Skip to main content

Impacts of Climate Change on Plants with Special Reference to the Himalayan Region

  • Chapter
  • First Online:
Climate Change Adaptation, Risk Management and Sustainable Practices in the Himalaya

Abstract

The Himalayan region is home to one of the world’s most diverse and multifaceted mountain systems and is particularly prone to climate change. Climate change is a serious worry in the Himalaya because of its probable impacts on the economy, ecology, and environment, as well as downstream areas. Climate change has the potential to irrevocably affect distinct forest ecosystems and biodiversity, leading to the extinction of several species. Keeping the fact in mind that climate change affects various ecological as well as physiological parameters of the plant species, the present study was aimed to review the impacts of climate change on floral diversity in the Himalayan region. Some of the effects of climate change on the plants of Himalayan region include phenological changes, timberline shift, spread of invasive species, pests and diseases, habitat loss, and rise in the frequency and intensity of forest fires. Thus, climate change poses a serious threat to plant survival, which in turn poses a threat to the entire biosphere and human life. Urgent action plan is required to address this alarming situation. To accomplish this, a consolidation of greenhouse gases concentrations in the atmosphere, brisk global investments, and stationing of mitigation technology, along with research into new-fangled energy sources, is requisite. Appraisal of the biological invasions by exotic species, organization of decisive landscape linkages for flagship species, scrutiny of population trends of flagship and vulnerable species, intensification of the efficiency and extent of protected area coverage, and fire management are all tactics and policies that should be implemented as soon as possible at micro-level. Further, regional cooperation is critical for informed decision-making, risk and vulnerability mapping, efficient biodiversity and conservation management, and a comprehensive method to designing climate change adaption tactics, not only in the Himalayan region but also throughout the globe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R., & Daszak, P. (2004). Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology and Evolution, 19, 10.

    Article  Google Scholar 

  • Apollo, M. (2017). The population of Himalayan regions – By the numbers: Past, present and future. In R. In Efe & M. Oeturk (Eds.), Contemporary studies in environment and tourism (pp. 143–154). Cambridge Scholars Publishing.

    Google Scholar 

  • Bandyopadhyay, J., & Gyawali, D. (1994). Himalayan water resources: Ecological and political aspects of management. Mountain Research and Development, 14, 1–24.

    Article  Google Scholar 

  • Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., & Courchamp, F. (2012). Impacts of climate change on the future of biodiversity. Ecology Letters, 15(4), 365–377.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bellard, C., Thuiller, W., Leroy, B., Genovesi, P., Bakkenes, M., & Courchamp, F. (2013). Will climate change promote future invasions? Global Change Biology, 19(12), 3740–3748.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Beniston, M. (2003). Climate change in mountain regions; a review of possible impacts. Climate Change, 59, 5–31.

    Article  Google Scholar 

  • Bhatta, A. (2007). Himachal villagers resist pine monoculture reclaim forests for fodder. Down to Earth, 16, 6.

    Google Scholar 

  • Chakraborty, S., Liu, C. J., & Mitter, V. (2006). Pathogen population structure and epidemiology are keys to wheat crown rot and Fusarium head blight management. Australasian Plant Pathology, 35, 643–655.

    Article  Google Scholar 

  • Chettri, N., Sharma, E., Shakya, B., Thapa, R., Bajracharya, B., Vddin, K., Oli, K. P., & Choudhary, D. (2010). ICIMOD, technical report 2, Kathmandu, Nepal.

    Google Scholar 

  • Chitale, V., & Behara, M. D. (2019). How will forest fires impact the distribution of endemic plants in the Himalayan biodiversity hotspot. Biodiversity and Conservation, 28. https://doi.org/10.1007/S10531-019-01733-8

  • Dar, G. H., & Khuroo, A. A. (2013). Floristic diversity in the Kashmir Himalaya: Problems, progress and prospectus. Sains Malaysiana, 42(10), 1377–1387.

    Google Scholar 

  • Dhyani, S., Kadaverugu, R., Dhyani, D., Verma, P., & Pujari, P. (2018). Predicting impacts of climate variability on habitats of Hippophae salicifolia (Sea buck thorn) in Central Himalayas: Future challenges. Ecological Informatics. https://doi.org/10.1016/j.ecoinf.2018.09.003

  • Donato, D. C. (2013). Limits to upward movement of subalpine forests in a warming climate. Proceedings of the National Academy of Sciences of the United States of America, 110(20), 7971–7972.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Early, R., & Sax, D. F. (2014). Climatic niche shifts between species’ native and naturalized ranges raise concern for ecological forecasts during invasions and climate change. Global Ecology and Biogeography, 23(12), 1356–1365.

    Article  Google Scholar 

  • Engler, R., Randin, C. F., Thuiller, W., Dullinger, S., Zimmermann, N. E., Araujo, M. B., Pearman, P. B., et al. (2011). 21st century climate change threatens mountain flora unequally across Europe. Global Change Biology, 17, 2330. https://doi.org/10.1111/j.1365-2486.2010.02393.x

    Article  ADS  Google Scholar 

  • Eriksson, J. G. (2006). Patterns of growth; relevance to developmental origins of health and diseases. In P. Gluckman & M. Hanson (Eds.), Developmental origins of health and diseases (pp. 223–232). Cambridge University Press.

    Chapter  Google Scholar 

  • FAO (2012). Wildlife in a changing climate. FAO Forestry Paper 176. Eds (Edgar Kaeslin, Ian Redmond, Nigel Dudley). Rome, p. 108.

    Google Scholar 

  • Flannigan, M. D., Stocks, B. J., & Wotton, B. M. (2000). Climate change and forest fires. Science of the Total Environment, 262, 221–229.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Gaira, K., & Dhar, U. (2020). Phenological change modelling for selected Himalayan medicinal herbs using herbarium records. Ecological Informatics, 60. https://doi.org/10.1016/j.ecoinf.2020.101177

  • Gaira, K. S., Dhar, V., & Belwal, O. K. (2011). Potential of herbarium records to sequence phenological pattern: A case study of Aconitum heterophyllum in the Himalaya (Vol. 20, pp. 2201–2210). Springer Science, Business Media Biodiversity Conservation.

    Google Scholar 

  • Gajural, J. P., Werth, S., Shrestha, K. K., & Scheidegger, C. (2014). Species distribution modelling of Taxus wallichiana (Himalayan yew) in Nepal Himalaya. Asian Journal of Conservation Biology, 3(2), 127–134.

    Google Scholar 

  • Gautam, M. R., Tamilsina, G. R., & Acharya, K. (2013). Climate change in the Himalayas current state of knowledge (Policy Research Working Paper WP-6516) (p. 47). The World Bank Development Research Group Environment and Energy Team.

    Book  Google Scholar 

  • Gegechkori, A. (2018). Patterns of distribution and survival of European Yew (Taxus baccata L.) in an alpine tree line ecotone in the greater Caucasus (Georgia). Annals of Agrarian Science. https://doi.org/10.1016/j.aasci.2018.02.006

  • Gottfried, M., Pauli, H., & Grabherr, G. (2012). Continent wide response of mountain vegetation to climate change. Nature Climate Change, 2, 111–115.

    Article  ADS  Google Scholar 

  • Houet, T., Loveland, T. R., Hubert-Moy, L., et al. (2010). Exploring subtle land use and land cover changes: A framework for future landscape studies. Landscape Ecology, 25, 249–266.

    Article  Google Scholar 

  • IPCC. (2007). Contribution of working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

    Google Scholar 

  • Janpeter, S., Freier Korbinian, P., Hertige, E., & Jurgen, S. (2012). Climate change, vulnerability and adaptation in North Africa with focus on Morocco. Agriculture, Ecosystems and Environment, 156, 12–26.

    Article  Google Scholar 

  • Jantz, S. M., Barker, B., Brooks, T. M., Chini, L. P., Huang, Q., Moore, R. M., Noel, J., & Hurtt, G. C. (2015). Future habitat loss and extinction driven by land use change in biodiversity hotspots under four scenarios of climate change mitigation. Conservation Biology, 29(4), 1122–1131.

    Article  PubMed  Google Scholar 

  • Jishtu, V., & Rawat, R. S. (2014). Juniperus polycarpos C. Koch Forests and its conservation status in Cold Deserts of Himachal Pradesh, North West Himalayas. Indian Forester, 140(4), 378–383.

    Google Scholar 

  • Johnson, E. A. (1992). Fire and vegetation dynamics: Studies from the North American boreal forest (p. 129). Cambridge University Press.

    Book  Google Scholar 

  • Khuroo, A. A., Rashid, I., & Reshi, Z. (2007). The alien flora of Kashmir Himalaya. Biological Invasions, 9(3), 269–292.

    Article  Google Scholar 

  • Kumar, V., & Chopra, A. K. (2009). Impact of climate change on biodiversity of India with special reference to Himalayan region-an overview. Journal of Applied and Natural Science, 1(1), 117–122.

    Article  Google Scholar 

  • Kumar, R. S., Kala, R. H., Kumar, G. S., Kumar, S. K., & Sailesh, R. (2017). Predicting the impact of climate change on the distribution of two threatened Himalayan medicinal plants of Liliaceae in Nepal. Journal of Mountain Science, 14(3), 558–570.

    Article  Google Scholar 

  • Lieberman, D. (1982). Seasonality and phenology in a dry tropical forest in Ghana. Journal of Ecology, 70, 791–806.

    Article  Google Scholar 

  • Macais- Fauria, M., & Johnson, E. A. (2013). Warming induced upslope advance of subalpine forest is severely limited by geomorphic processes. Proceedings of the National Academy of Sciences of the United States of America, 110(20), 8117–8122.

    Article  ADS  Google Scholar 

  • Manish, K., & Pandit, M. K. (2019). Identifying conservation priorities for plant species in the Himalaya in current and future climates: A case study from Sikkim Himalaya, India. Biological Conservation, 233, 176–184.

    Article  Google Scholar 

  • Manish, K., Telwala, Y., Nautiyal, D. C., & Pandit, M. K. (2016). Modelling the impacts of future climate change on plant communities in the Himalaya: A case study from Eastern Himalaya, India. Modelling Earth Systems and Environment, 2, 92.

    Article  Google Scholar 

  • Maroof, H., Khuroo, A. A., Charles, B., Ahmad, R., Singh, C. P., & Aravind, N. A. (2019). Impact of climate change on distribution range and niche dynamics of Himalayan birch, a typical tree line species in Himalayas. Biodiversity and Conservation, 28, 2345–2370.

    Article  Google Scholar 

  • Masoodi, A., Sengupta, A., Khan, F. A., & Sharma, G. P. (2013). Predicting the spread of alligator weed (Alternanthera philoxeroides) in Wular lake, India: A mathematical approach. Ecological Modelling, 263, 119–125.

    Article  Google Scholar 

  • McDougall, K. L., Khuroo, A. A., Loope, L. L., Parks, C. G., Pauchard, A., Reshi, Z. A., Rushworth, I., & Kueffer, C. (2011). Plant invasions in mountains: Global lessons for better management. Mountain Research and Development, 31(4), 380–387.

    Article  Google Scholar 

  • Nautiyal, B. P., Nautiyal, B. C., Khanduri, V. P., & Rawat, N. (2009). Floral biology of Aconitum heterophyllum Wall: A critically endangered alpine medicinal plant of Himalaya, India. Turkish Journal of Botany, 33, 13–20.

    Google Scholar 

  • Negi, V. S., Maikhuri, R. K., Pharswan, D., Thakur, S., & Dhyani, P. P. (2016). Climate change impact in the western Himalaya; people’s perception and adaptive strategies. Journal of Mountain Science, 14(2), 403–416.

    Article  Google Scholar 

  • Nwankwoala, H. N. L. (2015). Causes of climate and environmental- friendly education policy in Nigeria. Journal of Education and Practice, 6, 30.

    Google Scholar 

  • Oerke, E. C. (2006). Crop losses to pests. Journal of Agricultural Science, 144, 31–43.

    Article  Google Scholar 

  • Packert, M., Martens, J., Sun, Y. H., Severinghaus, L. L., Nazarenko, A. A., Ting, J., Topfer, T., & Tietze, D. T. (2012). Horizontal and elevational phylogeographic patterns of Himalayan and Southeast Asian forest passerines (Aves: Passeriformes). Journal of Biogeography, 39, 556–573.

    Article  Google Scholar 

  • Pant, S. S., & Samant, S. (2008). Population ecology of the endangered Himalayan Yew in Khokhan Wildlife Sanctuary of North Western Himalaya for conservation management. Journal of Mountain Science, 5(3), 257–264.

    Article  Google Scholar 

  • Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37–42.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Permesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution and Systematics, 37, 637–669.

    Article  Google Scholar 

  • Pimentel, D., McNair, S., Janecka, J., Wightman, J., Simmonds, C., O’Connell, C., Wong, E., Russel, L., Zern, J., Aquino, T., & Tsomondo, T. (2001). Economical and environmental threats of alien plant, animal and microbe invasions. Agriculture, Ecosystems and Environment, 84(1), 1–20.

    Article  Google Scholar 

  • Primack, D., Imbres, C., Primack, R. B., & Rushing, A. J. M. (2004). Herbarium specimens demonstrate earlier flowering times in response to warming in Boston. American Journal of Botany, 91, 1260–1264.

    Article  PubMed  Google Scholar 

  • Rana, S. K., Rawal, R. S., Dangwal, B., Bhatt, I. D., & Price, T. D. (2021). 200 years of research on Himalayan biodiversity: Trends, gaps, and policy implications. Frontiers in Ecology and Evolution. https://doi.org/10.3389/fevo.2020.603422

  • Ranjitkar, S., Sajakhu, N. M., Lu, Y., Wang, Q., Wnag, M., He, J., Mortimer, P. E., Xu, J., Kindt, R., & Zomer, R. J. (2016). Climate modelling for agroforestry species selection in Yunnan Province, China. Environmental Modelling and Software, 75, 263–272.

    Article  Google Scholar 

  • Rashid, I., Romshoo, S. K., Chaturvedi, R. K., Ravindranath, N. H., Sukumar, R., Jayaraman, M., Lakshmi, T. V., & Sharma, J. (2015). Projected climate change impacts on vegetation distribution over Kashmir Himalaya. Climate Change, 132, 601–613.

    Article  ADS  Google Scholar 

  • Rautela, P., & Karki, B. (2015). Impact of climate change on life and livelihood of indigenous people of Higher Himalaya in Uttarakhand, India. American Journal of Environmental Protection, 3(4), 112–124.

    Google Scholar 

  • Root, T. L., Price, J. T., Hall, K. R., Schneider, S. H., Rosenzweig, E., & Pounds, J. A. (2003). Fingerprints of global warming on wild animals and plants. Nature, 421, 57–60.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Samant, S. S. (1999). Diversity, nativity and endemism of vascular plants in a part of Nanda Devi Biosphere Reserve in West Himalaya. Biannual Bulletin, 1, 1–28.

    Google Scholar 

  • Schickhoff, U., Bobrowski, M., Bohner, J., Burzle, B., Chaudhary, R. P., Gerlitz, L., Heykess, H., Lange, I., Muller, M., Scholten, T., Schwab, N., & Wedegartner, R. (2015). Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators. Earth System Dynamics, 6, 245–265.

    Article  ADS  Google Scholar 

  • Semwal, R. L., & Mehta, J. P. (1996). Ecology of forest fires in Chir pine (Pinus roxburghii), forests of Garhwal Himalaya. Current Science, 70, 426–427.

    Google Scholar 

  • Sharma, S. & Rikhari, H. C. (1997). Forest fire in the central Himalaya: climate and recovery of trees. International Journal of Biometeorology 40, 63–70.

    Google Scholar 

  • Shaver, G. R., Canadell, J., Chapin, F. S., Gurevitch, J., Harte, J., Henry, G., Ineson, P., Jonasson, S., Melillo, J., Pitelka, L., & Rustad, L. (2000). Global warming and terrestrial ecosystems: A conceptual framework for analysis: Ecosystem responses to global warming will be complex and varied. Ecosystem warming experiments hold great potential for providing insights on ways terrestrial ecosystems will respond to upcoming decades of climate change. Documentation of initial conditions provides the context for understanding and predicting ecosystem responses. Bioscience, 50(10), 871–882.

    Article  Google Scholar 

  • Shrestha, U. B., Gautam, S., & Bawa, K. S. (2012). Widespread climate change in the Himalayas and associated changes in local ecosystems. PloS one, 7(5), e36741.

    Google Scholar 

  • Shrestha, U. B., Sharma, K. P., Devkota, A., Siwakoti, M., & Shrestha, B. B. (2018). Potential impact of climate change on the distribution of six invasive alien plants in Nepal. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2018.07.009

  • Singh, D. V. (1989). First report of Neovossia indica on wheat in Nepal. Plant Diseases, 73, 277.

    Article  ADS  Google Scholar 

  • Singh, P., & Negi, G. C. S. (2016). Impact of climate change on phenological responses of major forest trees of Kumaun Himalaya (ENVIS bulletin Himalayan ecology. 24: B). Pant National Institute of Himalayan Environment and Sustainable Development.

    Google Scholar 

  • Singh, D. K., & Pusalkar, P. K. (2020). Floristic diversity of the Indian Himalaya. In Biodiversity of the Himalaya: Jammu and Kashmir State (pp. 93–126). Springer, Singapore.

    Google Scholar 

  • Singh, S. P., & Rawal, R. S. (2017). Manual of field methods (p. 99). Central Himalayas Environmental Association.

    Google Scholar 

  • Singh, S. P., Singh, V., & Skutsch, M. (2010). Rapid warming in the Himalayas: Ecosystem response and developmental options. Climate and Development, 2, 1–13.

    Article  Google Scholar 

  • Singh, S. P., Sharma, S., & Dhyani, P. P. (2019). Himalayan arc and treeline distribution, climate change responses and ecosystem properties. Biodiversity and Conservation, 28, 1997–2016.

    Article  Google Scholar 

  • Stenseth, N. C., Mysterud, A., Ottersen, G., Hurrell, J. W., Chan, K. S., & Lima, M. (2002). Ecological effects of climate fluctuations. Science, 297(5585), 1292–1296.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Tewari, V. P., Verma, R. K., & von Gadow, K. (2017). Climate change effects in the Western Himalayan ecosystems of India; evidence and strategies. Forest Ecosystems, 4, 13.

    Article  Google Scholar 

  • Thapa, S., Chitale, V., Rijal, R. J., Bisht, N., & Shrestha, B. B. (2018). Understanding the dynamics in distribution of invasive alien plant species under predicted climate change in Western Himalaya. Plos One, 13(4).

    Google Scholar 

  • Thuiller, W. (2007). Climate change and the ecologist. Nature, 448, 550–552.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Tse-ring, K., Sharma, E., Chettri, N., & Shrestha, A. B. (2010). Climate change vulnerability of mountain ecosystems in the Eastern Himalayas. International centre for integrated mountain development (ICIMOD).

    Google Scholar 

  • Vashistha, R. K., Rawat, N., Chaturvedi, A. K., Nautiyal, B. P., Prasad, P., & Nautiyal, M. P. (2009). An exploration on the phenology of different growth forms of an alpine expanse of North-West Himalaya, India. New York Science Journal, 2(6), 29–41.

    Google Scholar 

  • Verma, O. (2021). Climate change and its impacts with special reference to India. In A. K. Taloor, B. S. Kotlia, & K. Kumar (Eds.), Water, cryosphere and climate change in Himalaya: A geospatial approach. Springer.

    Google Scholar 

  • Weber, M. G., & Flannigan, M. D. (1997). Canadian boreal forest ecosystem structure and function in a changing climate: impact on fire regimes. Environmental Reviews, 5(3–4), 145–166.

    Google Scholar 

  • Wang, J. J., Cao, B., & Bai, C. K. (2014). Potential distribution prediction and suitability evaluation of Fritillaria cirrhosa D. Don based on MaxEnt modelling and GIS. Bulletin of Botanical Research, 34(5), 642–649.

    Google Scholar 

  • Woodall, C. W., Oswalt, C. M., Westfall, J. A., Perry, C. H., & Nelson, M. D. (2009). Tree migration detection through comparisons of historic and current forest inventories. In USDA Forest Service Proceedings, pp. 56.

    Google Scholar 

  • www.Cepf.net. Assessed on 27 Mar 2021.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wani, Z.A., Fatima, T., Verma, O., Sharma, V., Pant, S. (2023). Impacts of Climate Change on Plants with Special Reference to the Himalayan Region. In: Sharma, S., Kuniyal, J.C., Chand, P., Singh, P. (eds) Climate Change Adaptation, Risk Management and Sustainable Practices in the Himalaya. Springer, Cham. https://doi.org/10.1007/978-3-031-24659-3_11

Download citation

Publish with us

Policies and ethics