Skip to main content

Landslide Susceptibility Mapping of Tehri Reservoir Region Using Geospatial Approach

  • Chapter
  • First Online:
Climate Change Adaptation, Risk Management and Sustainable Practices in the Himalaya

Abstract

Uttarakhand is one of the most landslide-susceptible states because of its geographical setting, which consists of 86% of the Himalayan terrain. However, in recent years, landslides have increased dramatically due to the large number of settlements, farms, road buildings, and a wide variety of hydroelectric projects. Therefore, this is a need to study the landslides scrupulously at a regional scale to rein the future developmental planning models. In the current work, a comprehensive study has been undertaken for the assessment of landslide susceptibility zones using the weight of evidence (WOE) and risk assessment for the Tehri region, specifically around the Tehri reservoir. Landslides are derived through remote-sensing techniques and other sources such as slope, geology, aspect, geomorphology, land use/land cover, drainage, lineaments, and more. After that, the WOE method is applied to integrate causative factors for the mapping of susceptible landslide zones, where the weights have been assigned to each layer according to available literatures. Subsequently, vulnerability is prepared for the area by integrating layers through the weighted sum technique. Finally, a risk map was prepared by integrating a susceptibility and vulnerability map. All three maps, namely, vulnerability, landslide susceptibility, and risk maps, were classified into five zones: very low, low, moderate, high, and very high. The results obtained from final maps and plots indicate that approximately 8% of the area is in a high susceptible zone, 50% is in a moderate susceptible zone, 54% is in a very low-risk zone, 23% is in a moderate-risk zone, and 14% is in a very high-risk zone. This study identified and illustrated the causative factors, combined into a GIS environment to identify landslide-prone locations. Then, depending upon the potency of an element, suitable and effective preventive measures may be taken to reduce the impact of the disaster. The concerned government agencies can use the same map while mapping disaster management, developing future strategies, implementing rehabilitation programs, and environmental planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shruti Kanga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tripathi, G., Shakya, A., Upadhyay, R.K., Singh, S.K., Kanga, S., Pandey, S.K. (2023). Landslide Susceptibility Mapping of Tehri Reservoir Region Using Geospatial Approach. In: Sharma, S., Kuniyal, J.C., Chand, P., Singh, P. (eds) Climate Change Adaptation, Risk Management and Sustainable Practices in the Himalaya. Springer, Cham. https://doi.org/10.1007/978-3-031-24659-3_7

Download citation

Publish with us

Policies and ethics