. Histidine and histamine metabolism in rat enterocytes. Mol Cell Biochem. 1997;175(1–2):143–8.

    Article  CAS  PubMed  Google Scholar 

  322. Landete JM, De las Rivas B, Marcobal A, Munoz R. Updated molecular knowledge about histamine biosynthesis by bacteria. Crit Rev Food Sci Nutr. 2008b;48(8):697–714.

    Article  CAS  PubMed  Google Scholar 

  323. Molenaar D, Bosscher JS, ten Brink B, Driessen AJ, Konings WN. Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in lactobacillus buchneri. J Bacteriol. 1993;175(10):2864–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Bjornsdottir-Butler K, Green DP, Bolton GE, McClellan-Green PD. Control of histamine-producing bacteria and histamine formation in fish muscle by trisodium phosphate. J Food Sci. 2015;80(6):M1253–8.

    Article  CAS  PubMed  Google Scholar 

  325. Kovacova-Hanuskova E, Buday T, Gavliakova S, Plevkova J. Histamine, histamine intoxication and intolerance. Allergol Immunopathol (Madr). 2015;43(5):498–506.

    Article  CAS  PubMed  Google Scholar 

  326. El-Merahbi R, Löffler M, Mayer A, Sumara G. The roles of peripheral serotonin in metabolic homeostasis. FEBS Lett. 2015;589(15):1728–34.

    Article  CAS  PubMed  Google Scholar 

  327. Gershon MD, Tack J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology. 2007;132(1):397–414.

    Article  CAS  PubMed  Google Scholar 

  328. Yano JM, Yu K, Donaldson GP, Shastri GS, Ann P, Ma L, Nagler CR, Ismagilof RF, Mazmanian SK, Hsiao EY. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161(2):264–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Williams BB, Van Benschoten AH, Cimermancic P, Donia MS, Zimmermann M, Taketani M, Ishihara A, Kashyap PC, Fraser JS, Fischbar MA. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe. 2014;16(4):495–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Bhattarai Y, Williams BB, Battaglioli EJ, Whitaker WR, Till L, Grover M, Linden DR, Akiba Y, Kandimalla KK, Zachos NC, Kaunitz JD, Sonnenburg JL, Fischbach MA, Farrugia G, Kashyap PC. Gut microbiota-produced tryptamine activates an epithelial G-protein-coupled receptor to increase colonic secretion. Cell Host Microbe. 2018;23(6):775–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Thornburn AN, Macia L, Mackay CR. Diet, metabolites, and “western-lifestyle” inflammatory diseases. Immunity. 2014;40(6):833–42.

    Article  Google Scholar 

  332. Verbeke KA, Boobis AR, Chiodini A, Edwards CA, Franck A, Kleerebezem M, Nauta A, Raes J, van Tol EA, Tuohy KM. Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutr Res Rev. 2015;28(1):42–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Schaafsma G. The protein digestibility-corrected amino acid score. J Nutr. 2000;130(7):1865S–7S.

    Article  CAS  PubMed  Google Scholar 

  334. Boutry C, Fouillet H, Mariotti F, Blachier F, Tomé D, Bos C. Rapeseed and milk protein exhibit a similar nutritional value but marked difference in postprandial regional nitrogen utilization in rats. Nutr Metab (Lond). 2011;8(1):52.

    Article  CAS  PubMed  Google Scholar 

  335. Rand WM, Pellett PL, Young VR. Meta-analysis of nitrogen balance studies for estimating protein requirements in healthy adults. Am J Clin Nutr. 2003;77(1):109–27.

    Article  CAS  PubMed  Google Scholar 

  336. Schönfeldt HC, Gibson Hall N. Dietary protein quality and malnutrition in Africa. Br J Nutr. 2012;108(S2):S69–76.

    Article  PubMed  Google Scholar 

  337. Thom G, Lean M. Is there an optimal diet for weight management and metabolic health? Gastroenterology. 2017;152(7):1739–51.

    Article  PubMed  Google Scholar 

  338. Hruby A, Hu FB. The epidemiology of obesity: a big picture. PharmacoEconomics. 2015;33(7):673–89.

    Article  PubMed  PubMed Central  Google Scholar 

  339. Pesta DH, Samuel VT. A high-protein diet for reducing body fat: mechanisms and possible caveats. Nutr Metab (Lond). 2014;11(1):53.

    Article  PubMed  Google Scholar 

  340. Tipton KD. Nutrition for acute exercise-induced injuries. Annu Rev Metab. 2010;57(S2):43–53.

    Article  CAS  Google Scholar 

  341. Phillips SM. A brief review of higher dietary protein diets in weight loss: a focus on athletes. Sports Med. 2014;44(S2):S149–53.

    Article  PubMed  Google Scholar 

  342. Santesso N, Akl EA, Bianchi M, Mente A, Mustafa R, Heels-Ansdell D, Schünemann HJ. Effects of higher-versus lower- protein diets on health outcomes: a systematic review and meta-analysis. Eur J Clin Nutr. 2012;66(7):780–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Barba CV, Cabrera MI. Recommended energy and nutrient intakes for Filipinos 2002. Asia Pac J Clin Nutr. 2008;17(S2):399–404.

    PubMed  Google Scholar 

  344. Wali JA, Solon-Biet SM, Freire T, Brandon AE. Macronutriment determinants of obesity, insulin resistance and metabolic health. Biology (Basel). 2021;10(4):336.

    CAS  PubMed  Google Scholar 

  345. Leidy HJ, Clifton PM, Astrup A, Wycherley TP, Westertep-Plantenga MS, Luscombe-Marsh ND, Woods SC, Mattes RD. The role of protein in weight loss and maintenance. Am J Clin Nutr. 2015;101(6):1320S–9S.

    Article  CAS  PubMed  Google Scholar 

  346. Wilkinson SB, Phillips SM, Atherton PJ, Patel R, Yarasheski KE, Tarnopolsky MA, Rennie MJ. Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. J Physiol. 2008;586(15):3701–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Silvester KR, Cummings JH. Does digestibility of meat protein help explain large bowel risk? Nutr Cancer. 1995;24(3):279–88.

    Article  CAS  PubMed  Google Scholar 

  348. Flint HJ. The impact of nutrition on the human microbiome. Nutr Rev. 2012;70(S1):S10–3.

    Article  PubMed  Google Scholar 

  349. Schmidt NS, Lorentz A. Dietary restrictions modulate the gut microbiota: implications for health and disease. Nutr Res. 2021;89:10–22.

    Article  CAS  PubMed  Google Scholar 

  350. Zheng X, Wang S, Jia W. Calorie restriction and its impact on gut microbial composition and global metabolism. Front Med. 2018;12(6):634–44.

    Article  PubMed  Google Scholar 

  351. Beaumont M, Portune KJ, Steuer N, Lan A, Cerrudo V, Audebert M, Dumont F, Mancano G, Khodorova N, Andriamihaja M, Airinei G, Tomé D, Benamouzig R, Davila AM, Claus SP, Sanz Y, Blachier F. Quantity and source of dietary protein influence metabolite production by gut microbiota and rectal mucosa gene expression: a randomized, parallel, double-blind trial in overweight humans. Am J Clin Nutr. 2017a;106(4):1005–19.

    Article  CAS  PubMed  Google Scholar 

  352. Windey K, De Preter V, Louat T, Schuit F, Herman J, Vansant G, Verbeke K. Modulation of protein fermentation does not affect fecal water toxicity: a randomized cross-over study in healthy subjects. PLoS One. 2012a;7(12):e52387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Cummings JH, Hill MJ, Bone ES, Branch WJ, Jenkins DJ. The effect of meat protein and dietary fiber on colonic function and metabolism. II. Bacterial metabolites in feces and urine. Am J Clin Nutr. 1979;32(10):2094–101.

    Article  CAS  PubMed  Google Scholar 

  354. Russell WR, Gratz SW, Duncan SH, Holtrop G, Ince J, Scobbie L, Duncan G, Johnstone AM, Lobley GE, Wallace RJ, Duthie GG, Flint HJ. High-protein, reduced-carbohydrate weight-loss diets promote metabolic profiles likely to be detrimental to colonic health. Am J Clin Nutr. 2011;93(5):1062–72.

    Article  CAS  PubMed  Google Scholar 

  355. Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol. 2014;12(10):661–72.

    Article  CAS  PubMed  Google Scholar 

  356. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Sloan Devline A, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh RJ. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63.

    Article  CAS  PubMed  Google Scholar 

  357. Duncan SH, Belenguer A, Holtrop G, Johnstone AM, Flint HJ, Lobley GE. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol. 2007;73(4):1073–8.

    Article  CAS  PubMed  Google Scholar 

  358. Thibault R, Blachier F, Darcy-Vrillon B, de Coppet P, Bourreille A, Segain JP. Butyrate utilization by the colonic mucosa in inflammatory bowel diseases: a transport deficiency. Inflamm Bowel Dis. 2010;16(4):684–95.

    Article  PubMed  Google Scholar 

  359. Magee EA, Richardson CJ, Hughes R, Cummings JH. Contribution of dietary protein to sulfide production in the large intestine: an in vitro and a controlled feeding in humans. Am J Clin Nutr. 2000;72(6):1488–94.

    Article  CAS  PubMed  Google Scholar 

  360. Windey K, De Preter V, Verbeke K. Relevance of protein fermentation to gut health. Mol Nutr Food Res. 2012b;56(1):184–96.

    Article  CAS  PubMed  Google Scholar 

  361. Gryp T, Vanholder R, Vaneechoutte M, Glorieux G. p-cresyl sulfate. Toxins (Basel). 2017;9(2):52.

    Article  PubMed  Google Scholar 

  362. Tennoune N, Andriamihaja M, Blachier F. Production of indole and indole-related compounds by the intestinal microbiota and consequences for the host: the good, the bad, and the ugly. Microorganisms. 2022;10(5):930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Pearson JR, Gill CIR, Rowland IR. Diet, fecal water, and colon cancer: development of a biomarker. Nutr Rev. 2009;67(9):509–26.

    Article  PubMed  Google Scholar 

  364. Benassi-Evans B, Clifton P, Noakes M, Fenech M. High-protein/high red meat and high-carbohydrate weight-loss diets do not differ in their effects on fecal water genotoxicity tested by use of the WIL2-NS cell line and with other biomarkers of bowel health. Mutat Res. 2010;703(2):130–6.

    Article  CAS  PubMed  Google Scholar 

  365. Mu C, Yang Y, Luo Z, Guan L, Zhu W. The colonic microbiome and epithelial transcriptome are altered in rats fed a high-protein diet compared with a normal-protein diet. J Nutr. 2016;146(3):474–83.

    Article  CAS  PubMed  Google Scholar 

  366. Beaumont M, Andriamihaja M, Armand L, Grauso M, Jaffrézic F, Lanoë D, Moroldo M, Davila AM, Tomé D, Blachier F, Lan A. Epithelial response to a high-protein diet in rat colon. BMC Genomics. 2017b;18(1):116.

    Article  PubMed  PubMed Central  Google Scholar 

  367. Fiorentino M, Landais E, Bastard G, Carriquiry A, Wierenga RT, Berger J. Nutrient intake is insufficient among Segenalese urban school children and adolescents: results from two 24 h recalls in state primary schools in Dakar. Nutrients. 2016;8(10):650.

    Article  PubMed  PubMed Central  Google Scholar 

  368. Hautvast JL, van der Heijden LJ, Luneta AK, van Staveren WA, Tolboom JJ, van Gastel SM. Food consumption of young stunted and non-stunted children in rural Zambia. Eur J Clin Nutr. 1999;53(1):50–9.

    Article  CAS  PubMed  Google Scholar 

  369. Motadi SA, Matsea Z, Mogane PH, Masidwali P, Makwarela M, Mushapi L. Assessment of nutritional status and dietary intake of pregnant women in rural area of Vhembe district. Limpopo province Ecol Food Nutr. 2020;59(3):229–42.

    Article  PubMed  Google Scholar 

  370. Smith MI, Yatsunenko T, Manary MJ, Trehan I, Mkakosya R, Cheng J, Kau AL, Rich SS, Concannon P, Mychaleckyj JC, Liu J, Houpt E, Li JV, Holmes E, Nicholson J, Knights D, Ursell LK, Knight R, Gordon JI. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science. 2013;339(6119):548–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Subramanian S, Huq S, Yatsunenko T, Haque R, Mahfuz M, Alam MA, Benezra A, DeStefano J, Meier MF, Muegge BD, Barratt MJ, VanArendonk LG, Zhang Q, Province MA, Petri WA Jr, Ahmed T, Gordon JI. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature. 2014;510(7505):417–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  372. Spring S, Premathilake H, DeSilva U, Shili C, Carter S, Pezeshki A. Low protein-high carbohydrate diets alter energy balance, gut microbiota composition and blood metabolomics profile in young pigs. Sci Rep. 2020;10(1):3318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. Matsuoka H, Suda W, Tomitsuka E, Shindo C, Takayasu L, Horwood P, Greenhill AR, Hattori M, Umezaki M, Hirayama K. The influence of low protein diet on the intestinal microbiota in mice. Sci Rep. 2020;10(1):17077.

    Article  Google Scholar 

  374. Wright EM, Martin MG, Turk E. Intestinal absorption in health and disease: sugars. Best Pract Res Clin Gastroenterol. 2003;17(6):943–56.

    Article  CAS  PubMed  Google Scholar 

  375. Mudgil D, Barak S. Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: a review. Int J Biol Macromol. 2013;61:1–6.

    Article  CAS  PubMed  Google Scholar 

  376. DeMartino P, Cockburn DW. Resistant starch: impact on the gut microbiome and health. Curr Opin Biotechnol. 2020;61:66–71.

    Article  CAS  PubMed  Google Scholar 

  377. Kumar V, Sinha AK, Makkar HPS, De Boeck G, Becker K. Dietary roles of non-starch polysaccharides in human nutrition: a review. Crit Rev Food Sci Nutr. 2012;52(10):899–935.

    Article  CAS  PubMed  Google Scholar 

  378. Macfarlane GT, Macfarlane S. Human colonic microbiota: ecology, physiology and metabolic potential of intestinal bacteria. Scand J Gastroenterol. 1997;222:3–9.

    Article  CAS  Google Scholar 

  379. Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol. 2017;19(1):29–41.

    Article  CAS  PubMed  Google Scholar 

  380. Haenen D, Zhang J, Souza da Silva C, Bosch G, van der Meer IM, van Arkel J, van den Borne JJ, Pérez Guttiérez O, Smidt H, Kemp B, Müller M, Hooiveld GJ. A diet high in resistant starch modulates microbiota composition, SCFA concentrations, and gene expression in pig intestine. J Nutr. 2013;143(3):274–83.

    Article  CAS  PubMed  Google Scholar 

  381. Jenkins DJ, Vuksan V, Kendall CW, Würst P, Jeffcoat R, Waring S, Mehling CC, Vidgen E, Augustin LS, Wong E. Physiological effects of resistant starches on fecal bulk, short-chain fatty acids, blood lipids and glycemic index. J Am Coll Nutr. 1998;17(6):609–16.

    Article  CAS  PubMed  Google Scholar 

  382. Le Blay G, Michel C, Blottière HM, Cherbut C. Enhancement of butyrate production in the rat caecocolonic tract by long-term ingestion of potato starch. Br J Nutr. 1999;82(5):419–26.

    Article  PubMed  Google Scholar 

  383. Schwiertz A, Lehmann U, Jacobasch G, Blaut M. Influence of resistant starch on the SCFA production and cell counts of butyrate-producing eubacterium spp. in the human intestine. J Appl Microbiol. 2002;93(1):157–62.

    Article  CAS  PubMed  Google Scholar 

  384. Simpson HL, Campbell BJ. Review article: dietary fiber-microbiota interactions. Aliment Pharmacol Ther. 2015;42(2):158–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  385. Jang C, Hui S, Lu W, Cowan AJ, Morscher RJ, Lee G, Liu W, Tesz GJ, Birnbaum MJ, Rabinowitz JD. The small intestine converts dietary fructose into glucose and organic acids. Cell Metab. 2018;27(2):351–361.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  386. Barcenilla A, Pryde SE, Martin JC, Duncan SH, Stewart CS, Henderson C, Flint HJ. Phylogenic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol. 2000;66(4):1654–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  387. Duncan SH, Hold GL, Harmsen HJM, Stewart CS, Flint HJ. Growth requirements and fermentation products of fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. Nov; comb.nov. Int J Syst Evol Microbiol. 2002;52(6):2141–6.

    CAS  PubMed  Google Scholar 

  388. Lopez-Siles M, Khan TM, Duncan SH, Harmsen HJM, Garcia-Gil J, Flint HJ. Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth. Appl Environ Microbiol. 2012;78(2):420–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  389. Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett. 2009;294(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  390. Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 1987;28(10):1221–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  391. Hallert C, Björck I, Nyman M, Pousette A, Grännö C, Svensson H. Increasing fecal butyrate in ulcerative colitis patients by diet: controlled pilot study. Inflamm Bowel Dis. 2003;9(2):116–21.

    Article  PubMed  Google Scholar 

  392. Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstrach polysaccharides. Physiol Rev. 2001;81(3):1031–64.

    Article  CAS  PubMed  Google Scholar 

  393. Weaver GA, Tangel CT, Krause JA, Parfitt MM, Jenkins PL, Rader JM, Lewis BA, Miller TL, Wolin MJ. Acarbose enhances human colonic butyrate production. J Nutr. 1997;127(5):717–23.

    Article  CAS  PubMed  Google Scholar 

  394. Nugent SG, Kumar D, Rampton DS, Evans DF. Intestinal luminal pH in inflammatory bowel disease: possible determinants and implications for therapy with aminosalicylates and other drugs. Gut. 2001;48(4):571–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  395. Cuff MA, Shirazi-Beechey SP. The human monocarboxylate transporter, MCT1: genomic organization and promoter analysis. Biochem Biophys Res Commun. 2002;292(4):1048–56.

    Article  CAS  PubMed  Google Scholar 

  396. Sivaprakasam S, Bhutia YD, Yang S, Ganapathy V. Short-chain fatty acid transporters: role in colonic homeostasis. Compr Physiol. 2017;8(1):299–314.

    Article  PubMed  PubMed Central  Google Scholar 

  397. Kawamata K, Hayashi H, Suzuki Y. Propionate absorption associated with bicarbonate secretion in vitro in the mouse cecum. Pflugers Arch. 2007;454(2):253–62.

    Article  CAS  PubMed  Google Scholar 

  398. Velasquez OC, Lederer HM, Rombeau JL. Butyrate and the colonocyte. Production, absorption, metabolism, and therapeutic implications. Adv Exp Med Biol. 1997;427:123–34.

    Article  Google Scholar 

  399. Hadjiagapiou C, Schmidt L, Dudeja PK, Layden PJ, Ramaswamy K. Mechanism(s) of butyrate transport in Caco-2 cells: role of monocarboxylate transporter 1. Am J Phys. 2000;279(4):G775–80.

    CAS  Google Scholar 

  400. Ritzhaupt A, Wood IS, Ellis A, Hosie KB, Shirazi-Beechey SP. Identification and characterization of a monocarboxylate transporter (MCT1) in pig and human colon: its potential to transport L-lactate as well as butyrate. J Physiol. 1998;513(3):719–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  401. Clausen MR, Mortensen PB. Kinetic studies on the metabolism of short-chain fatty acids and glucose by isolated rat colonocytes. Gastroenterology. 1994;106(2):423–32.

    Article  CAS  PubMed  Google Scholar 

  402. Jorgensen JR, Clausen MR, Mortensen PB. Oxidation of short and medium chain C2-C8 fatty acids in Sprague-Dawley rat colonocytes. Gut. 1997;40(3):400–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  403. Roediger WE. Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology. 1982;83(2):424–9.

    Article  CAS  PubMed  Google Scholar 

  404. Bergman EN. Energy contribution of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev. 1990;70(2):567–90.

    Article  CAS  PubMed  Google Scholar 

  405. Hall KD, Guo J. Obesity energetics: body weight regulation and the effects of diet composition. Gastroenterology. 2017;152(7):1718–27.

    Article  PubMed  Google Scholar 

  406. Hill JO, Peters JC. Environmental contributions to the obesity epidemic. Science. 1998;280(5368):1371–4.

    Article  CAS  PubMed  Google Scholar 

  407. Bogardus C, Lillioja S, Ravussin E, Abbott W, Zawadzki JK, Young A, Knowler WC, Jacobowitz R, Moll PP. Familial dependence of the resting metabolic rate. N Engl J Med. 1986;315(2):96–100.

    Article  CAS  PubMed  Google Scholar 

  408. Bouchard C. Human variation in body mass: evidence for a role of the genes. J Nutr. 1997;55(1):S21–7.

    CAS  Google Scholar 

  409. Prentice AM, Jebb SA. Obesity in Britain: gluttony or sloth. BMJ. 1995;311(7002):437–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  410. Cox AJ, West NP, Cripps AW. Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol. 2015;3(3):207–15.

    Article  CAS  PubMed  Google Scholar 

  411. Gomes AC, Hoffmann C, Mota JF. The human gut microbiota: metabolism and perspective in obesity. Gut Microbes. 2018;9(4):308–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  412. Binder HJ, Mehta P. Short-chain fatty acids stimulate active sodium and chloride absorption in vitro in the rat distal colon. Gastroenterology. 1989;96(4):989–96.

    Article  CAS  PubMed  Google Scholar 

  413. Inagaki A, Hayashi M, Andharia N, Matsuda H. Involvement of butyrate in electrogenic K+ secretion in rat rectal colon. Pflugers Arch. 2019;471(2):313–27.

    Article  CAS  PubMed  Google Scholar 

  414. Peng L, Li ZR, Green RS, Holzman IR, Lin J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr. 2009;139(9):1619–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  415. Wang HB, Wang PY, Wang X, Wan YL, Liu YC. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription. Dig Dis Sci. 2012;57(12):3126–35.

    Article  CAS  PubMed  Google Scholar 

  416. Sauer J, Richter KK, Pool-Zobel BL. Products formed during fermentation of the prebiotic inulin with human gut flora enhance expression of biotransformation genes in human primary colon cells. Br J Nutr. 2007;97(5):928–37.

    Article  CAS  PubMed  Google Scholar 

  417. Hinnebusch BF, Meng S, Wu JT, Archer SY, Hodin RA. The effects of short-chain fatty acids on human colon cancer cell phenotype are associated with histone hyperacetylation. J Nutr. 2002;132(5):1012–7.

    Article  CAS  PubMed  Google Scholar 

  418. Leschelle X, Delpal S, Goubern M, Blottière HM, Blachier F. Butyrate metabolism upstream and downstream acetyl CoA synthesis and growth control of human colon carcinoma cells. Eur J Biochem. 2000;267(21):6435–42.

    Article  CAS  PubMed  Google Scholar 

  419. Archer SY, Meng S, Shei A, Hodin RA. p21 (WAF1) is required for butyrate-mediated growth inhibition of human colon cancer cells. Proc Natl Acad Sci U S A. 1998;95(12):6791–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  420. Nakano K, Mizuno K, Sowa Y, Orita T, Yoshino T, Okuyama Y, Fujita T, Othani-Fujita N, Matsukawa Y, Tokino T, Yamagishi H, Oka T, Nomura H, Sakai T. Butyrate activates the WAF1/Cip1 gene promoter through Sp1 sites in a p53-negative human colon cancer cell line. J Biol Chem. 1997;272(35):22199–206.

    Article  CAS  PubMed  Google Scholar 

  421. Siavoshian S, Blottière HM, Cherbut C, Galmiche JP. Butyrate stimulates cyclin D1 and p21 and inhibits cyclin-dependent kinase 2 expression in HT-29 colonic epithelial cells. Biochem Biophys Res Commun. 1997;232(1):169–72.

    Article  CAS  PubMed  Google Scholar 

  422. Andriamihaja M, Chaumontet C, Tome D, Blachier F. Butyrate metabolism in human colon carcinoma cells: implications concerning its growth-inhibitory effect. J Cell Physiol. 2009;218(1):58–65.

    Article  CAS  PubMed  Google Scholar 

  423. Donohoe DR, Collins LB, Wali A, Bigler R, Sun W, Bultman SJ. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell. 2012;48(4):612–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  424. Buttgereit F, Brand MD. A hierarchy of ATP-consuming processes in mammalian cells. Biochem J. 1995;312(1):163–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  425. Archer SY, Johnson J, Kim HJ, Ma Q, Mou H, Daesety V, Meng S, Hodin RA. The histone deacetylase inhibitor butyrate downregulates cyclin B1 gene expression via a p21/WAF-1 dependent mechanism in human colon cancer cells. Am J Phys. 2005;289(4):G696–703.

    CAS  Google Scholar 

  426. Zhang Y, Sun Z, Jia J, Du T, Zhang N, Tang Y, Fang Y, Fang D. Overview of histone modification. Adv Exp Med Biol. 2021;1283:1–16.

    Article  CAS  PubMed  Google Scholar 

  427. Kaiko GE, Ryu SH, Koues OI, Collins PL, Solnica-Krezel L, Pearce EJ, Pearce EL, Oltz EM, Stappenbeck TS. The colonic crypt protects stem cells from microbiota-derived metabolites. Cell. 2016;165(7):1708–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  428. Burger-van Paassen N, Vincent A, Puiman PJ, van der Sluis M, Bouma J, Boehm G, van Goudoever JB, van Seuningen I, Renes IB. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection. Biochem J. 2009;420(2):211–9.

    Article  CAS  PubMed  Google Scholar 

  429. Barcelo A, Claustre J, Moro F, Chayvialle JA, Cuber JC, Plaisancié P. Mucin secretion is modulated by luminal factors in the isolated vascularly perfused rat colon. Gut. 2000;46(2):218–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  430. Finnie IA, Dwarakanath AD, Taylor BA, Rhodes JM. Colonic mucin synthesis is increased by sodium butyrate. Gut. 1995;36(1):93–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  431. Karaki S, Tazoe H, Hayashi H, Kashiwabara H, Tooyama K, Suzuki Y, Kuwahara A. Expression of the short-chain fatty acid receptor, GPR43, in the human colon. J Mol Histol. 2008;39(2):135–42.

    Article  CAS  PubMed  Google Scholar 

  432. Nohr MK, Pedersen MH, Gille A, Egerod KL, Engelstoft MS, Husted AS, Sichlau RM, Grunddal KV, Poulsen SS, Han S, Jones RM, Offermanns S, Schwartz TW. GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology. 2013;154(10):3552–64.

    Article  PubMed  Google Scholar 

  433. Lu VB, Gribble FM, Reimann F. Free fatty acid receptors in enteroendocrine cells. Endocrinology. 2018;159(7):2826–35.

    Article  CAS  PubMed  Google Scholar 

  434. Larraufie P, Martin-Gallausiaux C, Lapaque N, Dore J, Gribble FM, Reimann F, Blottiere HM. SCFAs strongly stimulate PYY production in human enteroendocrine cells. Sci Rep. 2018;8(1):74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  435. Chambers ES, Viardot A, Psichas A, Morrison DJ, Murphy KG, Zac-Varghese SE, MacDougall K, Preston T, Tedford C, Finlayson GS, Blundell JE, Bell JD, Thomas EL, Mt-Isa S, Ashby D, Gibson GR, Kolida S, Dhillo WS, Bloom SR, Morley W, Clegg S, Frost G. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut. 2015;64(11):1744–54.

    Article  CAS  PubMed  Google Scholar 

  436. Van der Beek CM, Canfora EE, Lenaerts K, Troost FJ, Olde Damink SWM, Holst JJ, Masclee AAM, Dejong CHC, Blaak EE. Distal, not proximal, colonic acetate infusions promote fat oxidation and improve metabolic markers in overweight/obese men. Clin Sci (Lond). 2016;130(22):2073–82.

    Article  PubMed  Google Scholar 

  437. Ballantyne GH. Peptide YY(1-36) and peptide YY(3-36): part I. distribution, release and actions. Obes Surg. 2006;16(5):651–8.

    Article  PubMed  Google Scholar 

  438. Everard A, Cani PD. Gut microbiota and GLP-1. Rev Endocr Metab Disord. 2014;15(3):189–96.

    Article  CAS  PubMed  Google Scholar 

  439. Veronese N, Solmi M, Caruso MG, Giannelli G, Osella AR, Evangelou E, Maggi S, Fontana L, Stubbs B, Tzoulaki I. Dietary fiber and health outcomes: an umbrella review of systematic reviews and meta-analyses. Am J Clin Nutr. 2018;107(3):436–44.

    Article  PubMed  Google Scholar 

  440. Krishnamurthy VM, Wei G, Baird BC, Murtaugh M, Chonchol MB, Raphael KL, Greene T, Beddhu S. High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease. Kidney Int. 2012;81(3):300–6.

    Article  CAS  PubMed  Google Scholar 

  441. North CJ, Venter CS, Jerling JC. The effects of dietary fibre on C-reactive protein, an inflammation marker predicting cardiovascular disease. Eur J Clin Nutr. 2009;63(8):921–33.

    Article  CAS  PubMed  Google Scholar 

  442. Slavin JL, Lloyd B. Health benefits of fruits and vegetables. Adv Nutr. 2012;3(4):506–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  443. Kaluza J, Orsini N, Levitan EB, Brzozowska A, Roszkowski W, Wolk A. Dietary calcium and magnesium intake and mortality: a prospective study of men. Am J Epidemiol. 2010;171(7):801–7.

    Article  PubMed  Google Scholar 

  444. Slavin JL, Martini MC, Jacobs DR Jr, Marquart L. Plausible mechanisms for the protectiveness of whole grains. Am J Clin Nutr. 1999;70(3):459S–63S.

    Article  CAS  PubMed  Google Scholar 

  445. Gill SK, Rossi M, Bajka B, Whelan K. Dietary fibre in gastrointestinal health and disease. Nat Rev Gastroenterol Hepatol. 2021;18(2):101–16.

    Article  CAS  PubMed  Google Scholar 

  446. Müller M, Canfora EE, Blaak EE. Gastrointestinal transit time, glucose homeostasis and metabolic health: modulation by dietary fibers. Nutrients. 2018;10(3):275.

    Article  PubMed  PubMed Central  Google Scholar 

  447. Sasaki D, Sasaki K, Ikuta N, Yasuda T, Fukuda I, Kondo A, Osawa R. Low amounts of dietary fibre increase in vitro production of short-chain fatty acids without changing human colonic microbiota structure. Sci Rep. 2018;8(1):435.

    Article  PubMed  PubMed Central  Google Scholar 

  448. Holscher HD. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes. 2017;8(2):172–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  449. Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ. 2018;361:k2179.

    Article  PubMed  PubMed Central  Google Scholar 

  450. Belobrajdic DP, Bird AR, Conlon MA, Williams BA, Kang S, McSweeney S, Zhang D, Bryden WL, Gidley MJ, Topping DL. An arabinoxylan-rich fraction from wheat enhances caecal fermentation and protects colonocyte DNA against diet-induced damage in pigs. Br J Nutr. 2012;107(9):1274–82.

    Article  CAS  PubMed  Google Scholar 

  451. Khosroshahi HT, Abedi B, Ghojazadeh M, Samadi A, Jouyban A. Effects of fermentable high fiber diet supplementation on gut derived and conventional nitrogenous product in patients on maintenance hemodialysis: a randomized controlled trial. Nutr Metab (Lond). 2019;16:18.

    Article  PubMed  Google Scholar 

  452. Pieper R, Boudry C, Bindelle J, Vahjen W, Zentek J. Interaction between dietary protein content and the source of carbohydrates along the gastrointestinal tract of weaned piglets. Arch Anim Nutr. 2014;68(4):263–80.

    Article  CAS  PubMed  Google Scholar 

  453. Williams BA, Zhang D, Lisle AT, Mikkelsen D, McSweeney S, Kang S, Bryden WL, Gidley MJ. Soluble arabinoxylan enhances large intestinal microbial health biomarkers in pigs fed a red meat-containing diet. Nutrition. 2016;32(4):491–7.

    Article  CAS  PubMed  Google Scholar 

  454. Zhou XL, Kong XF, Lian GQ, Blachier F, Geng MM, Yin YL. Dietary supplementation with soybean oligosaccharides increases short-chain fatty acids but decreases protein-derived catabolites in the intestinal content of weaned Huanjiang mini-piglets. Nutr Res. 2014;34(9):780–8.

    Article  CAS  PubMed  Google Scholar 

  455. Paone P, Cani PD. Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut. 2020;69(12):2232–43.

    Article  CAS  PubMed  Google Scholar 

  456. Martens EC, Neumann M, Desai MS. Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier. Nat Rev Microbiol. 2018;16(8):457–70.

    Article  CAS  PubMed  Google Scholar 

  457. Johansson MEV, Hansson GC. Immunological aspects of intestinal mucus and mucins. Nat Rev Immunol. 2016;16(10):639–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  458. Sonnenburg ED, Sonnenburg JL. Starving out microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 2014;20(5):779–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  459. Sonnenburg JL, Xu J, Leip DD, Chen CH, Westover BP, Weatherford J, Buhler JD, Gordon JI. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science. 2005;307(5717):1955–9.

    Article  CAS  PubMed  Google Scholar 

  460. Shon DJ, Kuo A, Ferracane MJ, Malaker SA. Classification, structural biology, and applications of mucin domain-targeting proteases. Biochem J. 2021;478(8):1585–603.

    Article  CAS  PubMed  Google Scholar 

  461. Celli JP, Turner BS, Afdhal NH, Keates S, Ghiran I, Kelly CP, Ewoldt RH, McKinley GH, So P, Erramilli S, Bansil R. Helicobacter pylori moves through mucus by reducing mucin viscoelasticity. Proc Natl Acad Sci U S A. 2009;106(34):14321–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  462. Van der Lugt B, van Beek AA, Aalvink S, Meijer B, Sovran B, Vermeij WP, Brandt MRC, de Vos WM, Savelkoul HFJ, Steegenga WT, Belzer C. Akkermansia muciniphila ameliorates the age-related decline in colonic mucus thickness and attenuates immune activation in accelerated aging Ercc1−/Δ7 mice. Immun Ageing. 2019;16:6.

    Article  PubMed  PubMed Central  Google Scholar 

  463. Morales P, Fujio S, Navarrete P, Ugalde JA, Magne F, Carrasco-Pozo C, Tralma K, Quezada M, Hurtado C, Covarrubias N, Brignardello J, Henriquez D, Gotteland M. Impact of dietary lipids on colonic function and microbiota: an experimental approach involving orlistat-induced fat malabsorption in human volunteers. Clin Transl Gastroenterol. 2016;7(4):e161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  464. Jaeger KE, Ransac S, Dijkstra BW, Colson C, van Heuvel C, Misset O. Bacterial lipases. FEMS Microbiol Rev. 1994;15(1):29–63.

    Article  CAS  PubMed  Google Scholar 

  465. Hofmann AF, Hagey LR. Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. J Lipid Res. 2014;55(8):1553–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  466. Asare PT, Zurfluh K, Greppi A, Lynch D, Scwab C, Stephan R, Lacroix C. Reuterin demonstrates potent antimicrobial activity against a broad panel of human and poultry meat campylobacter spp. Isolates Microorganisms. 2020;8(1):78.

    Article  CAS  PubMed  Google Scholar 

  467. Engels C, Scwab C, Zhang J, Stevens MJA, Bieri C, Ebert MO, McNeill K, Sturla SJ, Lacroix C. Acrolein contributes strongly to antimicrobial and heterocyclic amine transformation activities of reuterin. Sci Rep. 2016;6:36246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  468. Liu F, Yu B. Efficient production of reuterin from glycerol by magnetically immobilized lactobacillus reuteri. Appl Microbiol Technol. 2015;99(11):4659–66.

    Article  CAS  Google Scholar 

  469. Cleusix V, Lacroix C, Vollenweider S, Duboux M, Le Blay G. Inhibitory activity spectrum of reuterin produced by lactobacillus reuteri against intestinal bacteria. BMC Microbiol. 2007;7:101.

    Article  PubMed  PubMed Central  Google Scholar 

  470. Engevik MA, Danhof HA, Shrestha R, Chang-Graham AL, Hyser JM, Haag AM, Mohammad MA, Britton MA, Versalovic J, Sorg JA, Spinler JK. Reuterin disrupts Clostridioides difficile metabolism and pathogenicity through reactive oxygen species generation. Gut Microbes. 2020;12(1):1788898.

    Article  PubMed  Google Scholar 

  471. Chen WY, Wang M, Zhang J, Barve SS, McClain CJ, Joshi-Barve S. Acrolein disrupts tight junction proteins and causes endoplasmic reticulum stress-mediated epithelial cell death leading to intestinal barrier dysfunction and permeability. Am J Pathol. 2017;187(12):2686–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  472. Wilson Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, Wu Y, Hazen SL. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368(17):1575–84.

    Article  Google Scholar 

  473. Rath S, Heidrich B, Pieper DH, Vital M. Uncovering the trimethylamine-producing bacteria of the human gut microbiota. Microbiome. 2017;5(1):54.

    Article  PubMed  PubMed Central  Google Scholar 

  474. Romano KA, Vivas EI, Amador-Noguez D, Rey FE. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. MBio. 2015;6(2):e02481.

    Article  PubMed  PubMed Central  Google Scholar 

  475. Zeisel SH, Warrier M. Trimethylamine N-oxide, the microbiome, and heart and kidney disease. Annu Rev Nutr. 2017;37:157–81.

    Article  CAS  PubMed  Google Scholar 

  476. Candido FG, Valente FX, Grzeskowiak LM, Boroni Moreira AP, Rocha DMUP, de Cassia Gonçalves Alfenas R. Impact of dietary fat on gut microbiota and low-grade systemic inflammation: mechanisms and clinical implications on obesity. Int J Food Sci Nutr. 2018;69(2):125–43.

    Article  CAS  PubMed  Google Scholar 

  477. Desbois AP, Smith VJ. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol. 2010;85(6):1629–42.

    Article  CAS  PubMed  Google Scholar 

  478. Hinzman MJ, Novotny C, Ullah A, Shamsuddin AM. Fecal mutagen fecapentaene-12 damages mammalian colon epithelial DNA. Carcinogenesis. 1987;8(10):1475–9.

    Article  CAS  PubMed  Google Scholar 

  479. Van Tassell RL, Kingston DG, Wilkins TD. Metabolism of dietary genotoxins by the human colonic microflora; the fecapentaenes and heterocyclic amines. Mutat Res. 1990;238(3):209–21.

    Article  PubMed  Google Scholar 

  480. Tomas J, Mulet C, Saffarian A, Cavin JB, Ducroc R, Regnault B, Tan CK, Duska K, Burcelin R, Wahli W, Sansonetti PJ, Pédron T. High-fat diet modifies the PPAR-ϒ pathway leading to disruption of microbial and physiological ecosystem in murine small intestine. Proc Natl Acad Sci U S A. 2016;113(40):E5934–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  481. Kankaanpää PE, Salminen SJ, Isolauri E, Lee YK. The influence of polyunsaturated fatty acids on probiotic growth and adhesion. FEMS Microbiol Lett. 2001;194(2):149–53.

    Article  PubMed  Google Scholar 

  482. Araujo JR, Tomas J, Brenner C, Sansonetti PJ. Impact of high-fat diet on the intestinal microbiota and small intestinal physiology before and after the onset of obesity. Biochimie. 2017;141:97–106.

    Article  CAS  PubMed  Google Scholar 

  483. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, Burcelin R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57(6):1470–81.

    Article  CAS  PubMed  Google Scholar 

  484. Ding S, Chi MM, Scull BP, Rigby R, Schwerbrock NMJ, Magness S, Jobin C, Lund PK. High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS One. 2010;5(8):e12191.

    Article  PubMed  PubMed Central  Google Scholar 

  485. Kim KA, Gu W, Lee IA, Joh EH, Kim DH. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS One. 2012;7(10):e47713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  486. Rohr MW, Narasimhulu CA, Rudeski-Rohr TA, Parthasarathy S. Negative effects of a high-fat diet on intestinal permeability: a review. Adv Nutr. 2020;11(1):77–91.

    Article  PubMed  Google Scholar 

  487. Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem. 2003;72:137–74.

    Article  CAS  PubMed  Google Scholar 

  488. Chiang JYL. Bile acid metabolism and signaling. Compr Physiol. 2013;3(3):1191–212.

    Article  PubMed  PubMed Central  Google Scholar 

  489. Ticho AL, Malhotra P, Dudeja PK, Gill RK, Alrefai WA. Intestinal absorption of bile acids in health and disease. Compr Physiol. 2019;10(1):21–56.

    Article  PubMed  PubMed Central  Google Scholar 

  490. Wahlström A, Sayin SI, Marschall HU, Bäcked F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 2016;24(1):41–50.

    Article  PubMed  Google Scholar 

  491. Connor WE, Witiak DT, Stone DB, Armstrong ML. Cholesterol balance and fecal neutral steroid and bile acid excretion in normal men fed dietary fats of different fatty acid composition. J Clin Invest. 1969;48(8):1363–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  492. Stenman LK, Holma R, Korpela R. High-fat-induced intestinal permeability dysfunction associated with altered fecal bile acids. Word J Gastroenterol. 2012;18(9):923–9.

    Article  CAS  Google Scholar 

  493. Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Bile acids and the gut microbiome. Curr Opin Gastroenterol. 2014;30(3):332–8.

    Article  PubMed  PubMed Central  Google Scholar 

  494. Setchell KD, Lawson AM, Tanida N, Sjövall J. General methods for the analysis of metabolic profiles of bile acids and related compounds in feces. J Lipid Res. 1983;24(8):1085–100.

    Article  CAS  PubMed  Google Scholar 

  495. Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, No D, Liu H, Kinnebrew M, Viale A, Littmann E, van den Brink MRM, Jenq RR, Taur Y, Sander C, Cross JR, Toussaint NC, Xavier JB, Pamer EG. Precision microbiome reconstitution restores bile acid mediated resistance to clostridium difficile. Nature. 2015;517(7533):205–8.

    Article  CAS  PubMed  Google Scholar 

  496. Ridlon JM, Harris SC, Bhowmik S, Kang DJ, Hylemon PB. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes. 2016;7(1):22–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  497. Kuehne SA, Cartman ST, Heap JT, Kelly ML, Cockayne A, Minton NP. The role of toxin a and toxin B in Clostridium difficile infection. Nature. 2010;467(7316):711–3.

    Article  CAS  PubMed  Google Scholar 

  498. Rupnik M, Wilcox MH, Gerding DN. Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol. 2009;7(7):526–36.

    Article  CAS  PubMed  Google Scholar 

  499. Fry RJ, Staffeldt E. Effect of a diet containing sodium deoxycholate on the intestinal mucosa of the mouse. Nature. 1964;203:1396–8.

    Article  CAS  PubMed  Google Scholar 

  500. Leschelle X, Robert V, Delpal S, Mouillé B, Mayeur C, Martel P, Blachier F. Isolation of pig colonic crypts for cytotoxic assay of luminal compounds: effects of hydrogen sulfide, ammonia and deoxycholic acid. Cell Biol Toxicol. 2002;18(3):193–203.

    Article  CAS  PubMed  Google Scholar 

  501. Münch A, Ström M, Söderholm JD. Dihydroxy bile acids increase mucosal permeability and bacterial uptake in human colon biopsies. Scand J Gastroenterol. 2007;42(10):1167–74.

    Article  PubMed  Google Scholar 

  502. Stenman LK, Holma R, Eggert A, Korpela R. A novel mechanism for gut barrier dysfunction by dietary fat: epithelial disruption by hydrophobic bile acids. Am J Phys. 2013;304(3):G227–34.

    CAS  Google Scholar 

  503. Mars RAT, Yang Y, Ward T, Houtti M, Priya S, Lekatz HR, Tang X, Sun Z, Kalari KR, Korem T, Bhattarai Y, Zheng T, Bar N, Frost G, Johnson AJ, van Treuren W, Han S, Ordog T, Grover M, Sonnenburg J, D’Amato M, Camilleri M, Elinav E, Segal E, Blekhman R, Farrugia G, Swann JR, Knights D, Kashyap PC. Longitudinal multi-omics reveals subset-specific mechanisms underlying irritable bowel syndrome. Cell. 2020;182(6):1460–1473.e17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  504. Lee JS, Wang RX, Alexeev EE, Lanis JM, Battista KD, Glover LE, Colgan SP. Hypoxanthine is a checkpoint stress metabolite in colonic epithelial energy modulation and barrier function. J Biol Chem. 2018;293(16):6039–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  505. Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2010;2(12):1231–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  506. Hussain T, Tan B, Yin Y, Blachier F, Tossou MCB, Rahu N. Oxidative stress and inflammation: what polyphenols can do for us? Oxidative Med Cell Longev. 2016;2016:7432797.

    Article  Google Scholar 

  507. Pérez-Jiménez J, Fezeu L, Touvier M, Arnault N, Manach C, Hercberg S, Galan P, Scalbert A. Dietary intake of 337 polyphenols in Franch adults. Am J Clin Nutr. 2011;93(6):1220–8.

    Article  PubMed  Google Scholar 

  508. Cladis DP, Weaver CM, Ferruzzi MG. (poly)phenol toxicity in vivo following oral administration: a targeted narrative review of (poly)phenols from green tea, grape, and anthocyanin-rich extracts. Phytother Res. 2022;36(1):323–35.

    Article  CAS  PubMed  Google Scholar 

  509. Guasch-Ferré M, Merino J, Sun Q, Fito M, Salas-Salvado J. Dietary polyphenols, Mediterranean diet, prediabetes, and type 2 diabetes: a narrative review of the evidence. Oxidative Med Cell Longev. 2017;2017:6723931.

    Article  Google Scholar 

  510. Yahfoufi N, Alsadi N, Jambi M, Matar C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients. 2018;10(11):1618.

    Article  PubMed  PubMed Central  Google Scholar 

  511. Weaver SR, Rendeiro C, McGettrick HM, Philp A, Lucas SJE. Fine wine or sour grapes? A systematic review and meta-analysis of the impact of red wine polyphenols on vascular health. Eur J Nutr. 2021;60(1):1–28.

    Article  CAS  PubMed  Google Scholar 

  512. Rauf A, Imran M, Abu-Izneid T, Ul-Haq I, Patel S, Pan X, Naz S, Sanches Silva A, Saeed F, Rasul Suleria HA. Proanthocyanidins: a comprehensive review. Biomed Pharmacol. 2019;116:108999.

    Article  CAS  Google Scholar 

  513. Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, Tuohy K. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57(1):1–24.

    Article  CAS  PubMed  Google Scholar 

  514. Kawabata K, Yoshioka Y, Terao J. Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules. 2019;24(2):370.

    Article  PubMed  PubMed Central  Google Scholar 

  515. Murota K, Terao J. Antioxidative flavonoid quercetin: implication of its intestinal absorption and metabolism. Arch Biochem Biophys. 2003;417(1):12–7.

    Article  CAS  PubMed  Google Scholar 

  516. Manach C, Scalbert A, Morand C, Rémézy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79(5):727–47.

    Article  CAS  PubMed  Google Scholar 

  517. Cassidy A, Minihane AM. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am J Clin Nutr. 2017;105(1):10–22.

    Article  CAS  PubMed  Google Scholar 

  518. Clifford MN, van der Hooft JJJ, Crozier A. Human studies on the absorption, distribution, metabolism, and excretion of tea polyphenols. Am J Clin Nutr. 2013;98(6):1619S–30S.

    Article  CAS  PubMed  Google Scholar 

  519. Duda-Chodak A, Tarko T, Satora P, Sroka P. Interactions of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. Eur J Nutr. 2015;54(3):325–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  520. Russell WR, Scobbie L, Chesson A, Richardson AJ, Stewart CS, Duncan SH, Drew JE, Duthie GG. Anti-inflammatory implications of the microbial transformation of dietary phenolic compounds. Nutr Cancer. 2008;60(5):636–42.

    Article  CAS  PubMed  Google Scholar 

  521. Braune A, Engst W, Blaut M. Identification and functional expression of genes encoding flavonoid O- and C- glycosidases in intestinal bacteria. Environ Microbiol. 2016;18(7):2117–29.

    Article  CAS  PubMed  Google Scholar 

  522. Aura AM, O’Leary KA, Williamson G, Ojala M, Bailey M, Puupponen-Pimiä R, Nuutila AM, Oksman-Caldentey KM, Poutanen K. Quercetin derivatives are deconjugated and converted to hydroxyphenylacetic acids but not methylated by human fecal flora in vitro. J Agric Food Chem. 2002;50(6):1725–30.

    Article  CAS  PubMed  Google Scholar 

  523. Bode LM, Bunzel D, Huch M, Cho GS, Ruhland D, Bunzel M, Bub A, Franz CMAP, Kulling SE. In vivo and in vitro metabolism of trans-resveratrol by human gut microbiota. Am J Clin Nutr. 2013;97(2):295–309.

    Article  CAS  PubMed  Google Scholar 

  524. Braune A, Blaut M. Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes. 2016;7(3):216–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  525. Hein EM, Rose K, van’t Slot G, Friedrich AW, Humpf HU. Deconjugation and degradation of flavonol glycosides by pig cecal microbiota characterized by fluorescence in situ hybridization (FISH). J Agric Food Chem. 2008;56(6):2281–90.

    Article  CAS  PubMed  Google Scholar 

  526. Jaganath IB, Mullen W, Lean MEJ, Edwards CA, Crozier A. In vitro catabolism of rutin by human fecal bacteria and the antioxidant capacity of its catabolites. Free Radic Biol Med. 2009;47(8):1180–9.

    Article  CAS  PubMed  Google Scholar 

  527. Jiménez-Giron A, Ibanez C, Cifuentes A, Simo C, Munoz-Gonzalez I, Martin-Alvarez PJ, Bartolome B, Moreno-Arribas MV. Faecal metabolomic fingerprint after moderate consumption of red wine by healthy subjects. J Proteome Res. 2015;14(2):897–905.

    Article  PubMed  Google Scholar 

  528. Peng X, Zhang Z, Zhang N, Liu L, Li S, Wei H. In vitro catabolism of quercitin by human fecal bacteria and the antioxidant capacity of its catabolites. Food Nutr Res. 2014;58:23406. https://doi.org/10.3402/fnr.v58.23406.

    Article  Google Scholar 

  529. Rechner AR, Smith MA, Kuhnle G, Gibson GR, Debnam ES, Srai SKS, Moore KP, Rice-Evans CA. Colonic metabolism of dietary polyphenols: influence of structure on microbial fermentation products. Free Radic Biol Med. 2004;36(2):212–25.

    Article  CAS  PubMed  Google Scholar 

  530. Schneider H, Simmering R, Hartmann L, Pforte H, Blaut M. Degradation of quercetin-3-glucoside in gnotobiotic rats associated with human intestinal bacteria. J Appl Microbiol. 2000;89(6):1027–37.

    Article  CAS  PubMed  Google Scholar 

  531. Gill CIR, McDougall GJ, Glidewell S, Stewart D, Shen Q, Tuohy K, Dobbin A, Boyd A, Brown E, Haldar S, Rowland IR. Profiling of phenols in human fecal water after raspberry supplementation. J Agric Food Chem. 2010;58(19):10389–95.

    Article  CAS  PubMed  Google Scholar 

  532. Quartieri A, Garcia-Villalba R, Amaretti A, Raimondi S, Leonardi A, Rossi M, Tomàs-Barberàn F. Detection of novel metabolites of flaxseed lignans in vitro and in vivo. Mol Nutr Food Res. 2016;60(7):1590–601.

    Article  CAS  PubMed  Google Scholar 

  533. Tomas-Barberan F, Garcia-Villalba R, Quartieri A, Raimondi S, Amaretti A, Leonardi A, Rossi M. In vitro transformation of chlorogenic acid by human gut microbiota. Mol Nutr Food Res. 2014;58(5):1122–31.

    Article  CAS  PubMed  Google Scholar 

  534. Fraga CG, Croft KD, Kennedy DO, Tomàs-Barberàn FA. The effects of polyphenols and other bioactives on human health. Food Funct. 2019;10(2):514–28.

    Article  CAS  PubMed  Google Scholar 

  535. Setchell KDR, Clerici C, Lephart ED, Cole SJ, Heenan C, Castellani D, Wolfe BE, Nechemias-Zimmer L, Brown ND, Lund TD, Handa RJ, Heubi JE. S-equol, a potent ligand for estrogen receptor beta, is the exclusive enantiomeric form of the soy isoflavone metabolite produced by human intestinal bacterial flora. Am J Clin Nutr. 2005;81(5):1072–9.

    Article  CAS  PubMed  Google Scholar 

  536. Tang Y, Nakashima S, Saiki S, Myoi Y, Abe N, Kuwazuru S, Zhu B, Ashida H, Murata Y, Nakamura Y. 3,4-dihydroxyphenylacetic acid is a predominant biologically-active catabolite of quercetin glycosides. Food Res Int. 2016;89(1):716–23.

    Article  CAS  PubMed  Google Scholar 

  537. Monogas M, Khan N, Andrés-Lacueva C, Urpi-Sardà M, Vàsquez-Agell M, Lamuela-Raventos RM, Estruch R. Dihydroxylated phenolic acids derived from microbial metabolism reduce lipopolysaccharide-stimulated cytokine secretion by human peripheral blood mononuclear cells. Br J Nutr. 2009;102(2):201–6.

    Article  Google Scholar 

  538. Crespo I, San-Miguel B, Mauriz JL, Ortiz de Urbina JJ, Almar M, Tunon MJ, Gonzàlez-Gallego J. Protective effect of protocatechuic acid on TNBS-induced colitis in mice is associated with modulation of the SphK/S1P signaling pathway. Nutrients. 2017;9(3):288.

    Article  PubMed  PubMed Central  Google Scholar 

  539. Hu R, He Z, Liu M, Tan J, Zhang H, Hou DX, He J, Wu S. Dietary protocatechuic acid ameliorates inflammation and up-regulates intestinal tight junction proteins by modulating gut microbiota in LPS-challenged piglets. J Anim Sci Biotechnol. 2020;11:92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  540. Farombi EO, Adedara IA, Awoyemi OV, Njoku CR, Micah GO, Esogwa CU, Owumi SE, Olopade JO. Dietary protocatechuic acid ameliorates dextran sulphate sodium-induced ulcerative colitis and hepatotoxicity in rats. Food Funct. 2016;7(2):913–21.

    Article  CAS  PubMed  Google Scholar 

  541. Boughton-Smith NK, Evans SM, Hawkey CJ, Cole AT, Balsitis M, Whittle BJ, Moncada S. Nitric oxide synthase activity in ulcerative colitis and Crohn’s disease. Lancet. 1993;342(8867):338–40.

    Article  CAS  PubMed  Google Scholar 

  542. Guihot G, Guimbaud R, Bertrand V, Narcy-Lambare B, Couturier D, Duée PH, Chaussade S, Blachier F. Inducible nitric oxide synthase activity in colon biopsies from inflammatory areas: correlation with inflammation intensity in patients with ulcerative colitis but not with Crohn’s disease. Amino Acids. 2000;18(3):229–37.

    Article  CAS  PubMed  Google Scholar 

  543. Singer II, Kawka DW, Scott S, Weidner JR, Mumford RA, Riehl TE, Stenson WF. Expression of inducible nitric oxide synthase and nitrotyrosine in colonic epithelium in inflammatory bowel disease. Gastroenterology. 1996;111(4):871–85.

    Article  CAS  PubMed  Google Scholar 

  544. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Phys. 1996;271(5):C1424–37.

    Article  CAS  Google Scholar 

  545. Jenner AM, Rafter J, Halliwell B. Human fecal water content of phenolics: the extent of colonic exposure to aromatic compounds. Free Radic Biol Med. 2005;38(6):763–72.

    Article  CAS  PubMed  Google Scholar 

  546. Russell DW, Duncan SH, Scobbie L, Duncan G, Cantlay L, Graham Calder A, Anderson SE, Flint HJ. Major phenylpropanoid-derived metabolites in the human gut can arise from microbial fermentation of protein. Mol Nutr Food Res. 2013;57(3):523–35.

    Article  CAS  PubMed  Google Scholar 

  547. Liu Y, Shi C, Zhang G, Zhan H, Liu B, Li C, Wang L, Wang H, Wang J. Antimicrobial mechanism of 4-hydroxyphenylacetic acid on listeria monocytogenes membrane and virulence. Biochem Biophys Res Commun. 2021;572:145–50.

    Article  PubMed  Google Scholar 

  548. Cires MJ, Navarrete P, Pastene E, Carrasco-Pozo C, Valenzuela R, Medina DA, Andriamihaja M, Beaumont M, Blachier F, Gotteland M. Protective effect of avocado peel polyphenolic compounds rich in proanthocyanidins on the alterations of colonic homeostasis induced by a high-protein diet. J Agric Food Chem. 2019a;67(42):11616–26.

    Article  CAS  PubMed  Google Scholar 

  549. Cires MJ, Navarrete P, Pastene E, Carrasco-Pozo C, Valenzuela R, Medina DA, Andriamihaja M, Beaumont M, Blachier F, Gotteland M. Effects of proanthocyanidin-rich polyphenol extract from avocado on the production of amino acid-derived bacterial metabolites and the microbiota composition in rats fed a high-protein diet. Food Funct. 2019b;10(7):4022–35.

    Article  CAS  PubMed  Google Scholar 

  550. Costongs GM, Bos LP, Engels LG, Janson PC. A new method for chemical analysis of feces. Clin Chim Acta. 1985;150(3):197–203.

    Article  CAS  PubMed  Google Scholar 

  551. Schilli R, Breuer RI, Klein F, Dunn K, Gnaedinger A, Bernstein J, Paige M, Kaufman M. Comparison of the composition of faecal fluid in Crohn’s disease and ulcerative colitis. Gut. 1982;23(4):326–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  552. Madara JL. Increases in Guinea pig small intestinal transepithelial resistance induced by osmotic loads are accompanied by rapid alterations in absorptive-cell tight-junction structure. J Cell Biol. 1983;97(1):125–36.

    Article  CAS  PubMed  Google Scholar 

  553. Samak G, Suzuki T, Bhargava A, Rao RK. C-Jun NH2-terminal kinase-2 mediates osmotic stress-induced tight junction disruption in the intestinal epithelium. Am J Phys. 2010;229(3):G572–284.

    Google Scholar 

  554. Hubert A, Cauliez B, Chedeville A, Husson A, Lavoinne A. Osmotic stress, a proinflammatory signal in Caco-2 cells. Biochimie. 2004;86(8):533–41.

    Article  CAS  PubMed  Google Scholar 

  555. Schwartz L, Guais A, Pooya M, Abolhassani M. Is inflammation a consequence of extracellular hyperosmolarity? J Inflamma (Lond). 2009;6:21.

    Article  Google Scholar 

  556. Grauso M, Lan A, Andriamihaja M, Bouillaud F, Blachier F. Hyperosmolar environment and intestinal epithelial cells: impact on mitochondrial oxygen consumption, proliferation, and barrier function in vitro. Sci Rep. 2019;9(1):11360.

    Article  PubMed  PubMed Central  Google Scholar 

  557. McDougall CJ, Wong R, Scudera P, Lesser M, DeCosse JJ. Colonic mucosal pH in humans. Dig Dis Sci. 1993;38(3):542–5.

    Article  CAS  PubMed  Google Scholar 

  558. Reiffenstein RJ, Hulbert WC, Roth SH. Toxicology of hydrogen sulfide. Annu Rev Toxicol. 1992;32:109–34.

    Article  CAS  Google Scholar 

  559. Cuff MA, Shirazi-Beechey SP. The importance of butyrate transport to the regulation of gene expression in the colonic epithelium. Biochem Soc Trans. 2004;32(6):1100–2.

    Article  CAS  PubMed  Google Scholar 

  560. Cohen RM, Stephenson RL, Feldman GM. Bicarbonate secretion modulates ammonium absorption in rat distal colon in vivo. Am J Phys. 1988;245(5):F657–67.

    Google Scholar 

  561. Christl SU, Bartram HP, Paul A, Kelber E, Scheppach W, Kasper H. Bile acid metabolism by colonic bacteria in continuous culture: effects of starch and pH. Ann Nutr Metab. 1997;41(1):45–51.

    Article  CAS  PubMed  Google Scholar 

  562. De Preter V, Hamer HM, Windey K, Verbeke K. The impact of pre- and/or probiotics on human colonic metabolism: does it affect human health? Mol Nutr Food Res. 2011;55(1):46–57.

    Article  PubMed  Google Scholar 

  563. Mowat AM, Agace WW. Regional specialization within the intestinal immune system. Nat Rev Immunol. 2014;14(10):667–85.

    Article  CAS  PubMed  Google Scholar 

  564. Mu C, Yang Y, Zhu W. Crosstalk between the immune receptors and gut microbiota. Curr Protein Pept Sci. 2015;16(7):622–31.

    Article  CAS  PubMed  Google Scholar 

  565. Zhou B, Yuan Y, Zhang S, Guo C, Li X, Li G, Xiong W, Zeng Z. Intestinal flora and disease mutually shape the regional immune system in the intestinal tract. Front Immunol. 2020;11:575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  566. Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol. 2014;14(3):141–53.

    Article  CAS  PubMed  Google Scholar 

  567. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336(6086):1268–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  568. Gonçalves P, Araujo JR, Di Santo JP. A crosstalk between microbiota-derived short-chain fatty acids and the host mucosal immune system regulates intestinal homeostasis and inflammatory bowel disease. Inflamm Bowel Dis. 2018;24(3):558–72.

    Article  PubMed  Google Scholar 

  569. Kelsall BL, Strober W. Distinct populations of dendritic cells are present in the subepithelial dome and T cell regions of the murine Peyer’s patch. J Exp Med. 1996;183(1):237–47.

    Article  CAS  PubMed  Google Scholar 

  570. Reboldi A, Cyster JG. Peyer’s patches: organizing B-cell responses at the intestinal frontier. Immunol Rev. 2016;271(1):230–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  571. Cheroutre H, Madakamutil L. Acquired and natural memory T cells join forces at the mucosal front line. Nat Rev Immunol. 2004;4(4):290–300.

    Article  CAS  PubMed  Google Scholar 

  572. Olivares-Villagomez D, van Kaer L. Intestinal intraepithelial lymphocytes: sentinels of the mucosal barrier. Trends Immunol. 2018;39(4):264–75.

    Article  CAS  PubMed  Google Scholar 

  573. Stagg AJ. Intestinal dendritic cells in health and gut inflammation. Front Immunol. 2018;9:2883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  574. Yadav M, Stephan S, Bluestone JA. Peripherally induced tregs: role in immune homeostasis and autoimmunity. Front Immunol. 2013;4:232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  575. Reséndiz-Albor AA, Esquivel R, Lopez-Revilla R, Verdin L, Moreno-Fierros L. Striking phenotypic and functional differences in lamina propria lymphocytes from the large and small intestine of mice. Life Sci. 2005;76(24):2783–803.

    Article  PubMed  Google Scholar 

  576. Gaboriau-Routhiau V, Rakotobe S, Lécuyer S, Mulder I, Lan A, Bridonneau C, Rochet V, Pisi A, De Paepe M, Brandi G, Eberl G, Snel J, Kelly D, Cerf-Bensussan N. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity. 2009;31(4):677–89.

    Article  CAS  PubMed  Google Scholar 

  577. Colgan SP, Hershberg RM, Furuta GT, Blumberg RS. Ligation of intestinal epithelial CD1d induces bioactive IL-10: critical role of the cytoplasmic tail in autocrine signaling. Proc Natl Acad Sci USA. 1999;96(24):13938–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  578. Iliev ID, Mileti E, Matteoli G, Chieppa M, Rescigno M. Intestinal epithelial cells promote colitis-protective regulatory T-cell differentiation through dendritic cell conditioning. Mucosal Immunol. 2009a;2(4):340–50.

    Article  CAS  PubMed  Google Scholar 

  579. Iliev ID, Spadoni I, Mileti E, Matteoli G, Sonzogni A, Sampietro GM, Foschi D, Caprioli F, Viale G, Rescigno M. Human intestinal epithelial cells promote the differentiation of tolerogenic dendritic cells. Gut. 2009b;58(11):1481–9.

    Article  CAS  PubMed  Google Scholar 

  580. Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489(7415):231–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  581. Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature. 2016;535(7610):65–74.

    Article  CAS  PubMed  Google Scholar 

  582. Kayama H, Okumura R, Takeda K. Interaction between the microbiota, epithelia, and immune cells in the intestine. Annu Rev Immunol. 2020;38:23–48.

    Article  CAS  PubMed  Google Scholar 

  583. Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 2016;16(6):341–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  584. Chang PV, Hao L, Offermanns S, Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A. 2014;111(6):2247–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  585. Schulthess J, Pandey S, Capitani M, Rue-Albrecht KC, Arnold I, Franchini F, Chomka A, Ilott NE, Johnston DGW, Pires E, McCullagh J, Sansom SN, Arancibia-Carmano CV, Uhlig HH, Powrie F. The short-chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity. 2019;50(2):432–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  586. Yang W, Yu T, Huang X, Bilotta AJ, Xu L, Lu Y, Sun J, Pan F, Zhou J, Zhang W, Yao S, Maynard CL, Singh N, Dann SM, Liu Z, Cong Y. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat Commun. 2020;11(1):4457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  587. Park J, Kim M, Kang SG, Jannasch AH, Cooper B, Patterson J, Kim CH. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol. 2015;8(1):80–93.

    Article  CAS  PubMed  Google Scholar 

  588. Kim M, Qie Y, Park J, Kim CH. Gut microbial metabolites fuel host antibody responses. Cell Host Microbe. 2016;20(2):202–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  589. Vinolo MAR, Rodrigues HG, Hatanaka E, Sato FT, Sampaio SC, Curi R. Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils. J Nutr Biochem. 2011;22(9):849–55.

    Article  CAS  PubMed  Google Scholar 

  590. Green BT, Brown BR. Interactions between bacteria and the gut mucosa: do enteric neurotransmitters acting on the mucosal epithelium influence intestinal colonization or infection? Adv Exp Med Biol. 2016;874:121–41.

    Article  CAS  PubMed  Google Scholar 

  591. Thomas CM, Hong T, van Pijkeren JP, Hemarajata P, Trinh DV, Hu W, Britton RA, Kalkum M, Versalovic J. Histamine derived from probiotic lactobacillus reuteri suppresses TNF via modulation of PKA and ERK signaling. PLoS One. 2012;7(2):e31951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  592. Zhang M, Wang H, Tracey KJ. Regulation of macrophage activation and inflammation by spermine: a new chapter in an old story. Crit Care Med. 2000;28(4):N60–6.

    Article  CAS  PubMed  Google Scholar 

  593. Campbell C, McKenney PT, Konstantinovsky D, Isaeva OI, Schizas M, Verter J, Mai C, Jin WB, Guo CJ, Violante S, Ramos RJ, Cross JR, Kadaveru K, Hambor J, Rudensky AY. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature. 2020;581(7809):475–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  594. Celis AI, Relman DA. Competitors versus collaborators: micronutrient processing by pathogenic and commensal human-associated gut bacteria. Mol Cell. 2020;78(4):570–6.

    Article  CAS  PubMed  Google Scholar 

  595. Bielik V, Kolisek M. Bioaccessibility and bioavailability of minerals in relation to a healthy gut microbiome. Int J Mol Sci. 2021;22(13):6803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  596. Bronner F, Pansu D. Nutritional aspects of calcium absorption. J Nutr. 1999;129(1):9–12.

    Article  CAS  PubMed  Google Scholar 

  597. Trinidad TP, Wolever TM, Thompson LU. Effect of acetate and propionate on calcium absorption from the rectum and distal colon of humans. Am J Clin Nutr. 1996;63(4):574–8.

    Article  CAS  PubMed  Google Scholar 

  598. Whang R, Hampton EM, Whang DD. Magnesium homeostasis and clinical disorders of magnesium deficiency. Ann Pharmacother. 1994;28(2):220–6.

    Article  CAS  PubMed  Google Scholar 

  599. Schuchardt J, Hahn A. Intestinal absorption and factors influencing bioavailability of magnesium. An update Curr Nutr Food Sci. 2017;13(4):260–78.

    CAS  PubMed  Google Scholar 

  600. Yamasaki D, Funato Y, Miura J, Sato S, Toyosawa S, Furutani K, Kurachi Y, Omori Y, Furakawa T, Tsuda T, Kuwabata S, Mizukami S, Kikuchi K, Miki H. Bacterial Mg2+ extrusion via CNNM4 mediates transcellular Mg2+ transport across epithelia: a mouse model. PLoS Genet. 2013;9(12):e1003983.

    Article  Google Scholar 

  601. Pyndt Jorgensen B, Winther G, Kihl P, Nielsen DS, Wegener G, Hansen AK, Sorensen DB. Dietary magnesium deficiency affects gut microbiota and anxiety-like behavior in C57BL/6N mice. Acta Neuropsychiatr. 2015;27(5):307–11.

    Article  PubMed  Google Scholar 

  602. Gommers LMM, Ederveen THA, van der Wijst J, Overmas-Bos C, Kortman GAM, Boekhorst J, Bindels RJM, de Baaij JHF, Hoenderop JGJ. Low gut microbiota diversity and dietary magnesium intake are associated with the development of PPI-induced hypomagnesemia. FASEB J. 2019;33(10):11235–46.

    Article  CAS  PubMed  Google Scholar 

  603. Anderson GJ, Frazer DM, McKie AT, Vulpe CD, Smith A. Mechanisms of haem and non-haem iron absorption: lessons from inherited disorders of iron metabolism. Biometals. 2005;18(4):339–48.

    Article  CAS  PubMed  Google Scholar 

  604. Fuqua BK, Vulpe CD, Anderson GJ. Intestinal iron absorption. J Trac Elem Med Biol. 2012;26(2–3):115–9.

    Article  CAS  Google Scholar 

  605. Gulec S, Anderson GJ, Collins JF. Mechanistic and regulatory aspects of intestinal iron absorption. Am J Phys. 2014;307(4):G397–409.

    CAS  Google Scholar 

  606. Blachier F, Vaugelade P, Robert V, Kibangou B, Canonne-Hergaux F, Delpal S, Bureau F, Blottière H, Boglé D. Comparative capacities of the pig colon and duodenum for luminal iron absorption. Can J Physiol Pharmacol. 2007b;85(2):185–92.

    Article  CAS  PubMed  Google Scholar 

  607. Cappellini MD, Musallam KM, Taher AT. Iron deficiency anaemia revisited. J Intern Med. 2020;287(2):153–70.

    Article  CAS  PubMed  Google Scholar 

  608. Jaeggi T, Kortman GA, Moretti D, Chassard D, Holding P, Dostal A, Boekhorst J, Timmerman HM, Swinkels DW, Tjalsma H, Njenga J, Mwangi A, Kvalsvig S, Lacroix C, Zimmermann MB. Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut. 2015;64(5):731–42.

    Article  CAS  PubMed  Google Scholar 

  609. Paganini D, Zimmermann MB. The effects of iron fortification and supplementation on the gut microbiome and diarrhea in infants and children. Am J Clin Nutr. 2017;106(6):1688S–93S.

    Article  PubMed  PubMed Central  Google Scholar 

  610. Salovaara S, Standberg AS, Andlid T. Combined impact of pH and organic acids on iron uptake by Caco-2 cells. J Agric Food Chem. 2003;51(26):7820–4.

    Article  CAS  PubMed  Google Scholar 

  611. Yilmaz B, Li H. Gut microbiota and iron: the crucial actors in health and disease. Pharmaceuticals (Basel). 2018;11(4):98.

    Article  CAS  PubMed  Google Scholar 

  612. Bouglé D, Vaghefi-Vaezzadeh N, Roland N, Bouvard G, Arhan P, Bureau F, Neuville D, Maubois JL. Influence of short-chain fatty acids on iron absorption by proximal colon. Scand J Gastroenterol. 2002;37(9):1008–11.

    Article  PubMed  Google Scholar 

  613. Chae TU, Kim WJ, Choi S, Park SJ, Lee SY. Metabolic engineering of Escherichia coli for the production of 1,3-diaminopropane, a three-carbon diamine. Sci Rep. 2015;5:13040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  614. Das NK, Schwartz AJ, Barthel G, Inohara N, Liu Q, Sankar A, Hill DR, Ma X, Lamberg O, Schnizlein MK, Arqués JL, Spence JR, Nunez G, Patterson AD, Sun D, Young VB, Shah YM. Microbial metabolite signaling is required for systemic iron homeostasis. Cell Metab. 2020;31(1):115–130.e6.

    Article  CAS  PubMed  Google Scholar 

  615. Krall RF, Tzounopoulos T, Aizenman E. The function and regulation of zinc in the brain. Neuroscience. 2021;457:235–58.

    Article  CAS  PubMed  Google Scholar 

  616. Prasad AS. Clinical, endocrinological and biochemical effects of zinc deficiency. Clin Endocrinol Metab. 1985;14(3):567–89.

    Article  CAS  PubMed  Google Scholar 

  617. Read SA, Obeid S, Ahlenstiel G, Ahlenstiel G. The role of zinc in antiviral immunity. Adv Nutr. 2019;10(4):696–710.

    Article  PubMed  PubMed Central  Google Scholar 

  618. Smith JC Jr, McDaniel EG, McBean LD, Doft FS, Halsted JA. Effect of microorganisms upon zinc metabolism using germ-free and conventional rats. J Nutr. 1972;102(6):711–9.

    Article  CAS  PubMed  Google Scholar 

  619. Sauer AK, Grabrucker AM. Zinc deficiency during pregnancy leads to altered microbiome and elevated inflammatory markers in mice. Front Neurosci. 2019;13:1295.

    Article  PubMed  PubMed Central  Google Scholar 

  620. Zackular JP, Skaar EP. The role of zinc and nutritional immunity in Clostridium difficile infection. Gut Microbes. 2018;9(5):469–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  621. Guetterman HM, Huey SL, Knight R, Fox AM, Mehta S, Finkelstein JL. Vitamin B-12 and the gastrointestinal microbiome: a systematic review. Adv Nutr. 2021;13(2):530–58.

    Article  PubMed  PubMed Central  Google Scholar 

  622. Rossi M, Amaretti A, Raimondi S. Folate production by probiotic bacteria. Nutrients. 2011;3(1):118–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  623. Suttie JW. The importance of menaquinones in human nutrition. Annu Rev Nutr. 1995;15:399–417.

    Article  CAS  PubMed  Google Scholar 

  624. Frick PG, Riedler G, Brögli H. Dose response and minimal daily requirement for vitamin K in man. J Appl Physiol. 1967;23(3):387–9.

    Article  CAS  PubMed  Google Scholar 

  625. Magnusdottir S, Ravcheev D, de Crécy-Lagard V, Thiele I. Systemic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front Genet. 2015;6:148.

    Article  PubMed  PubMed Central  Google Scholar 

  626. Radionov DA, Arzamasov AA, Khoroshkin MS, Iablokov SN, Leyn SA, Peterson SN, Novichkov PS, Osterman AL. Micronutrient requirements and shaping capabilities of the human gut microbiome. Front Microbiol. 2019;10:1316.

    Article  Google Scholar 

  627. Sharma V, Rodionov DA, Leyn SA, Tran D, Iablokov SN, Ding H, Peterson DA, Osterman AL, Peterson SN. B-vitamin sharing promotes stability of gut microbial communities. Front Microbiol. 2019;10:1485.

    Article  PubMed  PubMed Central  Google Scholar 

  628. Jaehme M, Slotboom DJ. Diversity of membrane transport proteins for vitamins in bacteria and archaea. Biochim Biophys Acta. 2015;1850(3):565–76.

    Article  CAS  PubMed  Google Scholar 

  629. Putnam EE, Goodman AL. B vitamin acquisition by gut commensal bacteria. PLoS Pathog. 2020;16(1):e1008208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  630. Said HM. Recent advances in transport of water-soluble vitamins in organs of the digestive system: a focus on the colon and the pancreas. Am J Phys. 2013;305(9):G601–10.

    CAS  Google Scholar 

  631. Tardy AL, Pouteau E, Marquez D, Yilmaz C, Scholey A. Vitamins and minerals for energy, fatigue and cognition: a narrative review of the biochemical and clinical evidence. Nutrients. 2020;12(1):228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  632. Blachier F, Andriamihaja M, Blais A. Sulfur-containing amino acids and lipid metabolism. J Nutr. 2020;150(1):2524S–31S.

    Article  PubMed  Google Scholar 

  633. Clarke G, Sandhu KV, Griffin BT, Dinan TG, Cryan JF, Hyland NP. Gut reactions: breaking down xenobiotic-microbiome interactions. Pharmacol Rev. 2019;71(2):198–224.

    Article  CAS  PubMed  Google Scholar 

  634. Croom E. Metabolism of xenobiotics of human environments. Prog Mol Biol Transl Sci. 2012;112:31–88.

    Article  CAS  PubMed  Google Scholar 

  635. Koppel N, Maini Rekdal V, Balskus EP. Chemical transformation of xenobiotics by the human gut microbiota. Science. 2017;356(6344):eaag2770.

    Article  PubMed  Google Scholar 

  636. Dietert R, Silbergeld EK. Biomarkers for the 21st century: listening to the microbiome. Toxicol Sci. 2015;144(2):208–16.

    Article  CAS  PubMed  Google Scholar 

  637. Jin Y, Wu S, Zeng Z, Fu Z. Effects of environmental pollutants on gut microbiota. Environ Pollut. 2017;222:1–9.

    Article  CAS  PubMed  Google Scholar 

  638. Calatayud-Arroyo M, Garcia Barrera T, Callejon Leblic T, Arias Borrego A, Collado MC. A review of the impact of xenobiotics from dietary sources on infant health: early life exposures and the role of the microbiota. Environ Pollut. 2021;269:115994.

    Article  CAS  PubMed  Google Scholar 

  639. Krishnan R, Wilkinson I, Joyce L, Rofe AM, Bais R, Conyers RA, Edwards JB. The effect of dietary xylitol on the ability of rat caecal flora to metabolize xylitol. Aust J Exp Biol Med Sci. 1980;58(6):639–52.

    Article  CAS  PubMed  Google Scholar 

  640. Renwick AG, Tarka SM. Microbial hydrolysis of steviol glycosides. Food Chem Toxicol. 2008;46(7):S70–4.

    Article  CAS  PubMed  Google Scholar 

  641. Renwick AG. The metabolism of intense sweeteners. Xenobiotica. 1986;16(10–11):1057–71.

    Article  CAS  PubMed  Google Scholar 

  642. Franco R, Navarro G, Martinez-Pinilla E. Antioxidants versus food antioxidant additives and food preservatives. Antioxidants (Basel). 2019;8(11):542.

    Article  CAS  PubMed  Google Scholar 

  643. Vally H, Misso NLA, Madan V. Clinical effects of sulphite additives. Clin Exp Allergy. 2009;39(11):1643–51.

    Article  CAS  PubMed  Google Scholar 

  644. Wever J. Appearance of sulphite and S-sulphonates in the plasma of rats after intraduodenal sulphite application. Food Chem Toxicol. 1985;23(10):895–8.

    Article  CAS  PubMed  Google Scholar 

  645. Blachier F, Andriamihaja M, Larraufie P, Ahn E, Lan A, Kim E. Production of hydrogen sulfide by the intestinal microbiota and epithelial cells and consequences for the colonic and rectal mucosa. Am J Phys. 2021b;320(2):G125–35.

    CAS  Google Scholar 

  646. Bedale W, Sindelar JJ, Milkowski AL. Dietary nitrate and nitrite: benefits, risks, and evolving perceptions. Meat Sci. 2016;120:85–92.

    Article  CAS  PubMed  Google Scholar 

  647. Smith TJ, Hill KK, Raphael BH. Historical and current perspectives on clostridium botulinum diversity. Res Microbiol. 2015;166(4):290–302.

    Article  PubMed  Google Scholar 

  648. Engemann A, Focke C, Humpf HU. Intestinal formation of N-nitroso compounds in the pig cecum model. J Agric Food Chem. 2013;61(4):998–1005.

    Article  CAS  PubMed  Google Scholar 

  649. Carlström M, Moretti CH, Weitzberg E, Lundberg JO. Microbiota, diet and the generation of reactive nitrogen compounds. Free Radic Biol Med. 2020;161:321–5.

    Article  PubMed  Google Scholar 

  650. Barnes JL, Zubair M, John K, Poirier MC, Martin FL. Carcinogens and DNA damage. Biochem Soc Trans. 2018;46(5):1213–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  651. Duncan SH, Iyer A, Russell WR. Impact of protein on the composition and metabolism of the human gut microbiota and health. Proc Nutr Soc. 2021;80(2):173–85.

    Article  CAS  PubMed  Google Scholar 

  652. Thresher A, Foster R, Ponting DJ, Stalford SA, Tennant RE, Thomas R. Are all nitrosamines concerning? A review of mutagenicity and carcinogenicity data. Regul Toxicol Pharmacol. 2020;116:104749.

    Article  CAS  PubMed  Google Scholar 

  653. De Pilli T, Alessandrino O. Effects of different food technologies on biopolymers modifications of cereal-based foods: impact of nutritional and quality characteristics review. Crit Rev Food Sci Nutr. 2020;60(4):556–65.

    Article  PubMed  Google Scholar 

  654. Inam-Eroglu E, Ayaz A, Buyuktuncer Z. Formation of advanced glycation endproducts in foods during cooking process and underlying mechanisms: a comprehensive review of experimental studies. Nutr Res Rev. 2020;33(1):77–89.

    Article  Google Scholar 

  655. Uribarri J, del Castillo MD, de la Maza MP, Filip R, Gugliucci A, Luevano-Contreras C, Macias-Cervantes MH, Markowicz Bartos D, Medrano A, Menini T, Portero-Otin M, Rojas A, Rodrigues Sampaio G, Wrobel K, Wrobel K, Garay-Sevilla ME. Dietary advanced glycation end products and their role in health and disease. Adv Nutr. 2015;6(4):461–73.

    Article  PubMed  PubMed Central  Google Scholar 

  656. Kim E, Coelho D, Blachier F. Review of the association between meat consumption and risk of colorectal cancer. Nutr Res. 2013;33(12):983–94.

    Article  CAS  PubMed  Google Scholar 

  657. Kassie F, Rabot S, Kundi M, Chabikovsky M, Qin HM, Knasmüller S. Intestinal microflora plays a crucial role in the genotoxicity of the cooked food mutagen 2-amino-3-methylimidazo (4,5-f) quinoline. Carcinogenesis. 2001;22(10):1721–5.

    Article  CAS  PubMed  Google Scholar 

  658. Humblot C, Murkovic M, Rigottier-Gois L, Bensaada M, Bouclet A, Andrieux C, Anba J, Rabot S. Beta-glucuronidase in human intestinal microbiota is necessary for the colonic genotoxicity of the food-borne carcinogen 2-amino-3-methylimidazo (4,5-f) quinoline in rats. Carcinogenesis. 2007;28(11):2419–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blachier, F. (2023). Metabolism of Dietary Substrates by Intestinal Bacteria and Consequences for the Host Intestine. In: Metabolism of Alimentary Compounds by the Intestinal Microbiota and Health. Springer, Cham. https://doi.org/10.1007/978-3-031-26322-4_3

Download citation

Publish with us

Policies and ethics