Skip to main content

Diabetes Mellitus Associated Progressive Neurovascular Retinal Injury

  • Chapter
  • First Online:
Retina Lasers in Ophthalmology
  • 254 Accesses

Abstract

Diabetes mellitus is now recognized as a systemic, autoimmune, microvascular disorder, which, in the retina results in severe, multifocal injury now recognized as a leading cause, world-wide, of progressive vision loss. To address this problem in the prediabetic and overt diabetic states, it must be realized that, although the injury processes may be system wide, there are varying responses, effector, and repair mechanisms that differ from organ to organ or within varying cell structures. Specifically, within the “neurovascular unit” of the retina, lesions occur of focal microvascular occlusions, inflammatory endothelial and pericyte injury, and small vessel leakage resulting in injury to astrocytes, Müller cells, microglia, and causing progressive neuronal apoptosis and death. Such lesions are now recognized to occur before the first microaneurysms are visible by fundus camera imaging or before detectable symptoms or signs recognizable to the patient or clinician. Treatments, therefore, which currently are not initiated until edema develops or progressive vascular occlusion, are applied relatively late with some reduction in progressive cellular injury but with minimal vision improvement. Desperately needed are newly developed imaging and functional testing methods that detect the early stages of microvascular injury and neuronal apoptosis when the processes are potentially reversible, not following severe, widespread atrophy. Treatment, when applied at such early stages, therefore can preserve far better functional vision. However, to be acceptable, such interventions must be minimally invasive with patient appreciated improvement in vision. Micropulsed applications of laser retinal phototherapy appear to offer treatment for such early intervention, not just to reverse the early alterations, but also for later stages of the progressive neurovascular and vision degradation when patients will continue to present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baranowska-Juran A, Matuszewski W, Bandurska-Stankiewicz E. Chronic microvascular complication in prediabetic states- an overview. J Clin Med. 2020;9:1–21. https://doi.org/10.3390/jcm9103289.

    Article  CAS  Google Scholar 

  2. Centers for Disease Control and Prevention. National diabetes statistics report: Estimates of diabetes and its burden in the United States. Atlanta, GA: US Department of Health and Human Services; 2014.

    Google Scholar 

  3. Hugenschmidt C, Lovato J, Ambrosius W, et al. The cross-sectional and longitudinal associations of diabetic retinopathy with cognitive function and brain MRI findings: The action to control cardiovascular risk in diabetes (ACCORD) trial. Diabetes Care. 2014;37:3244–52. https://doi.org/10.2337/dc14-0502.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Joltikov, K, deCastro, V, Davila, J, et al. Multidimensional functional and structural evaluation reveals neuroretinal impariment in early diabetic retinopathy. Invest Ophthal vis Sci. 2017;58(6):Bio277–90. https://doi.org/10.1167/iovs.17-21863

  5. Brannick B, Dagogo-Jack S. Prediabetes and cardiovascular disease: Pathophysiology and interventions for prevention and risk reduction. Endocrinol Metab Clin North Am. 2018;47(1):33–50. https://doi.org/10.1016/j.ecl.2017.10.001.

  6. Marseglia A, Fratiglioni L, Kalpouzos GRW, Backman L, Xu W. Prediabetes and diabetes accelerate cognitive decline and predict microvascular lesions: a population-based cohort study. Alzheimer’s & Dement: Transl Res & Clin Interv. 2019;15:25–33. https://doi.org/10.1016/j.jalz.2018.06.3060.

    Article  Google Scholar 

  7. Liu B, Yu Y, Liu W, Deng T, Xiang D. Risk factors for non-arteritic anterior ischemic optic neuropathy: a large scale meta-analysis. Front Med. 2021;8(618353):1–14. https://doi.org/10.3389/fmed.2021.618353.

    Article  Google Scholar 

  8. Sinclair, S, Schwartz, S. Diabetic retinopathy-An underdiagnosed and undertreated inflammatory, neuro-vascular complication of diabetes. In: Prime archives in endocrinology (Vol. Open Access: https://videleaf.com/diabetic-retinopathy-an-underdiagnosed-and-undertreated-inflammatory-neuro-vascular-complication-of-diabetes/, pp. 1–42). Hyderabad, India: Vide Leaf; 2020.

  9. Lee R, Wong T, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye & Vis (Lond). 2015;2:17. https://doi.org/10.1186/s40662-015-0026-2.

    Article  Google Scholar 

  10. Solomon SD, Chew E, Duh EJ, et al. Diabetic retinopathy: a position statement by the American Diabetes Association. Diabetes Care. 2017;40:412–8. https://doi.org/10.2337/dc16-2641.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Malek M, Khamseh M, Aghili R, Emami Z, Najafi L, Baradaran H. Medical management of diabetic retinopathy: an overview. Arch Iran Med. 2012;15(10):635–40 PMID: 23020540.

    PubMed  Google Scholar 

  12. Longstreth W, Larsen E, Klein R, Wong T, Sharrett A, Lefkowitz D, Manolio T. Associations between findings on cranial magnetic resonance imaging and retinal photography in the elderly: the cardiovascular health study. Am J Epidemiology. 2006;165(1):78–84. https://doi.org/10.1093/aje/kwj350.

    Article  Google Scholar 

  13. Yau JW, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35:556–64. https://doi.org/10.2337/dc11-1909.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hanff T, Sharrett A, Mosley T, et al. Retinal microvascular abnormalities predict progression of brain microvascular disease: An atherosclerosis risk in communities magnetic resonance imaging study. Stroke. 2014;45:1012–7. https://doi.org/10.1161/STROKEAHA.113.004166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cheung CY, Tay WT, Ikram MK, et al. Retinal microvascular changes and risk of stroke: the Singapore Malay Eye Study. Stroke. 2013;44(9):2402–8. https://doi.org/10.1161/STROKEAHA.113.001738.

    Article  PubMed  Google Scholar 

  16. Jellinger K. Pathology and pathogenesis of vascular cognitive impairment- a critical update. Front Aging Neurosci. 2013;5:1–19. https://doi.org/10.3389/fnagi.2013.00017.

    Article  CAS  Google Scholar 

  17. Hughes AD, Falaschetti E, Witt N, et al. Association of retinopathy and retinal microvascular abnormalities with stroke and cerebrovascular disease. Stroke. 2016;47:2862–4. https://doi.org/10.1161/STROKEAHA.116.014998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dumitrascu O, Demaerschalk B, Sanchez C, Almader-Douglas D, O’Carroll C, Aguilar M, Kumar G. Retinal microvascular abnormalities as surrogate markers of cerebrovascular ischemic disease: a meta-analysis. J Stroke and Cerebrovasc Dis. 2018;27(7):1960–68. https://doi.org/10.1016/j.jstrokecerebrovasdis2018.02.041

  19. Mansour S, Browning D, Wong K, Flynn H Jr, Bhavsar A. The evolving treatment of diabetic retinopathy. Clin Ophthalmol. 2020;14:653–78. https://doi.org/10.2147/OPTH.S236637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fickweiler W, Wolfson E, Paniagua S, et al. The association of cognitive function and retinal neural and vascular structure in Type 1 diabetes. J Clin Endocrin Metab. 2021;106(4):1139–49. https://doi.org/10.1210/clinem/dgaa921.

    Article  Google Scholar 

  21. Chai, Y, Zhang, YP, Qiao, YS, et al. Association between diabetic retinopathy, brain structural abnormalities and cognitive impairment for accumulated evidence in observational studies. Am J Ophthalmol. 2022:12124.https://doi.org/10.1016/j.ajo.2022.01.011

  22. Agarwal A, Soliman M, Sepah Y, Do D, Nguyen Q. Diabetic retinopathy: variations in patient therapeutic outcomes and pharmacogenomics. Pharmacogenomics Pers Med. 2014;7:399–409. https://doi.org/10.2147/PGPM.S52821.

    Article  Google Scholar 

  23. Patton N, Aslam T, Macgillivray T, Pattie A, Deary IJ, Dhillon B. Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures. J Anat. 2005;206(4):319–48. https://doi.org/10.1111/j.1469-7580.2005.00395.x.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010;9(7):689–701. https://doi.org/10.1016/S1474-4422(10)70104-6.

    Article  PubMed  Google Scholar 

  25. Guzik TJ, Schramm A, Czesnikiewicz-Guzik M. Functional implications of reactive oxygen species (ROS) in human blood vessels. In: Laher I, editor. Systems biology of free radicals and antioxidants. Heidelberg, Springer, Berlin Heidelberg: Berlin; 2014. p. 1155–76.

    Chapter  Google Scholar 

  26. Grunwald J, Riva C, Brucker A, Sinclair S, Petrig B. Altered retinal vascular response to 100% oxygen breathing in diabetes mellitus. Ophthalmology. 1984;91(12):1447–52. https://doi.org/10.1016/s0161-6420(84)34124-0.

    Article  CAS  PubMed  Google Scholar 

  27. Petzold, GC. Murthy, VN. Role of astrocytes in neurovascular coupling. Neuron. 2011;7(5):782–97.https://doi.org/10.1016/j.neuron.2011.08.009.

  28. Schafer DP, Lehrman EK, Kautzman AG, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012;74(4): 691–705https://doi.org/10.1016/j.neuron.2012.03.026.

  29. Rashid K, Akhtar-Schaefer I, Langmann T. Microglia in retinal degeneration. Front Immunol. 2019;10(1975):1–19. https://doi.org/10.3389/fimmu.2019.01975.

    Article  CAS  Google Scholar 

  30. Salmenson B, Reisman J, Sinclair S, Burge D. Macular capillary hemodynamic changes associated with Raynaud’s phenomenon. Ophthalmology. 1992;99:914–9. https://doi.org/10.1016/s0161-6420(92)31874-3.

    Article  CAS  PubMed  Google Scholar 

  31. Drance S, Anderson DR, Schulzer M. Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am J Ophthalmol. 2001;131:699–708. https://doi.org/10.1016/S0002-9394(01)00964-3.

    Article  CAS  PubMed  Google Scholar 

  32. Guo Y, Sun Y, Liu H, Cao K, Wang N. Systemic vascular dysregulation may be associated with lower peripapillary vessel density in non-glaucomatous healthy eyes: a prospective cross-sectional study. Front Med. 2021;8(678829):1–10. https://doi.org/10.3389/fmed.2021.678829.

    Article  Google Scholar 

  33. Dorner G, Garhofer GBK, Polska E, Polak K, Riva C, Schmetterer L. Nitric oxide regulates retinal vascular tone in humans. Am J Physiol Heart Circ Physiol. 2003;285:H631–6. https://doi.org/10.1152/ajpheart.00111.2003.

    Article  CAS  PubMed  Google Scholar 

  34. Metea MR, Newman EA. Signaling within the neurovascular unit in the mammalian retina. Exp Physiol. 2007;92(4):635–40. https://doi.org/10.1113/expphysiol.2006.036376.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kur J, Newman EA, Chan-Ling T. Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease. Prog Retin Eye Res. 2012;31(5):377–406. https://doi.org/10.1016/j.preteyeres.2012.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kisler K, Nelson AR, Rege SV, et al. Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat Neurosci. 2017;20:406–16. https://doi.org/10.1038/nn.4489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yemisci M, Gursoy-Ozdemir Y, Vurul A, et al. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nature Med. 2009;15(9):1031–7. https://doi.org/10.1038/nm.2022.

    Article  CAS  PubMed  Google Scholar 

  38. Ava S, Erdem S, Karahan M, Dursun M, Hazar L, Sen H, Keklikci U. Evaluation of the effect of obstructive sleep apnea syndrome on retinal microvascuarity by optical coherence tomography angiography. Photodiagn Photodyn Ther. 2022;38:1–5. https://doi.org/10.1016/j.pdpdt.2022.102761.

    Article  CAS  Google Scholar 

  39. Karaca C, Karaca Z. Beyond hyperglycemia, evidence for retinal neurodegeneration in metabolic syndrome. Invest Ophthal vis Sci. 2018;59(3):1360–7. https://doi.org/10.1167/iovs.17-23376.

    Article  CAS  PubMed  Google Scholar 

  40. Grunwald J, Brucker A, Schwartz S, Braunstein S, Baker L, Petrig B, Riva C. Diabetic glycemic control and retinal blood flow. Diabetes Res and Clin Pract. 1990;39:602–7. https://doi.org/10.2337/diab.39.5.602.

    Article  CAS  Google Scholar 

  41. Lott M, Slocomb J, Shivkumar V, et al. Impaired retinal vasodilator responses in prediabetes and type 2 diabetes. Acta Ophthalmol. 2013;91(6):e462-469. https://doi.org/10.1111/aos.12129.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Garhofer G, Zawinka C, Resch H, Kothy P, Schmetterer L, Dorner GT. Reduced response of retinal vessel diameters to flicker stimulation in patients with diabetes. Br J Ophthalmol. 2004;88(7):887–91. https://doi.org/10.1136/bjo.2003.033548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bek T, Hajari J, Jeppesen P. Interaction between flicker-induced vasodilatation and pressure autoregulation in early retinopathy of type 2 diabetes. Graefes Arch Clin Exp Ophthalmol. 2008;246(5):763–9. https://doi.org/10.1007/s00417-008-0766-y.

    Article  PubMed  Google Scholar 

  44. Singer M, Ashimatey B, Zhou X, Chu Z, Wang R, Kashani A. Impaired layer specific retinal vascular reactivity among diabetic subjects. PLOS One. 2020;15(9 e233871):1–11. https://doi.org/10.1371/journal.pone.0233871.

  45. Umemura T, Kawamura T, Hotta N. Pathogenesis and neuroimaging of cerebral large and small vessel disease in type 2 diabetes: a possible link between cerebral and retinal microvascular abnormalities. J Diabetes Invest. 2017;8:134–48. https://doi.org/10.1111/jdi.12545.

    Article  CAS  Google Scholar 

  46. Sorensen BM, Houben AJ, Berendschot TT, Schouten JS, Kroon AA, van der Kallen CJ, et al. Prediabetes and type 2 diabetes are associated with generalized microvascular dysfunction: the Maastricht study. Circulation. 2016;134(18):1339–52. https://doi.org/10.1161/CIRCULATIONAHA.116.023446.

    Article  CAS  PubMed  Google Scholar 

  47. Chiang JF, Sun MH, Chen KJ, et al. Association with obstructive sleep apnea and diabetic macular edema in patients with type 2 diabetes. Am J Ophthalmol. 2021;226:217–25. https://doi.org/10.1016/j.ajo.2021.01.022.

    Article  PubMed  Google Scholar 

  48. Cooper LS, Wong TY, Klein R, et al. Retinal microvascular abnormalities and MRI-defined subclinical cerebral infarction: the Atherosclerosis Risk in Communities Study. Stroke. 2006;37:82–6. https://doi.org/10.1161/01.STR.0000195134.04355.e5.

    Article  PubMed  Google Scholar 

  49. Wostyn P, De Groot V, Van Dam D, Audenaert K, Killer H, De Deyn P. The glymphatic hypothesis of glaucoma: a unifying concept incorporating vascular, biomechanical, and biochemical aspects of the disease. BioMed Res Int. 2017(ID 5123148):1–7. https://doi.org/10.1155/2017/5123148.

  50. Suzen S, Buyukbingol E. Recent studies of aldose reductase enzyme inhibition for diabetic complications. Curr Med Chem. 2003;10(15):1329–52. https://doi.org/10.2174/0929867033457377.

    Article  CAS  PubMed  Google Scholar 

  51. Das Evcimen, N, King, GL. The role of protein kinase C activation and the vascular complications of diabetes. Pharmacol Res. 2007. 55(6), 498–510. https://doi.org/10.1016/j.phrs.2007.04.016.

  52. Aiello LP, Vignati L, Sheetz MJ, et al, PKC-DRS and PKC-DRS2 Study Groups. Oral protein kinase c b inhibition using ruboxistaurin: efficacy, safety, and causes of vision loss among 813 patients (1,392 eyes) with diabetic retinopathy in the Protein Kinase Cb Inhibitor-Diabetic Retinopathy Study and the Protein Kinase C b Inhibitor-Diabetic Retinopathy Study 2. Retina. 2011;31(10):2084–94. https://doi.org/10.1097/IAE.0b013e3182111669.

  53. Zong H, Ward M, Stitt AW. AGEs, RAGE, and diabetic retinopathy. Curr Diabetes Rep. 2011;11(4):244–52. https://doi.org/10.1007/s11892-011-0198-7.

    Article  Google Scholar 

  54. Madsen-Bouterse, SA, Kowluru, RA. Oxidative stress and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Rev Endocr Metab Disord. 2008;9(4):315–27. https://doi.org/10.1007/s11154-008-9090-4

  55. Huru, J, Leiviska, I, Saarela, V, Liinamaa, M. Prediabetes influences the structure of the macula: Thinning of the macula in the Northern Finland Birth Cohort. Br J Ophthalmol. 2020;Epub,: 1–7. https://doi.org/10.1136/bjophthalmol-2020-317414.

  56. Antonetti D, Klein R, Gardner T. Diabetic retinopathy. N Engl J Med. 2012;366(13):1227–39. https://doi.org/10.1056/NEJMra1005073.

    Article  CAS  PubMed  Google Scholar 

  57. Sonkin P, Kelly L, Sinclair S, Hatchell D. The effect of pentoxifylline on retinal capillary blood flow velocity and whole blood viscosity. American Journal Ophthalmology. 1993;115:775–80. https://doi.org/10.1016/s0002-9394(14)73647-5.

    Article  CAS  Google Scholar 

  58. Van Hecke M, Dekker J, Nijpels G, et al. Inflammation and endothelial dysfunction are associated with retinopathy: The Hoorn Study. Diabetologia. 2005;48:1300–6. https://doi.org/10.1007/s00125-005-1799-y.

    Article  CAS  PubMed  Google Scholar 

  59. McLeod DS, Lefer DJ, Merges C, Lutty GA. Enhanced expression of intracellular adhesion molecule-1 and P-selectin in the diabetic human retina and choroid. Am J Pathol. 1995;147(3):642–53. PMID: 7545873.

    Google Scholar 

  60. Khoobehi B, Firn K, Thompson H, Reinoso M, Beach J. Retinal arterial and venous oxygen saturation is altered in diabetic patients. Invest Ophthal Visual Sci. 2013;54:7103–6. https://doi.org/10.1167/iovs.13-12723.

    Article  Google Scholar 

  61. Wilkinson, CP, Ferris, FL 3rd, Klein, RE, et al. Global Diabetic Retinopathy Project Group. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003;110(9):1677–82. https://doi.org/10.1016/S0161-6420(03)00475-5.

  62. Zhang, X, Zeng, H, Bao, S, Wang, N, Gillies, M. Diabetic macular edema: New concepts in patho-physiology and treatment. Cell Biosci. 2014;1494:27. https://doi.org/10.1186/2045-3701-4-27.

  63. Villarroel M, Ciudin A, Hernandez C, Simo R. Neurodegeneration: an early event of diabetic retinopathy. World J Diab. 2010;1(2):57–64. https://doi.org/10.4239/wjd.v1.i2.57.

    Article  Google Scholar 

  64. Barber A, Gardner T, Abcouwer S. The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy. Invest Ophthal Vis Sci. 2011;52(2):1156–63. https://doi.org/10.1167/iovs.10-6293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Abu El-Asrar AM, Dralands L, Missotten L, et al. Expression of antiapoptotic and proapoptotic molecules in diabetic retinas. Eye (Lond). 2007;21(2):238–45. https://doi.org/10.1038/sj.eye.6702225.

    Article  CAS  PubMed  Google Scholar 

  66. Van Dijk HW, Verbraak FD, Stehouwer M, et al. Association of visual function and ganglion cell layer thickness in patients with diabetes mellitus type 1 and no or minimal diabetic retinopathy. Vision Res. 2011;51(2):224–8. https://doi.org/10.1016/j.visres.2010.08.024.

    Article  PubMed  Google Scholar 

  67. Van Dijk HW, Verbraak FD, Kok PHB, et al. Early neurodegeneration in the retina of type 2 diabetic patients. Invest Ophthalmol Vis Sci. 2012;53(6):2715–9. https://doi.org/10.1167/iovs.11-8997.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Vujosevic S, Midena E. Retinal layers changes in human preclinical and early clinical diabetic retinopathy support early retinal neuronal and Müller cell alterations. J Diabetes Res. 2013;2013: 905058. https://doi.org/10.1155/2013/905058.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Mizutani M, Gerhardinger C, Lorenzi M. Muller cell changes in human diabetic retinopathy. Diabetes. 1998;47(3):445–9. https://doi.org/10.2337/diabetes.47.3.445.

    Article  CAS  PubMed  Google Scholar 

  70. Van Dijk HW, Kok PHB, Garvin M, et al. Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy. Invest Ophthalmol Vis Sci. 2009;50(7):3404–9. https://doi.org/10.1167/iovs.08-3143.

    Article  PubMed  Google Scholar 

  71. Chihara E, Matsuoka T, Ogura Y, Matsumura M. Retinal nerve fiber layer defect as an early manifestation of diabetic retinopathy. Ophthalmology. 1993;100(8):1147–51. https://doi.org/10.1016/s0161-6420(93)31513-7.

    Article  CAS  PubMed  Google Scholar 

  72. Lim H, Shin Y, Lee M, Park G, Jy K. Longitudinal changes in the peripapillary retinal nerve fiber layer thickness of patients with type 2 diabetes. JAMA Ophthalmol. 2019;137(10):1125–32.https://doi.org/10.1001/jamaophthalmol.2019.2537

  73. Peng R, Zhu Z, Shen H, et al. Retinal nerve and vascular changes in prediabetes. Front Med. 2022;9: 777646. https://doi.org/10.3389/fmed.2022.777646.

    Article  Google Scholar 

  74. Bringmann A, Iandiev I, Pannicke T, et al. Cellular signaling and factors involved in Müller cell gliosis: neuroprotective and detrimental effects. Prog Retin Eye Res. 2009;28(6):423–51. https://doi.org/10.1016/j.preteyeres.2009.07.001.

    Article  CAS  PubMed  Google Scholar 

  75. Zhong Y, Li J, Chen Y, Wang J, Ratan R, Zhang S. Activation of endoplasmic reticulum stress by hyperglycemia is essential for muller cell-derived inflammatory cytokine production in diabetes. Diabetes. 2012;61:492–504. https://doi.org/10.2337/db11-0315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bringmann A, Wiedemann P. Müller glial cells in retinal disease. Ophthalmologica. 2012;227:1–19. https://doi.org/10.1159/000328979.

    Article  PubMed  Google Scholar 

  77. Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 2009;32:638–47. https://doi.org/10.1016/j.tins.2009.08.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Stitt AW, O’Neill CL, O’Doherty MT, Archer DB, Gardiner TA, Medina RJ. Vascular stem cells and ischaemic retinopathies. Prog Retin Eye Res. 2011;30:149–66. https://doi.org/10.1016/j.preteyeres.2011.02.001.

    Article  CAS  PubMed  Google Scholar 

  79. Franze K, Grosche J, Skatchkov SN, et al. Muller cells are living optical fibers in the vertebrate retina. Proc Natl Acad Sci U S A. 2007;104:8287–92. https://doi.org/10.1073/pnas.0611180104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Reichenbach A, Bringmann A. New functions of Müller cells. Glia. 2013;61:651–78. https://doi.org/10.1002/glia.22477.

    Article  PubMed  Google Scholar 

  81. Lindenau W, Kuhrt H, Ulbricht E, Körner K, Bringmann A, Reichenbach A. Cone-to-Müller cell ratio in the mammalian retina: a survey of seven mammals with different lifestyle. Exp Eye Res. 2019;181:38–48. https://doi.org/10.1016/j.exer.2019.01.012.

    Article  CAS  PubMed  Google Scholar 

  82. Bresnick GH, Palta M. Predicting progression to severe proliferative diabetic retinopathy. Arch Ophthalmol. 1987;105(6):810–4. https://doi.org/10.1001/archopht.1987.01060060096041.

    Article  CAS  PubMed  Google Scholar 

  83. Lai Y, Chan WM, Lai R, Ngai J, Li H, Lam D. The clinical applications of multifocal electroretinography: a systematic review. Surv Ophthalmol. 2007;52(1):61–96. https://doi.org/10.1016/j.survophthal.2006.10.005.

    Article  PubMed  Google Scholar 

  84. Ng J, Bearse M, Schnck M, Barez S, Adams A. Local diabetic retinopathy prediction by multifocal ERG delays over 3 years. Invest Ophthal Vis Sci. 2008;49(4):1622–8. https://doi.org/10.1167/iovs.07-1157.

    Article  PubMed  Google Scholar 

  85. Adams A, Bearse M Jr. Retinal neuropathy precedes vasculopathy in diabetes: a function-based opportunity for early treatment intervention? Clin Exp Optom. 2012;95:256–65. https://doi.org/10.1111/j.1444-0938.2012.00733.x.

    Article  PubMed  Google Scholar 

  86. Simo R, Simo-Servat O, Bogdanov P, Hernandez C. Neurovascular unit: A new target for treating early stages of diabetic retinopathy. Pharmaceutics. 2021;13(8):1320, 1–39. https://doi.org/10.3390/pharmaceutics13081320.

  87. Sinclair, SH, Miller, ST, Talekar, KS, Schwartz, SS. Diabetes mellitus associated neurovascular lesions in the retina and brain: a review. Frontiers Ophthalmol. 2022. Epub ahead of print.

    Google Scholar 

  88. American Academy of Ophthalmology. Diabetic retinopathy preferred practice pattern, ISSN 0161-6420/19, Elsevier, Inc. 2019. pp. 70–131. https://doi.org/10.1016/j.ophtha.2019.09.025.

  89. Sinclair SH. Diabetic retinopathy: the unmet needs for screening and a review of potential solutions. Expert Rev Med Devices. 2006;3:301–13. https://doi.org/10.1586/17434440.3.3.301.

    Article  PubMed  Google Scholar 

  90. Bressler S, Qin H, Beck R, et al. Factors associated with changes in visual acuity and central subfield thickness at 1 year after treatment for diabetic macular edema with ranibizumab. Arch Ophthalmol. 2012;130(9):1153–61. https://doi.org/10.1001/archophthalmol.2012.1107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Brown DM, Nguyen QD, Marcus DM, et al. Long-term outcomes of ranibizumab therapy for diabetic macular edema: the 36-month results from two phase III trials: RISE and RIDE. Ophthalmology. 2013;120:2013–22. https://doi.org/10.1016/j.ophtha.2013.02.034.

    Article  PubMed  Google Scholar 

  92. Bressler N, Odia I, Maguire M, et al. Association between change in visual acuity and change in central subfield thickness during treatment of diabetic macular edema in participants randomized to aflibercept, bevacizumab, or ranibzumab: a post hoc analysis of the protocol T randomized clinical trial. JAMA Ophthalmol. 2019;137(9):977–85. https://doi.org/10.1001/jamaophthalmol.2019.1963.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Diabetic Retinopathy Clinical Research Network. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. New England J Med. 2015;372(13):1193–203. https://doi.org/10.1056/NEJMoa1414264.

    Article  CAS  Google Scholar 

  94. Durbin M, An L, Shemonski N, et al. Quantification of retinal microvascular density in optical coherence tomographic angiography images in diabetic retinopathy. JAMA Ophthalmol. 2017;135(4):370–6. https://doi.org/10.1001/jamaophthalmol.2017.0080.

  95. Aschauer J, Pollreisz A, Karst S, et al. Longitudinal analysis of microvascular perfusion and neurodegenerative changes in early type 2 diabetic retinal disease. Br J Ophthalmol. 2020;106:528–33. https://doi.org/10.1136/bjophthalmol-2020-317322.

    Article  PubMed  Google Scholar 

  96. Li X, Xie J, Zhang L et al. Identifying microvascular and neural parameters related to the severity of diabetic retinopathy using optical coherence tomography angiography. Invest Ophthal vis Sci. 2020;61(5:39):9. https://doi.org/10.1167/iovs.61.5.39.

  97. Lim HB, Shin YI, Lee MW, et al. Ganglion cell - inner plexiform layer damage in diabetic patients: 3-year prospective, longitudinal. Observational Study Sci Rep. 2020;10(1):1470. https://doi.org/10.1038/s41598-020-58465-x.

    Article  CAS  PubMed  Google Scholar 

  98. Nesper P, Roberts P, Onishi A et al, I.O.V.S. Quantifying microvascular abnormalities with increasing severity of diabetic retinopathy using optical coherence tomography angiography. Invest Ophthal vis Sci. 2017;58: BIO307–315. https://doi.org/10.1167/iovs.17-21787.

  99. Dimitrova G, Chihara E, Takahashi H, Amano H, Okazaki K. Quantitative retinal optical coherence tomography angiography in patients with diabetes without diabetic retinopathy. Invest Ophthalmol Vis Sci. 2017;58(1):190–6. https://doi.org/10.1167/iovs.16-20531.

    Article  PubMed  Google Scholar 

  100. Fawzi A. Consensus on optical coherence tomographic angiography nomenclature: do we need to develop and learn a new language. JAMA Ophthalmol. 2017;135(4):377–8. https://doi.org/10.1001/jamaophthalmol.2017.0149.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Burns S, Elsner A, Chui T, et al. In vivo adaptive optics microvascular imaging in diabetic patients without clinically severe diabetic retinopathy. Biomed Opt Express. 2014;5(3):14. https://doi.org/10.1364/BOE.5.000961.

    Article  Google Scholar 

  102. Vujosevic S, Muraca A, Gatti V, et al. Peripapillary microvascular and neural changes in diabetes mellitus: an OCT-angiography study. Invest Ophthalmol Vis Sci. 2018;59(12):5074–81. https://doi.org/10.1167/iovs.18-24891.

    Article  PubMed  Google Scholar 

  103. Zeng Y, Cao D, Yu H, et al. Early retinal neurovascular impairment in patients with diabetes without clinically detectable retinopathy. Br J Ophthalmol. 2019;103(12):1747–52. https://doi.org/10.1136/bjophthalmol-2018-313582.

    Article  PubMed  Google Scholar 

  104. Ashraf M, Sampani I, Rageh A, Silva P, Aielllo L, Sun J. Interaction between the distribution of diabetic retinopathy lesions and the association of optical coherence tomography angiography scans with diabetic retinopathy severity. JAMA Ophthalmol. 2020;138(12):1291–7. https://doi.org/10.1001/jamaophthalmol.2020.4516.

    Article  PubMed  Google Scholar 

  105. Lee M, Lee W, Ryu C, et al. Peripapillary retinal nerve fiber layer and microvasculature in prolonged type 2 diabetes patients without clinical diabetic retinopathy. Invest Ophthal vis Sci. 2021;62(2):9. https://doi.org/10.1167/iovs.62.2.9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Abràmoff MD, Fort PE, Han IC, et al. Approach for a clinically useful comprehensive classification of vascular and neural aspects of diabetic retinal disease. Invest Ophthalmol Vis Sci. 2018;59(1):519–27. https://doi.org/10.1167/iovs.17-21873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sun J, Aiello L, Abramoff M, et al. Editorial: Updating the staging system for diabetic retinal disease. Ophthalmology. 2020. EPub:1–4.https://doi.org/10.1016/j.ophtha.2020.10.008.

  108. Schwartz S, Rachfal A, Corkey B. The time is now for new, lower diabetes diagnostic thresholds. Trends Endocrinol Metab. 2022;33(1):4–7. https://doi.org/10.1016/j.tem.2021.10.007.

    Article  CAS  PubMed  Google Scholar 

  109. Brannick B, Wynn A, Dagogo-Jack S. Prediabetes as a toxic environment for the initiation of microvascular and macrovascular complications. Experimental Biol and Med. 2016;241:1323–31. https://doi.org/10.1177/1535370216654227.

  110. Rashidi A, Ghanbarian A, Azizi F. Are patients who have metabolic syndrome without diabetes at risk for developing chronic kidney disease? Evidence based on data from a large cohort screening population. Clin J Am Soc Nephrol. 2007;2(5):976–83. https://doi.org/10.2215/CJN.01020207.

    Article  CAS  PubMed  Google Scholar 

  111. Sun F, Tao Q, Zhan S. Metabolic syndrome and the development of chronic kidney disease among 118,924 non-diabetic Taiwanese in a retrospective cohort. Nephrology. 2010;15(1):84–92. https://doi.org/10.1111/j.1440-1797.2009.01150.x.

    Article  CAS  PubMed  Google Scholar 

  112. Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86. https://doi.org/10.1056/NEJM199309303291401.

    Article  Google Scholar 

  113. Diabetes Control and Complications Trial Research Group. Hypoglycemia in the diabetes control and complications trial. Diabetes. 1997;46(2):271–86. https://doi.org/10.1056/NEJM199309303291401.

    Article  Google Scholar 

  114. Hirsch I, Brownlee M. Beyond hemoglobin A1c- the need for additional markers of risk for diabetic microvascular complications. JAMA. 2010;303(22):2291–2. https://doi.org/10.1001/jama.2010.785.

    Article  CAS  PubMed  Google Scholar 

  115. De Clerck E, Schouten J, Berendschot T, et al. Macular thinning in prediabetes or type 2 diabetes without diabetic retinopathy: the Maastricht Study. Acta Ophthalmol. 2018;96(2):174–82. https://doi.org/10.1111/aos.13570.

    Article  CAS  PubMed  Google Scholar 

  116. Bouvy WH, Kuijf HJ, Zwanenburg JJ, et al. Utrecht Vascular Cognitive Impairment Study group. Abnormalities of cerebral deep medullary veins on 7 tesla MRI in amnestic mild cognitive impairment and early Alzheimer’s Disease: a pilot study. J Alzheimers Dis. 2017;57:705–10. https://doi.org/10.3233/JAD-160952.

  117. Toth P, Tucsek Z, Sosnowska D, et al. Age-related autoregulatory dysfunction and cerebromicrovascular injury in mice with angiotensin II-induced hypertension. J Cereb Blood Flow Metab. 2013;33:1732–42. https://doi.org/10.1038/jcbfm.2013.143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Toth P, Tucsek Z, Tarantini S, et al. IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice. J Cereb Blood Flow Metab. 2014;34:1887–97. https://doi.org/10.1038/jcbfm.2014.156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chantelau E. Evidence that upregulation of serum IGF-1 concentration can trigger acceleration of diabetic retinopathy. Br J Ophthalmol. 1998;82(7):725–30. https://doi.org/10.1136/bjo.82.7.725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Jorgensen D, Shaaban C, Wiley C, et al. A popultion neuroscience approach to the study of cerebral small vessel disease in midlife and late life: an invited review. Am J Physiol heart Circ Physiol. 2018;314:H1117-1136. https://doi.org/10.1152/ajpheart.00535.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Nguyen J, Nishimura N, Fetcho RN, Iadecola C, Schaffer CB. Occlusion of cortical ascending venules causes blood flow decreases, reversals in flow direction, and vessel dilation in upstream capillaries. J Cereb Blood Flow Metab. 2011;31:2243–54. https://doi.org/10.1038/jcbfm.2011.95.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813–20. https://doi.org/10.1038/414813a.

    Article  CAS  PubMed  Google Scholar 

  123. Brownlee M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes. 2005;54(6):1615–25. https://doi.org/10.2337/diabetes.54.6.1615.

    Article  CAS  PubMed  Google Scholar 

  124. Iliaki E, Poulaki V, Mitsiades N, Mitsiades C, Miller J, Gragoudas E. Role of a4 integrin (CD49d) in the pathogenesis of diabetic retinopathy. Invest Ophthal Vis Sci. 2009;50(10):4898–904. https://doi.org/10.1167/iovs.08-2013.

    Article  PubMed  Google Scholar 

  125. Sonkin P, Kelly L, Sinclair S, Hatchell D. Pentoxifylline increases retinal capillary blood flow velocity in patients with diabetes. Arch Ophthalmol. 1993;111(12):1647–52. https://doi.org/10.1001/archopht.1993.01090120069024.

    Article  CAS  PubMed  Google Scholar 

  126. Joussen AM, Murata T, Tsujikawa A, Kirchhof B, Bursell SE, Adamis AP. Leukocyte-mediated endothelial cell injury and death in the diabetic retina. Am J Pathol. 2001;158(1):147–52. https://doi.org/10.1016/S0002-9440(10)63952-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ejaz S, Chekarova I, Ejaz A, Sohail A, Lim CW. Importance of pericytes and mechanisms of pericyte loss during diabetes retinopathy. Diabetes Obes Metab. 2008;10(1):53–63. https://doi.org/10.1111/j.1463-1326.2007.00795.x.

    Article  CAS  PubMed  Google Scholar 

  128. Montagne A, Nikolakopoulou A, Zhao Z, et al. Pericyte degeneration causes white matter dysfunction in mouse CNS. Nat Med. 2018;24(3):326–37. https://doi.org/10.1038/nm.4482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kohama SG, Rosene DL, Sherman LS. Age-related changes in human and non-human primate white matter: from myelination disturbances to cognitive decline. Age (Dordr). 2012;34:1093–110. https://doi.org/10.1007/s11357-011-9357-7.

    Article  PubMed  Google Scholar 

  130. Luc K, Schramm-Luc A, Guzik TJ, Mikolajczyk TP. Oxidative stress and inflammatory markers in prediabetes and diabetes. J Physiol Pharmacol. 2019;70(6):809–824. https://doi.org/10.26402/jpp.2019.6.01.

  131. Maschirow L, Khalaf K, Al-Aubaidy HA, Jelinek HF. Inflammation, coagulation, endothelial dysfunction and oxidative stress in prediabetes - biomarkers as a possible tool for early disease detection for rural screening. Clin Biochem. 2015;48(9):581–5. https://doi.org/10.1016/j.clinbiochem.2015.02.015.

  132. Grossmann V, Schmitt VH, Zeller T, et al. Profile of the immune and inflammatory response in individuals with prediabetes and type 2 diabetes. Diabetes Care. 2015;38(7):1356–64. https://doi.org/10.2337/dc14-3008.

    Article  CAS  PubMed  Google Scholar 

  133. Spijkerman AMW, Gallet M-A, Tarnowal L, et al. Endothelial dysfunction and low-grade inflammation and the progression of retinopathy in Type 2 diabetes. Diabet Med. 2007;24:969–76. https://doi.org/10.1111/j.1464-5491.2007.02217.x.

    Article  CAS  PubMed  Google Scholar 

  134. Muni R, Kohly R, Lee E, et al. Prospective study of inflammatory biomarkers and risk of diabetic retinopathy in the diabetes control and complications trial. JAMA Ophthalmol. 2013;131(4):514–21.https://doi.org/10.1001/jamaophthalmol.2013.2299.

  135. Vujosevic S, Simó R. Local and systemic inflammatory biomarkers of diabetic retinopathy: An integrative approach. Invest Ophthalmol Vis Sci. 2017;58:68–75. https://doi.org/10.1167/iovs.17-2176.

    Article  Google Scholar 

  136. Skaper S, Facci L, Zusso M, Giusti P. An inflammation-centric view of neurological disease: Beyond the neuron. Front Cell Neurosci. 2018;12:72. https://doi.org/10.3389/fncel.2018.00072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Minaker S, Mason R, Luna G, et al. Changes in aqueous and vitreous inflammatory cytokine levels in diabetic macular oedema: a systematic review and meta-analysis. Acta Ophthalmol. 2021;100(1):e53–70. https://doi.org/10.1111/aos.14891.

    Article  CAS  PubMed  Google Scholar 

  138. Rübsam A, Parikh S, Fort PE. Role of inflammation in diabetic retinopathy. Int J Mol Sci. 2018;19(4):942. https://doi.org/10.3390/ijms19040942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Parsadaniantz S, Goazigo A, Sapienza A, Habas C, Baudouin C. Glaucoma: a degenerative optic neuropathy related to neuroinflammation? Cells. 2020;9(3):535, 1–14. https://doi.org/10.3390/cells9030535.

  140. Ridet JL, Malhotra SK, Privat A, Gage FH. Reactive astrocytes: Cellular and molecular cues to biological function. Trends Neurosci. 1997;20(12):570–7. https://doi.org/10.1016/s0166-2236(97)01139-9.

    Article  CAS  PubMed  Google Scholar 

  141. Soni D, Sagar P, Takkar B. Diabetic retinal neurodegeneration as a form of diabetic retinopathy. Int Ophthalmol. 2021. EPub:1–26.https://doi.org/10.1007/s10792-021-01864-4.

  142. Mysona BA, Shanab AY, Elshaer SL, El-Remessy AB. Nerve growth factor in diabetic retinopathy: beyond neurons. Expert Rev Ophthalmol. 2014;9(2):99–107. https://doi.org/10.1586/17469899.2014.903157.

  143. Lieth, E, LaNoue, KF, Antonetti, DA, Ratz, M. Diabetes reduces glutamate oxidation and glutamine synthesis in the retina. The Penn State Retina Research Group. Exp Eye Res. 2000;70(6):723–30. https://doi.org/10.1006/exer.2000.0840.

  144. Aoun P, Simpkins JW, Agarwal N. Role of PPAR-γ ligands in neuroprotection against glutamate-induced cytotoxicity in retinal ganglion cells. Invest Ophthalmol Vis Sci. 2003;44(7):2999–3004. https://doi.org/10.1167/iovs.02-1060.

    Article  PubMed  Google Scholar 

  145. Li Q, Puro DG. (2002) Diabetes-induced dysfunction of the glutamate transporter in retinal Muller cells. Invest Ophthalmol Vis Sci. 2002;43(9):3109–16 PMID: 12202536.

    PubMed  Google Scholar 

  146. Lieth E, Barber AJ, Xu B, Dice C, Ratz MJ, Tanase D, Strother JM. Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy Penn State Retina Research Group. Diabetes. 1998;47(5):815–20. https://doi.org/10.2337/diabetes.47.5.815.

    Article  CAS  PubMed  Google Scholar 

  147. Harada C, Harada T, Quah HMA, et al. Potential role of glial cell line-derived neurotrophic factor receptors in Müller glial cells during light-induced retinal degeneration. Neuroscience. 2003;122(1):229–35. https://doi.org/10.1016/S0306-4522(03)00599-2.

    Article  CAS  PubMed  Google Scholar 

  148. Lynch MA. The multifaceted profile of activated microglia. Mol Neurobiol. 2009;40(2):139–56. https://doi.org/10.1007/s12035-009-8077-9.

    Article  CAS  PubMed  Google Scholar 

  149. Dong N, Xu B, Wang B et al. Study of 27 aqueous humor cytokines in patients with type 2 diabetes with or without retinopathy. Mol Vis. 2013;19:1734–46. PMC3733907.

    Google Scholar 

  150. Bringmann A, Pannicke T, Grosche J, et al. Müller cells in the healthy and diseased retina. Prog Retin Eye Res. 2006;25(4):397–424. https://doi.org/10.1016/j.preteyeres.2006.05.003.

    Article  CAS  PubMed  Google Scholar 

  151. Vujosevic S, Micera A, Bini S, Berton M, Esposito G, Midena E. Aqueous humor biomarkers of Müller cell activation in diabetic eyes. Invest Ophthalmol Vis Sci. 2015;56(6):3913–8. https://doi.org/10.1167/iovs.15-16554.

    Article  CAS  PubMed  Google Scholar 

  152. Midena E, Micera A, Frizziero L, Pilotto E, Esposito G, Bini S. Sub-threshold micropulse laser treatment reduces inflammatory biomarkers in aqueous humour of diabetic patients with macular edema. Sci Rep. 2019;9(1):10034. https://doi.org/10.1038/s41598-019-46515-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Midena E, Torresin T, Velotta E, Pilotto E, Parrozzani R, Frizziero L. OCT hyperreflective retinal foci in diabetic retinopathy: a semi-automatic detection comparative study. Front Immunol. 2021;12: 613051. https://doi.org/10.3389/fimmu.2021.613051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Frizziero L, Calciati A, Midena G, Torresin T, Parrozzani R, Pilotto E, Midena E. Subthreshold micropulse laser modulates retinal neuroinflammatory biomarkers in diabetic macular edema. J Clin Med. 2021;10(14):3134. https://doi.org/10.3390/jcm10143134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yun JH. Interleukin-1β induces pericyte apoptosis via the NF-κB pathway in diabetic retinopathy. Biochem Biophys Res Commun. 2021;546:46–53. https://doi.org/10.1016/j.bbrc.2021.01.108.

    Article  CAS  PubMed  Google Scholar 

  156. Hauck SM, Kinkl N, Deeg CA, Swiatek-de Lange M, Schöffmann S, Ueffing M. GDNF family ligands trigger indirect neuroprotective signaling in retinal glial cells. Mol Cell Biol 2006;26:2746–57. https://doi.org/10.1128/MCB.26.7.2746-2757.2006.

  157. Gonzalez H, Pacheco R. T-cell-mediated regulation of neuroinflammation involved in neurodegenerative diseases. J Neuroinflammation. 2014;11:201. https://doi.org/10.1186/s12974-014-0201-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Appel SH. CD4+ T cells mediate cytotoxicity in neurodegenerative diseases. J Clin Invest. 2009;119(1):13–5. https://doi.org/10.1172/JCI38096.

    Article  CAS  PubMed  Google Scholar 

  159. Early Treatment Diabetic Retinopathy Study Research Group. Treatment techniques and clinical guidelines for photocoagulation of diabetic macular edema. Early treatment diabetic retinopathy study report number 2. Ophthalmology. 1987;94:761–74. https://doi.org/10.1016/s0161-6420(87)33527-4.

    Article  Google Scholar 

  160. United Kingdom Prospective Diabetes Study Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2. Lancet. 1998;352(9131):837–53 PMID: 9742976.

    Article  Google Scholar 

  161. Lachin JM, Genuth S, Nathan DM, Zinman B, Rutledge BN. Effect of glycemic exposure on the risk of microvascular complications in the diabetes control and complications trial revisited. Diabetes. 2008;57(4):995–1001. https://doi.org/10.2337/db07-1618.

    Article  CAS  PubMed  Google Scholar 

  162. Esser N, Paquot N, Sheen AJ. Anti-inflammatory agents to treat or prevent type 2 diabetes, metabolic syndrome and cardiovascular disease. Expert Opin Investig Drugs. 2015;24(3):283–307. https://doi.org/10.1517/13543784.2015.974804.

    Article  CAS  PubMed  Google Scholar 

  163. Fort P, Losiewicz M, Reiter C et al. Differential roles of hyper glycemia and hypoinsulinemia in diabetes induced retinal cell death: Evidence for retinal insulin resistance. PLOS One. 2011;6(10):e26498, 1–12. https://doi.org/10.1371/journal.pone.0026498.

  164. Chew EY, Ambrosius WT, Davis MD, et al. ACCORD Study Group. Effects of medical therapies on retinopathy progression in type 2 diabetes. N Engl J Med. 2010;363:233–44. https://doi.org/10.1056/NEJMoa1001288.

  165. Chakravarthy H, Devanathan V. Molecular mechanisms mediating diabetic retinal neurodegeneration: potential research avenues and therapeutic targets. J Mol Neurosci. 2018;66(3):445–61. https://doi.org/10.1007/s12031-018-1188-x.

    Article  CAS  PubMed  Google Scholar 

  166. Teodoro JS, Nunes S, Rolo AP, Reis F, Palmeira CM. Therapeutic options targeting oxidative stress, mitochondrial dysfunction and inflammation to hinder the progression of vascular complications of diabetes. Front Physiol. 2019;9:1857. https://doi.org/10.3389/fphys.2018.01857.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Pillar S, Moisseiev E, Sokolovska J, Grzybowski A. Recent developments in diabetic retinal neurodegeneration: a literature review. J Diabetes Res. 2020;2020:1–13. https://doi.org/10.1155/2020/5728674.

    Article  CAS  Google Scholar 

  168. Chalke S, Kale P. Combinational approaches targeting neurodegeneration, oxidative stress, and inflammation in the treatment of diabetic retinopathy. Curr Drug Targets. 2021;22:1–15. https://doi.org/10.2174/1389450122666210319113136.

    Article  CAS  Google Scholar 

  169. Kwong JM, Hoang C, Torrevillas RM, et al. Bis(zinc-dipicolylamine), Zn-DPA, a new marker for tracking apoptotic retinal ganglion cells. Invest Ophthal Vis Sci. 2014;55(8):4913–21. https://doi.org/10.1167/iovs.13-13346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Mazzoni F, Muller C, DeAssis J, Leevy W, Finnemann S. Non-invasive in vivo fluorescence imaging of apoptotic retinal photoreceptors. Nat Sci Rep. 2019;9(1):1590. https://doi.org/10.1038/s41598-018-38363-z.

    Article  CAS  Google Scholar 

  171. Rofagha S. Minimizing risks to patients by improving presentation of clinical trial results in geographic atrophy trials. Ophthalmology Retina. 2022;6(5):337–8. https://doi.org/10.1016/j.oret.2021.12.018.

    Article  PubMed  Google Scholar 

  172. Akl EA, Briel M, You JJ, et al. Potential impact on estimated treatment effects of information lost to follow-up in randomized controlled trials (LOST-IT): Systematic review. BMJ. 2012;344: e2809. https://doi.org/10.1136/bmj.e2809.

    Article  PubMed  Google Scholar 

  173. Diabetic Retinopathy Study Research Group. Photocoagulation treatment of proliferative diabetic retinopathy. Clinical application of Diabetic Retinopathy Study (DRS) findings, DRS Report Number 8. Ophthalmology. 1981;88:583–600. https://doi.org/10.1016/S0161-6420(81)34978-1.

    Article  Google Scholar 

  174. Fong DS, Aiello L, Gardner, TW, King, GL, Blankenship, G, Cavallerano, JD, Ferris, FL. 3rd, Klein, R, American Diabetes Association. Diabetic retinopathy. Diabetes Care. 2003; Jan;26 Suppl 1:S99-S102. https://doi.org/10.2337/diacare.26.2007.s99.

  175. Ferris FL, Podgor, MJ, Davis, MD. Macular edema in Diabetic Retinopathy Study patients. Diabetic retinopathy study report number 12. Ophthalmology. 1987;94(7):754–60. https://doi.org/10.1016/s0161-6420(87)33526-2.

  176. Nonaka A, Kiryu J, Tsujikawa A, et al. Inflammatory response after scatter laser photocoagulation in nonphotocoagulated retina. Invest Ophthalmol Vis Sci. 2002;43(4):1204–9 PMID: 11923267.

    PubMed  Google Scholar 

  177. Huang T, Li X, Xie J, et al. Long-term retinal neurovascular and choroidal changes after panretinal photocoagulation in diabetic retinopathy. Frontiers Med. 2021;8:1–11. https://doi.org/10.3389/fmed.2021.752538.

    Article  CAS  Google Scholar 

  178. Schatz H, Madeira D, McDonald HR, Johnson RN. Progressive enlargement of laser scars following grid laser photocoagulation for diffuse diabetic macular edema. Arch Ophthalmol. 1991;109(11):1549–51. https://doi.org/10.1001/archopht.1991.01080110085041.

    Article  CAS  PubMed  Google Scholar 

  179. Hudson C, Flanagan JG, Turner GS, Chen HC, Young LB, McLeod D. Influence of laser photocoagulation for clinically significant diabetic macular edema (DMO) on short wave-length and conventional automated perimetry. Diabetologia. 1998;41(11):1283–92. https://doi.org/10.1007/s001250051066.

    Article  CAS  PubMed  Google Scholar 

  180. Striph GG, Hart WM Jr., Olk RJ. Modified grid laser photo- coagulation for diabetic macular edema. The effect on the central visual field. Ophthalmology. 1988;95(12):1673–9. https://doi.org/10.1016/s0161-6420(88)32957-x.

  181. Luttrull J, Spink C. Serial optical coherence tomography of subthreshold diode laser micropulse photocoagulation for diabetic macular edema. Ophthalmic Surg Lasers Imaging. 2006;37(5):370–7. https://doi.org/10.3928/15428877-20060901-03.

    Article  PubMed  Google Scholar 

  182. Luttrull J, Sinclair S. Safety of transfoveal subthreshold diode micropulse laser for fovea-involving diabetic macular edema in eyes with good visual acuity. Retina. 2014;34(10):2010–20. https://doi.org/10.1097/IAE.0000000000000177.

    Article  PubMed  Google Scholar 

  183. Bughi S, Shaw S, Bessman A. Laser damage to retinal ganglion cells. The effect on circadian rhythm. J Diabetes Complications. 2006;20(3):184–7. https://doi.org/10.1016/j.jdiacomp.2005.06.006.

  184. Glassman A, Baker C, Beaulieu W, et al. DRCR Retina Network. (2020). Assessment of the DRCR Retina Network approach to management with initial observation for eyes with center-involved diabetic macular edema and good visual acuity: A secondary analysis of a randomized clinical trial. JAMA Ophthalmol, 138(4):341–9https://doi.org/10.1001/jamaophthalmol.2019.6035.

  185. Campochiaro P, Marcus D, Awh C, et al. The port delivery system with ranibizumab for neovascular age-related macular degeneration results from the randomized phase 2 Ladder clinical trial. Ophthalmology. 2019;126(8):1141–54. https://doi.org/10.1016/j.ophtha.2019.03.036.

    Article  PubMed  Google Scholar 

  186. Vujosevic S, Bottega E, Casciano M, Pilotto E, Convento E, Midena E. Microperimetry and fundus autofluorescence in diabetic macular edema: Subthreshold micropulse diode laser versus modified early treatment diabetic retinopathy study laser photocoagulation. Retina. 2010;30(6):908–16. https://doi.org/10.1097/IAE.0b013e3181c96986.

    Article  PubMed  Google Scholar 

  187. Luttrull JK, Musch DC, Mainster MA. Subthreshold diode micropulse photocoagulation for the treatment of clinically significant diabetic macular oedema. Br J Ophthalmol. 2005;89(1):74–80. https://doi.org/10.1136/bjo.2004.051540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Luttrull J, Spink C. Reply letter to D. Kuman et al re Pan-retinal subthreshold laser for proliferative diabetic retinopathy. Eye. 2009;23(11):2123. https://doi.org/10.1038/eye.2008.416.

  189. Figueira J, Khan J, Nunes S, et al. Prospective randomized controlled trial comparing sub-threshold micropulse diode laser photo-coagulation and conventional green laser for clinically significant diabetic macular oedema. Br J Ophthalmol. 2009;93(10):1341–4. https://doi.org/10.1136/bjo.2008.146712.

    Article  CAS  PubMed  Google Scholar 

  190. Luttrull J, Dorin G. Subthreshold diode micropulse laser photocoagulation (SDM) as invisible retinal phototherapy for diabetic macular edema: a review. Curr Diabetes Rev. 2012;8(4):274–84. https://doi.org/10.2174/157339912800840523.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Luttrull JK, Sramek C, Palanker D, Spink C, Musch D. Long-term safety, high-resolution imaging, and tissue temperature modeling of subvisible diode micropulse photocoagulation for retinovascular macular edema. Retina. 2011;32(2):375–86. https://doi.org/10.1097/IAE.0b013e3182206f6c.

    Article  Google Scholar 

  192. Lavinsky D, Cardillo JA, Melo LA Jr, Dare AR, Farah ME, Belfort R. Randomized clinical trial evaluating mETDRS versus normal or high-density micropulse photocoagulation for diabetic macular edema. Invest Ophthalmol Vis Sci. 2011;52(7):4314–23. https://doi.org/10.1167/iovs.10-6828.

    Article  PubMed  Google Scholar 

  193. Luttrull JK, Kent D. Modern retinal laser for neuroprotection in open-angle glaucoma. In: Samples JF, Ahmed I, editors. New Concepts in Glaucoma Surgery Series (pp. 1–20). Amsterdam, the Netherlands: Kugler; 2019

    Google Scholar 

  194. Luttrull, JK, Margolis, BWL. Functionally guided retinal protective therapy as prophylaxis for age-related and inherited retinal degenerations. A pilot study. Invest Ophthalmol Vis Sci. 2016;7(1):265–75. https://doi.org/10.1167/iovs.15-18163.

  195. Hall J, Matos S, Gold S, Severino LS. The paradox of sustainable innovation: The ‘Eroom’ effect (Moore's law backwards). J Clean Prod. 2018;172: 3487–3497. https://doi.org/10.1016/j.jclepro.2017.07.162. ISSN 0959-6526.

  196. Luttrull JK, Chang DB, Margolis BWL, Dorin G, Luttrull DK. Laser re-sensitization of medically unresponsive neovascular age-related macular degeneration: efficacy and implications. Retina. 2015;35(6):1184–94. https://doi.org/10.1097/IAE.0000000000000458.

    Article  CAS  PubMed  Google Scholar 

  197. Schröder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem. 2005;74:739–89. https://doi.org/10.1146/annurev.biochem.73.011303.074134.

    Article  CAS  PubMed  Google Scholar 

  198. Wu MY, Yiang GT, Lai TT, Li CJ. The oxidative stress and mitochondrial dysfunction during the pathogenesis of diabetic retinopathy. Oxid Med Cell Longev. 2018;2018:3420187. https://doi.org/10.1155/2018/3420187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Terrab L, Wipf P. Hsp70 and the Unfolded Protein Response as a Challenging Drug Target and an Inspiration for Probe Molecule Development. ACS Med Chem Lett. 2020;11(3):232–6. https://doi.org/10.1021/acsmedchemlett.9b00583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Melo EP, Konno T, Farace I, Awadelkareem MA, Skov LR, Teodoro F, Sancho TP, Paton AW, Paton JC, Fares M, Paulo PMR, Zhang X, Avezov E. Stress-induced protein disaggregation in the endoplasmic reticulum catalysed by BiP. Nat Commun. 2022;13(1):2501. https://doi.org/10.1038/s41467-022-30238-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Cai W, Yang T, Liu H, Han L, Zhang K, Hu X, Chen J. Peroxisome proliferator-activated receptor γ (PPARγ): A master gatekeeper in CNS injury and repair. Prog Neurobiol. 2018;163–164:27–58. https://doi.org/10.1016/j.pneurobio.2017.10.002.

    Article  CAS  PubMed  Google Scholar 

  202. Meusser B, Hirsch C, Jarosch E, Sommer T. ERAD: the long road to destruction. Nat Cell Biol. 2005;8:766–72. https://doi.org/10.1038/ncb0805-766.

    Article  CAS  Google Scholar 

  203. Richter K, Haslbeck M, Buchner J. The heat shock response: life on the verge of death. Mol Cell. 2010;40(2):253–66. https://doi.org/10.1016/j.molcel.2010.10.006.

    Article  CAS  PubMed  Google Scholar 

  204. Vitale M, Bakunts A, Orsi A, et al. Inadequate BiP availability defines endoplasmic reticulum stress. ELife. 2019;8: e41168. https://doi.org/10.7554/eLife.41168.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Lu RC, Tan MS, Wang H, Xie AM, Yu JT, Tan L. Heat shock protein 70 in Alzheimer’ disease. Biomed Res Int. 2014;2014: 435203. https://doi.org/10.1155/2014/435203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Srivastava K, Narang R, Bhatia J, Saluga D. Expression of heat shock protein 70 gene and its correlation with essential hypertension. PLoS ONE. 2016;11(3): e0151060. https://doi.org/10.1371/journal.pone.0151060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Stetler RA, Gan Y, Zhang W, Liou AK, Gao Y, Cao G, Chen J. Heat shock proteins: cellular and molecular mechanisms in the central nervous system. Progress Neurobiol. 2010;92(2):184–211. https://doi.org/10.1016/j.pneurobio.2010.05.002.

    Article  CAS  Google Scholar 

  208. Burton DGA, Faragher RGA. Obesity and type-2 diabetes as inducers of premature cellular senescence and ageing. Biogerontology. 2018;19(6):447–59. https://doi.org/10.1007/s10522-018-9763-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Baldwin RL. Review: Energetics of Protein Folding. J Mol Biol. 2007;371(2):283–301. https://doi.org/10.1016/j.jmb.2007.05.078.

    Article  CAS  PubMed  Google Scholar 

  210. Beckham JT. The role of heat shock protein 70 in laser irradiation and thermal preconditioning. PhD dissertation, Vanderbilt University Press. 2008.

    Google Scholar 

  211. Chang D, Luttrull J. Comparison of subthreshold 577 and 810nm micropulse laser effects on heat-shock protein activation kinetics: Implications for treatment efficacy and safety. Trans Vis Sci Technol. 2020;9(5):23. https://doi.org/10.1167/tvst.9.5.23.

    Article  Google Scholar 

  212. Hattenbach LO, Beck KF, Pfeilschifter J, Koch F, Ohrloff C, Schake W. Pigment epithelium- derived factor is up regulated in photocoagulated human retinal pigment epithelial cells. Ophthalmic Res. 2005;37(6):341–6. https://doi.org/10.1159/000088263.

    Article  PubMed  Google Scholar 

  213. Glass C, Saijo K, Winner B, Marchetto M, Gage F. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010;140(6):918–34. https://doi.org/10.1016/j.cell.2010.02.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Sramek C, Mackanos M, Spitler R, Leung LS, Nomoto H, Contag CH, Palanker D. Non-damaging retinal phototherapy: dynamic range of heat shock protein expression. Invest Ophthalmol Vis Sci. 2011;52(3):1780–7. https://doi.org/10.1167/iovs.10-5917.

    Article  CAS  PubMed  Google Scholar 

  215. Kern T, Barber A. Retinal ganglion cells in diabetes. J Physiol. 2008;586(18):4401–8. https://doi.org/10.1113/jphysiol.2008.156695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. De Cillà S, Vezzola D, Farruggio S, et al. The subthreshold micropulse laser treatment of the retina restores the oxidant/antioxidant balance and counteracts programmed forms of cell death in the mice eyes. Acta Ophthalmol. 2019;97(4):559–67. https://doi.org/10.1111/aos.13995.

    Article  CAS  Google Scholar 

  217. Frizziero L, Calciati A, Torresin T, Midena G, Parrozzani R, Pilotto E, Midena E. Diabetic macular edema treated with 577-nm subthreshold micropulse laser: a real-life. Long-Term Study J Pers Med. 2021;11(5):405. https://doi.org/10.3390/jpm11050405.

    Article  PubMed  Google Scholar 

  218. Gao X, Xing D. Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci. 2009;16(1):4. https://doi.org/10.1186/1423-0127-16-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Khetarpal S, Kaw U, Dover JS, Arndt KA. Laser advances in the treatment of burn and traumatic scars. Semin Cutan Med Surg. 2017;36(4):185–91. https://doi.org/10.12788/j.sder.2017.030.

  220. Keunen, J, Battaglia-Parodi, M, Vujosevic, S, Luttrull, J. International retinal laser society guidelines for subthreshold laser treatment. Transl Vis Sci Technol. 2020;9(9):15. https://doi.org/10.1167/tvst.9.9.15.

  221. Dorin G. Subthreshold and micropulse diode laser photocoagulation. Semin Ophthalmol. 2003;18(3):147–53. https://doi.org/10.1076/soph.18.3.147.29812.

    Article  PubMed  Google Scholar 

  222. Chhablani J, Roh YJ, Jobling AI, et al. Restorative retinal laser therapy: present state and future directions. Surv Ophthalmol. 2018;63(3):307–28. https://doi.org/10.1016/j.survophthal.2017.09.008.

    Article  PubMed  Google Scholar 

  223. Glassman AR, Wells JA 3RD, Josic K, et al, for the Diabetic Retinopathy Clinical Research Network. Five-Year Outcomes After Initial Aflibercept, Bevacizumab, or Ranibizumab Treatment for Diabetic Macular Edema (Protocol T Extension Study). Ophthalmology. 2020;127(9):1201–10. https://doi.org/10.1016/j.ophtha.2020.03.021.

  224. Amoaku WM, Ghanchi F, Bailey C, et al. Diabetic retinopathy and diabetic macular oedema pathways and management: UK Consensus Working Group. Eye (Lond). 2020;34(Suppl 1):1–51. https://doi.org/10.1038/s41433-020-0961-6.

    Article  PubMed  Google Scholar 

  225. Luttrull JK. Laser is the first-choice treatment for diabetic retinopathy. Amsterdam Retina Debate. 2017. Annual meeting of the European Society of Retina Specialists (Euretina); Sept 8, Barcelona, Spain.

    Google Scholar 

  226. Laursen ML, Moeller F, Sander B, Sjoelie AK. Subthreshold diode micropulse laser treatment in diabetic macular edema. Br J Ophthalmol. 2004;88(9):1173–9. https://doi.org/10.1136/bjo.2003.040949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Brader HS, Young LH. Subthreshold diode micropulse laser: A review. Semin Ophthalmol. 2016;31(1–2):30–9. https://doi.org/10.3109/08820538.2015.1114837.

    Article  PubMed  Google Scholar 

  228. Chen DY, Chen YM, Hsieh TY, Hsieh CW, Lin CC, Lan JL. Significant effects of biologic therapy on lipid profiles and insulin resistance in patients with rheumatoid arthritis. Arthritis Res Ther. 2015;17(1):52. https://doi.org/10.1186/s13075-015-0559-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Scholz P, Altay L, Fauser S. A Review of subthreshold micropulse laser for treatment of macular disorders. Adv Ther. 2017;34(7):1528–55. https://doi.org/10.1007/s12325-017-0559-y.

    Article  PubMed  PubMed Central  Google Scholar 

  230. Sivaprasad S, Sandhu R, Tandon A, Sayed-Ahmed K, McHugh DA. Subthreshold micropulse diode laser photocoagulation for clinically significant diabetic macular oedema: a three-year follow up. Clin Exp Ophthalmol. 2007;35(7):640–4. https://doi.org/10.1111/j.1442-9071.2007.01566.x.

    Article  PubMed  Google Scholar 

  231. Sivaprasad S, Dorin G. Subthreshold diode laser micropulse photocoagulation for the treatment of diabetic macular edema. Expert Rev Med Devices. 2012;9(2):189–97. https://doi.org/10.1586/erd.12.1.

    Article  PubMed  Google Scholar 

  232. Jorge EC, Jorge EN, Botelho M, Farat JG, Virgili G, El Dib R. Monotherapy laser photocoagulation for diabetic macular oedema. Cochrane Database Syst Rev. 2018;10(10):CD010859. https://doi.org/10.1002/14651858.CD010859.pub2.

  233. Luttrull JK, Musch D, Spink C. Subthreshold diode micropulse panretinal photocoagulation for proliferative diabetic retinopathy. Eye (Lond). 2008;22(5):607–12. https://doi.org/10.1038/sj.eye.6702725.

    Article  CAS  PubMed  Google Scholar 

  234. Patel D, Patel SN, Chaudhary V, Garg SJ. Complications of intravitreal injections: 2022. Curr Opin Ophthalmol. 2022;33(3):137–46. https://doi.org/10.1097/ICU.0000000000000850.

    Article  PubMed  Google Scholar 

  235. Vujosevic S, Gatti V, Muraca A, et al. Optical coherence tomography angiography changes after subthreshold micropulse yellow laser in diabetic macular edema. Retina. 2020;40(2):312–21. https://doi.org/10.1097/IAE.0000000000002383.

    Article  PubMed  Google Scholar 

  236. Vujosevic S, Toma C, Villani E, et al. Subthreshold micropulse laser in diabetic macular edema: 1-Year improvement in OCT/OCT-Angiography biomarkers. Transl Vis Sci Technol. 2020;9(10):31. https://doi.org/10.1167/tvst.9.10.31.

    Article  PubMed  PubMed Central  Google Scholar 

  237. Jhingan M, Goud A, Peguda HK, Khodani M, Luttrull JK, Chhablani J. Subthreshold microsecond laser for proliferative diabetic retinopathy: a randomized pilot study. Clin Ophthalmol. 2018;15(12):141–5. https://doi.org/10.2147/OPTH.S143206.

    Article  Google Scholar 

  238. Marcus D, Silva P, Liu D, & et al. DRCR Retina Network. Association of predominantly peripheral lesions on ultra-widefield imaging and the risk of diabetic retinopathy worsening over time. JAMA Ophthalmol. 2022. Epub ahead of print.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen H. Sinclair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sinclair, S.H. (2023). Diabetes Mellitus Associated Progressive Neurovascular Retinal Injury. In: Grzybowski, A., Luttrull, J.K., Kozak, I. (eds) Retina Lasers in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-031-25779-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25779-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25778-0

  • Online ISBN: 978-3-031-25779-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics