Skip to main content

Multi-Phase Shear Thickening Fluid

  • Chapter
  • First Online:
Shear Thickening Fluid

Abstract

Multi-phase shear thickening fluids (STFs) are mixture of single-phase STFs and specific additives that allow the rheological properties of STFs to be modified for use in a specific application. This chapter presents the rheological behavior of multi-phase STFs and their advantages and disadvantages. To understand the effect of different additives on the rheological behavior of multi-phase STFs, the mechanism of interaction of additives with STF is reported. The main factors affecting the rheological behavior of multi-phase STF are also presented. Generally, the additives depending on their shape, aspect ratio, weight fraction, surface chemistry etc., are responsible for the enhanced shear thickening behavior of multi-phase STF. Finally, some directions for new developments and future work are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

STF:

Shear thickening fluid

EG:

Ethylene glycol

PMMA:

Poly(methyl methacrylate)

PEO:

Poly(ethylene oxide)

PEG:

Polyethylene glycol

AF:

Aramid fiber

CNTs:

Carbon nanotubes

GO:

Graphene oxide

GNs:

Graphene nanoplatelets

UHMWPE:

Ultra-high molecular weight polyethylene

MWCNTs:

Multi-walled carbon nanotubes

FTIR:

Fourier transform infrared spectroscopy

CNFs:

Cellulose nanofibers

ODT:

Order-disorder transition

SiC:

Silicon carbide

PDA:

Polydopamine

PS–AA:

Poly(styrene–acrylic acid)

ZIF-8:

Zeolitic imidazolate framework-8

Al2O3:

Aluminum oxide

ZrO2:

Zirconium dioxide

Nd2O3:

Neodymium oxide

References

  1. M. Hasanzadeh, V. Mottaghitalab, The role of shear-thickening fluids (STFs) in ballistic and stab-resistance improvement of flexible armor. J. Mater. Eng. Perform. 23(4), 1182–1196 (2014)

    Article  CAS  Google Scholar 

  2. M. Hasanzadeh, V. Mottaghitalab, M. Rezaei, Rheological and viscoelastic behavior of concentrated colloidal suspensions of silica nanoparticles: A response surface methodology approach. Adv. Powder Technol. 26(6), 1570–1577 (2015)

    Article  CAS  Google Scholar 

  3. K. Yu, H. Cao, K. Qian, L. Jiang, H. Li, Synthesis and stab resistance of shear thickening fluid (STF) impregnated glass fabric composites. Fibres Text East Eur. 95(6), 126–128 (2012)

    Google Scholar 

  4. A. Srivastava, A. Majumdar, B.S. Butola, Improving the impact resistance performance of Kevlar fabrics using silica based shear thickening fluid. Mater. Sci. Eng. A 529(1), 224–229 (2011)

    Article  CAS  Google Scholar 

  5. E.V. Lomakin, P.A. Mossakovsky, A.M. Bragov, A.K. Lomunov, A.Y. Konstantinov, M.E. Kolotnikov, et al., Investigation of impact resistance of multilayered woven composite barrier impregnated with the shear thickening fluid. Arch. Appl. Mech. 81(12), 2007–2020 (2011. [Internet]. 2011 Apr 11 [cited 2022 Aug 9]). https://doi.org/10.1007/s00419-011-0533-0

    Article  Google Scholar 

  6. Y.S. Lee, E.D. Wetzel, N.J. Wagner, The ballistic impact characteristics of Kevlar® woven fabrics impregnated with a colloidal shear thickening fluid. J. Mater. Sci. 38(13), 2825–2833 (2003. 3813 [Internet]. 2003 Jul 1 [cited 2022 Aug 9]). https://doi.org/10.1023/A:1024424200221

    Article  CAS  Google Scholar 

  7. T.A. Hassan, V.K. Rangari, S. Jeelani, Synthesis, processing and characterization of shear thickening fluid (STF) impregnated fabric composites. Mater. Sci. Eng. A 527(12), 2892–2899 (2010)

    Article  Google Scholar 

  8. L.L. Sun, D.S. Xiong, C.Y. Xu, Application of shear thickening fluid in ultra high molecular weight polyethylene fabric. J. Appl. Polym. Sci. 129(4), 1922–1928 (2013. [Internet] [cited 2022 Aug 9]). https://doi.org/10.1002/app.38844

    Article  CAS  Google Scholar 

  9. S. Gürgen, M.A. Sofuoǧlu, M.C. Kuşhan, Rheological compatibility of multi-phase shear thickening fluid with a phenomenological model. Smart Mater. Struct. 28(3), 035027 (2019)

    Article  Google Scholar 

  10. S. Gürgen, M.C. Kuşhan, W. Li, Shear thickening fluids in protective applications: A review. Prog. Polym. Sci. 75, 48–72. [Internet] (2017). https://doi.org/10.1016/j.progpolymsci.2017.07.003

    Article  CAS  Google Scholar 

  11. W.H. Boersma, P.J.M. Baets, J. Laven, H.N. Stein, Time-dependent behavior and wall slip in concentrated shear thickening dispersions. J. Rheol. (N Y N Y) 35(6), 1093 (1998. [cited 2022 Aug 9], [Internet]). https://doi.org/10.1122/1.550167

    Article  Google Scholar 

  12. M.J. Decker, C.J. Halbach, C.H. Nam, N.J. Wagner, E.D. Wetzel, Stab resistance of shear thickening fluid (STF)-treated fabrics. Compos. Sci. Technol. 67(3–4), 565–578 (2007)

    Article  CAS  Google Scholar 

  13. D.P. Kalman, J.B. Schein, J.M. Houghton, C.H.N. Laufer, E.D. Wetzel, N.J. Wagner, Polymer dispersion based shear thickening fluid-fabrics for protective applications. Int. SAMPE Symp. Exhib., 52 (2007)

    Google Scholar 

  14. S.R. Raghavan, S.A. Khan, Shear-thickening response of Fumed silica suspensions under steady and oscillatory shear. J. Colloid Interface Sci. 185(1), 57–67 (1997)

    Article  CAS  Google Scholar 

  15. H.A. Barnes, Shear-thickening (“dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids. J. Rheol. (N Y N Y) 33(2), 329 (2000. [Internet, cited 2022 Aug 9]). https://doi.org/10.1122/1.550017

    Article  Google Scholar 

  16. T.A. Hassan, V.K. Rangari, S. Jeelani, Sonochemical synthesis and rheological properties of shear thickening silica dispersions. Ultrason. Sonochem. 17(5), 947–952. [Internet] (2010). https://doi.org/10.1016/j.ultsonch.2010.02.001

    Article  CAS  Google Scholar 

  17. K. Yu, H. Cao, K. Qian, X. Sha, Y. Chen, Shear-thickening behavior of modified silica nanoparticles in polyethylene glycol. J. Nanopart. Res. 14(3), 1–9 (2012. [Internet, cited 2022 Aug 9]). https://doi.org/10.1007/s11051-012-0747-2

    Article  CAS  Google Scholar 

  18. Q.M. Wu, J.M. Ruan, B.Y. Huang, Z.C. Zhou, J.P. Zou, Rheological behavior of fumed silica suspension in polyethylene glycol. J. Cent. S. Univ. Technol. 13(1), 1–5 (2006. [Internet, cited 2022 Aug 9]). https://doi.org/10.1007/s11771-006-0096-3

    Article  Google Scholar 

  19. X.Z. Zhang, W.H. Li, X.L. Gong, The rheology of shear thickening fluid (STF) and the dynamic performance of an STF-filleddamper. Smart Mater. Struct. 17(3), 035027 (2008., [Internet, cited 2022 Aug 9]). https://doi.org/10.1088/0964-1726/17/3/035027

    Article  Google Scholar 

  20. T.J. Kang, C.Y. Kim, K.H. Hong, Rheological behavior of concentrated silica suspension and its application to soft armor. J. Appl. Polym. Sci. 124(2), 1534–1541 (2012. [Internet, cited 2022 Aug 9]). https://doi.org/10.1002/app.34843

    Article  CAS  Google Scholar 

  21. D.P. Kalman, R.L. Merrill, N.J. Wagner, E.D. Wetzel, Effect of particle hardness on the penetration behavior of fabrics intercalated with dry particles and concentrated particle-fluid suspensions. ACS Appl. Mater. Interfaces 1(11), 2602–2612 (2009. [Internet, cited 2022 Aug 9]). https://doi.org/10.1021/am900516w

    Article  CAS  Google Scholar 

  22. B.W. Lee, I.J. Kim, C.G. Kim, The influence of the particle size of silica on the ballistic performance of fabrics impregnated with silica colloidal suspension. J. Compos. Mater. 43(23), 2679–2698 (2009. [Internet, cited 2022 Aug 9]). https://doi.org/10.1177/0021998309345292

    Article  CAS  Google Scholar 

  23. A. Majumdar, B.S. Butola, A. Srivastava, Optimal designing of soft body armour materials using shear thickening fluid. Mater. Des. 1(46), 191–198 (2013)

    Article  Google Scholar 

  24. Houghton JM, Schiffman BA, Kalman DP, Wetzel ED, Wagner NJ. Hypodermic needle puncture of shear thickening fluid (STF)-treated fabrics. Int SAMPE Symp Exhib. 2007; 52 (October)

    Google Scholar 

  25. Y.S. Lee, N.J. Wagner, Rheological properties and small-angle neutron scattering of a shear thickening, nanoparticle dispersion at high shear rates. Ind. Eng. Chem. Res. 45(21), 7015–7024 (2006. [Internet, cited 2022 Aug 9]). https://doi.org/10.1021/ie0512690

    Article  CAS  Google Scholar 

  26. M. Takeda, T. Matsunaga, T. Nishida, H. Endo, T. Takahashi, M. Shibayama, Rheo-SANS studies on shear thickening in clay-poly(ethylene oxide) mixed solutions. Macromolecules 43(18), 7793–7799 (2010. [Internet, cited 2022 Aug 9]). https://doi.org/10.1021/ma101319j

    Article  CAS  Google Scholar 

  27. Y. Wu, S. Cao, S. Xuan, M. Sang, L. Bai, S. Wang, et al., High performance zeolitic imidazolate framework-8 (ZIF-8) based suspension: Improving the shear thickening effect by controlling the morphological particle-particle interaction. Adv. Powder Technol. 31(1), 70–77 (2020)

    Article  CAS  Google Scholar 

  28. M. Liu, W. Jiang, Q. Chen, S. Wang, Y. Mao, X. Gong, et al., A facile one-step method to synthesize SiO2@polydopamine core–shell nanospheres for shear thickening fluid. RSC Adv. 6(35), 29279–29287 (2016)

    Article  CAS  Google Scholar 

  29. W. Jiang, F. Ye, Q. He, X. Gong, J. Feng, L. Lu, et al., Study of the particles’ structure dependent rheological behavior for polymer nanospheres based shear thickening fluid. J. Colloid Interface Sci. 413, 8–16 (2014)

    Article  CAS  Google Scholar 

  30. R.L. Hoffman, Explanations for the cause of shear thickening in concentrated colloidal suspensions. J. Rheol. (N Y N Y) 42(1), 111 (1998. [Internet, cited 2022 Aug 15]). https://doi.org/10.1122/1.550884

    Article  CAS  Google Scholar 

  31. W.H. Boersma, J. Laven, H.N. Stein, Viscoelastic properties of concentrated shear-thickening dispersions. J. Colloid Interface Sci. 149(1), 10–22 (1992)

    Article  CAS  Google Scholar 

  32. H.M. Laun, R. Bung, S. Hess, W. Loose, O. Hess, K. Hahn, et al., Rheological and small angle neutron scattering investigation of shear-induced particle structures of concentrated polymer dispersions submitted to plane Poiseuille and Couette flowa. J. Rheol. (N Y N Y) 36(4), 743 (1998. [Internet, cited 2022 Aug 15]). https://doi.org/10.1122/1.550314

    Article  Google Scholar 

  33. R.L. Hoffman, Discontinuous and dilatant viscosity behavior in concentrated suspensions. II. Theory and experimental tests. J. Colloid Interface Sci. 46(3), 491–506 (1974)

    Article  CAS  Google Scholar 

  34. R.L. Hoffman, Discontinuous and dilatant viscosity behavior in concentrated suspensions. I. Observation of a flow instability. Trans. Soc. Rheol. 16(1), 155 (2000. [Internet, cited 2022 Aug 15]). https://doi.org/10.1122/1.549250

    Article  Google Scholar 

  35. J.W. Bender, N.J. Wagner, Optical measurement of the contributions of colloidal forces to the rheology of concentrated suspensions. J. Colloid Interface Sci. 172(1), 171–184 (1995)

    Article  CAS  Google Scholar 

  36. J. Bender, N.J. Wagner, Reversible shear thickening in monodisperse and bidisperse colloidal dispersions. J. Rheol. (N Y N Y) 40(5), 899 (1998. [Internet, cited 2022 Aug 15]). https://doi.org/10.1122/1.550767

    Article  Google Scholar 

  37. M. Zarei, J. Aalaie, Application of shear thickening fluids in material development. J. Mater. Res. Technol. 9(5), 10411–10433 (2020)

    Article  Google Scholar 

  38. B.J. Maranzano, N.J. Wagner, Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear thickening transition. J. Chem. Phys. 117(22), 10291 (2002. [Internet, cited 2022 Aug 15]). https://doi.org/10.1063/1.1519253

    Article  CAS  Google Scholar 

  39. N.Y.C. Lin, B.M. Guy, M. Hermes, C. Ness, J. Sun, W.C.K. Poon, et al., Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions. Phys. Rev. Lett. 115(22), 228304 (2015. [Internet, cited 2022 Aug 14]). https://doi.org/10.1103/PhysRevLett.115.228304

    Article  CAS  Google Scholar 

  40. I.R. Peters, S. Majumdar, H.M. Jaeger, Direct observation of dynamic shear jamming in dense suspensions. Nature 532(7598), 214–217 (2016) [Internet, cited 2022 Aug 14]. Available from: https://www.nature.com/articles/nature17167

    Article  CAS  Google Scholar 

  41. M. Wyart, M.E. Cates, Discontinuous shear thickening without inertia in dense non-brownian suspensions. Phys. Rev. Lett. 112(9), 098302 (2014. [Internet, cited 2022 Aug 14]). https://doi.org/10.1103/PhysRevLett.112.098302

    Article  CAS  Google Scholar 

  42. B.J. Maranzano, N.J. Wagner, The effects of particle size on reversible shear thickening of concentrated colloidal dispersions. J. Chem. Phys. 114(23), 10514 (2001)

    Article  CAS  Google Scholar 

  43. E.D. Wetzel, Y.S. Lee, R.G. Egres, K.M. Kirkwood, J.E. Kirkwood, N.J. Wagner, The effect of rheological parameters on the ballistic properties of shear thickening fluid (STF)-Kevlar composites. AIP Conf. Proc. 712(1), 288 (2004. [Internet, cited 2022 Aug 9]). https://doi.org/10.1063/1.1766538

    Article  CAS  Google Scholar 

  44. M. Hasanzadeh, V. Mottaghitalab, Tuning of the rheological properties of concentrated silica suspensions using carbon nanotubes. Rheol. Acta 55(9), 759–766 (2016)

    Article  CAS  Google Scholar 

  45. M. Wei, Y. Lv, L. Sun, H. Sun, Rheological properties of multi-walled carbon nanotubes/silica shear thickening fluid suspensions. Colloid Polym. Sci. 298(3), 243–250 (2020)

    Article  CAS  Google Scholar 

  46. D. Li, R. Wang, X. Liu, S. Fang, Y. Sun, Shear-thickening fluid using oxygen-plasma-modified multi-walled carbon nanotubes to improve the quasi-static stab resistance of Kevlar fabrics. Polymers (Basel). 10(12), 1356 (2018)

    Article  Google Scholar 

  47. S. Gürgen, M.C. Kuşhan, W. Li, The effect of carbide particle additives on rheology of shear thickening fluids. Korea Aust. Rheol. J. 28(2), 121–128 (2016)

    Article  Google Scholar 

  48. S. Gürgen, W. Li, M.C. Kuşhan, The rheology of shear thickening fluids with various ceramic particle additives. Mater. Des. 104, 312–319 (2016)

    Article  Google Scholar 

  49. W. Huang, Y. Wu, L. Qiu, C. Dong, J. Ding, D. Li, Tuning rheological performance of silica concentrated shear thickening fluid by using graphene oxide. Adv. Condens Matter Phys. 2015, 734250 (2015)

    Article  Google Scholar 

  50. P. Passey, M. Singh, S.K. Verma, D. Bhattacharya, R. Mehta, Steady shear and dynamic strain thickening of halloysite nanotubes and fumed silica shear thickening composite. J. Polym. Eng. 38(10), 915–923 (2018. [Internet, cited 2022 Aug 9]). https://doi.org/10.1515/polyeng-2018-0043/html

    Article  CAS  Google Scholar 

  51. A. Laha, A. Majumdar, Shear thickening fluids using silica-halloysite nanotubes to improve the impact resistance of p-aramid fabrics. Appl. Clay Sci. 132–133, 468–474 (2016)

    Article  Google Scholar 

  52. H. Barthel, Surface interactions of dimethylsiloxy group-modified fumed silica. Colloids Surf. A Physicochem. Eng. Asp. 101(2–3), 217–226 (1995)

    Article  CAS  Google Scholar 

  53. X. Sha, K. Yu, H. Cao, K. Qian, Shear thickening behavior of nanoparticle suspensions with carbon nanofillers. J. Nanopart. Res. 15(7), 1–11 (2013. [Internet, cited 2022 Jul 29]). https://doi.org/10.1007/s11051-013-1816-x

    Article  CAS  Google Scholar 

  54. A. Ghosh, I. Chauhan, A. Majumdar, B.S. Butola, Influence of cellulose nanofibers on the rheological behavior of silica-based shear-thickening fluid. Cellulose 24(10), 4163–4171 (2017)

    Article  CAS  Google Scholar 

  55. L. Sun, J. Zhu, M. Wei, C. Zhang, Y. Song, P. Qi, Effect of zirconia nanoparticles on the rheological properties of silica-based shear thickening fluid. Mater Res. Express. 5(5), 055705 (2018)

    Article  Google Scholar 

  56. L. Sun, Y. Lv, M. Wei, H. Sun, J. Zhu, Shear thickening fluid based on silica with neodymium oxide nanoparticles. Bull. Mater. Sci. 43(1), 1–6., [Internet] (2020). https://doi.org/10.1007/s12034-020-02134-2

    Article  CAS  Google Scholar 

  57. M. Zabet, K. Trinh, H. Toghiani, T.E. Lacy, C.U. Pittman, S. Kundu, Anisotropic nanoparticles contributing to shear-thickening behavior of Fumed silica suspensions. ACS Omega 2(12), 8877–8887 (2017. [Internet, cited 2022 Aug 15]). https://doi.org/10.1021/acsomega.7b01484

    Article  CAS  Google Scholar 

  58. J. Ge, Z. Tan, W. Li, H. Zhang, The rheological properties of shear thickening fluid reinforced with SiC nanowires. Results Phys 7, 3369–3372 (2017). https://doi.org/10.1016/j.rinp.2017.08.065. [Internet]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Rauf Sheikhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sheikhi, M.R., Hasanzadeh, M. (2023). Multi-Phase Shear Thickening Fluid. In: Gürgen, S. (eds) Shear Thickening Fluid. Springer, Cham. https://doi.org/10.1007/978-3-031-25717-9_3

Download citation

Publish with us

Policies and ethics