Skip to main content

A Game Theoretic Perspective on Bayesian Many-Objective Optimization

  • Chapter
  • First Online:
Many-Criteria Optimization and Decision Analysis

Part of the book series: Natural Computing Series ((NCS))

  • 530 Accesses

Abstract

This chapter addresses the question of how to efficiently solve many-objective optimization problems in a computationally demanding black-box simulation context. We shall motivate the question by applications in machine learning and engineering and discuss specific harsh challenges in using classical Pareto approaches when the number of objectives is four or more. Then, we review solutions combining approaches from Bayesian optimization, e.g., with Gaussian processes, and concepts from game theory like Nash equilibria, Kalai–Smorodinsky solutions and detail extensions like Nash–Kalai–Smorodinsky solutions. We finally introduce the corresponding algorithms and provide some illustrating results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Abdolshah, A. Shilton, S. Rana, S. Gupta, S. Venkatesh, Multi-objective Bayesian optimisation with preferences over objectives, in Neural Information Processing Systems (NIPS) (Curran Associates, Inc., 2019), pp. 12235–12245

    Google Scholar 

  2. R. Aboulaich, R. Ellaia, S. El Moumen, A. Habbal, N. Moussaid, A new algorithm for approaching Nash equilibrium and Kalai Smoridinsky solution. Working paper or preprint (2011)

    Google Scholar 

  3. A. Al-Dujaili, E. Hemberg, U.-M. O’Reilly, Approximating Nash equilibria for black-box games: a Bayesian optimization approach (2018)

    Google Scholar 

  4. A. Aprem, S. Roberts, A Bayesian optimization approach to compute Nash equilibrium of potential games using bandit feedback. Comput. J. 64(12), 1801–1813 (2021)

    Article  MathSciNet  Google Scholar 

  5. R. Astudillo, P. Frazier, Multi-attribute Bayesian optimization with interactive preference learning, in Artificial Intelligence and Statistics (JMLR.org, 2020), pp. 4496–4507

    Google Scholar 

  6. T. Başar, Relaxation techniques and asynchronous algorithms for on-line computation of noncooperative equilibria. J. Econ. Dyn. Control 11(4), 531–549 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Bechikh, L.B. Said, K. Ghedira, Estimating nadir point in multi-objective optimization using mobile reference points, in Congress on Evolutionary Computation (CEC) (IEEE Press, 2010), pp. 1–9

    Google Scholar 

  8. M. Binois, V. Picheny, P. Taillandier, A. Habbal, The Kalai-Smorodinsky solution for many-objective Bayesian optimization. J. Mach. Learn. Res. 21(150), 1–42 (2020)

    MathSciNet  MATH  Google Scholar 

  9. M. Binois, D. Rullière, O. Roustant, On the estimation of Pareto fronts from the point of view of copula theory. Inf. Sci. 324, 270–285 (2015)

    Article  MATH  Google Scholar 

  10. I. Bozbay, F. Dietrich, H. Peters, Bargaining with endogenous disagreement: the extended Kalai-Smorodinsky solution. Games Econom. Behav. 74(1), 407–417 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. N. Brown, S. Ganzfried, T. Sandholm, Hierarchical abstraction, distributed equilibrium computation, and post-processing, with application to a champion no-limit Texas hold’em agent, in AAAI Workshop: Computer Poker and Imperfect Information (ACM Press, 2015), pp. 7–15

    Google Scholar 

  12. C. Chevalier, J. Bect, D. Ginsbourger, E. Vazquez, V. Picheny, Y. Richet, Fast parallel kriging-based stepwise uncertainty reduction with application to the identification of an excursion set. Technometrics 56(4), 455–465 (2014)

    Article  MathSciNet  Google Scholar 

  13. C. Chevalier, X. Emery, D. Ginsbourger, Fast update of conditional simulation ensembles. Math. Geosci. 47(7), 771–789 (2015)

    Article  MATH  Google Scholar 

  14. J.P. Conley, S. Wilkie, The bargaining problem without convexity: Extending the egalitarian and Kalai-Smorodinsky solutions. Econ. Lett. 36(4), 365–369 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. J.-A. Désidéri, Cooperation and competition in multidisciplinary optimization. Comput. Optim. Appl. 52(1), 29–68 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. J.-A. Désidéri, Platform for prioritized multi-objective optimization by metamodel-assisted Nash games. Research Report RR-9290, Inria Sophia Antipolis, France (2019)

    Google Scholar 

  17. J.-A. Désidéri, R. Duvigneau, A. Habbal, Multiobjective design optimization using nash games, in Computational Intelligence in Aerospace Sciences (American Institute of Aeronautics and Astronautics, Inc., 2014), pp. 583–641

    Google Scholar 

  18. V.V. Fedorov, Theory of Optimal Experiments (Elsevier, 1972)

    Google Scholar 

  19. J.E. Fieldsend, Enabling dominance resistance in visualisable distance-based many-objective problems, in Genetic and Evolutionary Computation Conference (GECCO) Companion (ACM Press, 2016), pp. 1429–1436

    Google Scholar 

  20. D. Gaudrie, R. Le Riche, V. Picheny, B. Enaux, V. Herbert, Budgeted multi-objective optimization with a focus on the central part of the Pareto front–extended version (2018)

    Google Scholar 

  21. D. Gaudrie, R. Le Riche, V. Picheny, B. Enaux, V. Herbert, Targeting solutions in bayesian multi-objective optimization: sequential and batch versions. Ann. Math. Artif. Intell. 88(1), 187–212 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Geman, B. Jedynak, An active testing model for tracking roads in satellite images. IEEE Trans. Pattern Anal. Mach. Intell. 18(1), 1–14 (1996)

    Article  Google Scholar 

  23. R. Gibbons, Game Theory for Applied Economists (Princeton University Press, 1992)

    Google Scholar 

  24. D. González-Sánchez, O. Hernández-Lerma, A survey of static and dynamic potential games. Sci. China Math. 59(11), 2075–2102 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Habbal, M. Kallel, Neumann-Dirichlet Nash strategies for the solution of elliptic Cauchy problems. SIAM J. Control. Optim. 51(5), 4066–4083 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Hakanen, J.D. Knowles, On using decision maker preferences with ParEGO, in Evolutionary Multi-criterion Optimization (EMO) (Springer, 2017), pp. 282–297

    Google Scholar 

  27. C. He, Y. Tian, H. Wang, Y. Jin, A repository of real-world datasets for data-driven evolutionary multiobjective optimization. Complex & Intell. Syst. 6(1), 189–197 (2020)

    Article  Google Scholar 

  28. J.L. Hougaard, M. Tvede, Nonconvex n-person bargaining: efficient maxmin solutions. Econ. Theor. 21(1), 81–95 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. E. Kalai, M. Smorodinsky, Other solutions to Nash’s bargaining problem. Econometrica 43, 513–518 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  30. C. Kanzow, D. Steck, Augmented Lagrangian methods for the solution of generalized Nash equilibrium problems. SIAM J. Optim. 26(4), 2034–2058 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. J.D. Knowles, R.A. Watson, D. Corne, Reducing local optima in single-objective problems by multi-objectivization, in Evolutionary Multi-criterion Optimization (EMO) (Springer, 2001), pp. 269–283

    Google Scholar 

  32. M. Lanctot, R. Gibson, N. Burch, M. Zinkevich, M. Bowling, No-regret learning in extensive-form games with imperfect recall, in International Conference on Machine Learning (ICML) (2012), pp. 1035–1042

    Google Scholar 

  33. J.R. Lepird, M.P. Owen, M.J. Kochenderfer, Bayesian preference elicitation for multiobjective engineering design optimization. J. Aerosp. Inf. Syst. 12(10), 634–645 (2015)

    Google Scholar 

  34. B. Letham, B. Karrer, G. Ottoni, E. Bakshy, et al., Constrained Bayesian optimization with noisy experiments, in Bayesian Analysis (2018)

    Google Scholar 

  35. S. Li, T. Başar, Distributed algorithms for the computation of noncooperative equilibria. Automatica 23(4), 523–533 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  36. K. Miettinen. Nonlinear Multiobjective Optimization (Kluwer Academic Publishers, 1999)

    Google Scholar 

  37. J. Močkus, On Bayesian methods for seeking the extremum, in Optimization Techniques IFIP Technical Conference (Springer, 1975), pp. 400–404

    Google Scholar 

  38. M. Mutny, A. Krause, Efficient high dimensional Bayesian optimization with additivity and quadrature Fourier features, in Neural Information Processing Systems (NIPS), ed. by S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, R. Garnett (Curran Associates, Inc., 2018), pp. 9005–9016

    Google Scholar 

  39. B. Paria, K. Kandasamy, B. Póczos, A flexible framework for multi-objective Bayesian optimization using random scalarizations, in Uncertainty in Artificial Intelligence (JMLR.org, 2020), pp. 766–776

    Google Scholar 

  40. J. Periaux, F. Gonzalez, D.S.C. Lee, Evolutionary Optimization and Game Strategies for Advanced Multi-disciplinary Design: Applications to Aeronautics and UAV Design (Springer, 2015)

    Google Scholar 

  41. V. Picheny, M. Binois, GPGame: Solving Complex Game Problems using Gaussian Processes (2020). R package version 1.2.0

    Google Scholar 

  42. V. Picheny, M. Binois, A. Habbal, A Bayesian optimization approach to find Nash equilibria. J. Global Optim. 73(1), 171–192 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. R. Purshouse, K. Deb, M. Mansor, S. Mostaghim, R. Wang, A review of hybrid evolutionary multiple criteria decision making methods, in Congress on Evolutionary Computation (CEC) (IEEE Press, 2014), pp. 1147–1154

    Google Scholar 

  44. M. Schonlau, W.J. Welch, D.R. Jones, Global versus local search in constrained optimization of computer models, in Lecture Notes-Monograph Series, vol. 34, pp. 11–25 (1998)

    Google Scholar 

  45. J.D. Svenson, Computer experiments: multiobjective optimization and sensitivity analysis. Ph.D. thesis, The Ohio State University, USA (2011)

    Google Scholar 

  46. L. Thiele, K. Miettinen, P.J. Korhonen, J. Molina, A preference-based evolutionary algorithm for multi-objective optimization. Evol. Comput. 17(3), 411–436 (2009)

    Article  Google Scholar 

  47. W.R. Thompson, On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika 25(3/4), 285–294 (1933)

    Article  MATH  Google Scholar 

  48. S. Uryas’ev, R.Y. Rubinstein, On relaxation algorithms in computation of noncooperative equilibria. IEEE Trans. Autom. Control 39(6), 1263–1267 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  49. J. Villemonteix, E. Vazquez, E. Walter, An informational approach to the global optimization of expensive-to-evaluate functions. J. Global Optim. 44(4), 509–534 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. H. Wang, M. Olhofer, Y. Jin, A mini-review on preference modeling and articulation in multi-objective optimization: current status and challenges. Complex & Intell. Syst. 3(4), 233–245 (2017)

    Article  Google Scholar 

  51. A.P. Wierzbicki, The use of reference objectives in multiobjective optimization, in Multiple Criteria Decision Making Theory and Application (Springer, 1980), pp. 468–486

    Google Scholar 

  52. X. Zhang, Y. Tian, Y. Jin, A knee point-driven evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 19(6), 761–776 (2014)

    Article  Google Scholar 

  53. Z. Zhang, C. He, J. Ye, J. Xu, L. Pan, Switching ripple suppressor design of the grid-connected inverters: a perspective of many-objective optimization with constraints handling. Swarm Evol. Comput. 44, 293–303 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mickaël Binois .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Binois, M., Habbal, A., Picheny, V. (2023). A Game Theoretic Perspective on Bayesian Many-Objective Optimization. In: Brockhoff, D., Emmerich, M., Naujoks, B., Purshouse, R. (eds) Many-Criteria Optimization and Decision Analysis. Natural Computing Series. Springer, Cham. https://doi.org/10.1007/978-3-031-25263-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25263-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25262-4

  • Online ISBN: 978-3-031-25263-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics