Skip to main content

Cerebellar Learning in the Prism Adaptation Task

  • Chapter
  • First Online:
Trials for Cerebellar Ataxias

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 372 Accesses

Abstract

Compared with healthy subjects, patients with cerebellar degeneration find it difficult to adaptively change the movement of throwing a dart toward a virtual target image seen through a prism to that toward the actual target (prism adaptation task). This suggests that the cerebellum is related to adaptive learning. We developed a device with which anyone can perform the prism adaptation task and determine the adaptability index (AI) to estimate the capability for cerebellar learning. On the basis of basic science, it is hypothesized that the cerebellum learns internal models. In the prism adaptation task, the patients find it difficult to update either (i) the inverse model or (ii) both the forward and inverse models. Thus, the prism adaptation task can be used to estimate the capability for cerebellar learning by measuring AI. It can also be used to estimate in detail what the cerebellum learns: the forward or inverse model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Albus JS. A theory of cerebellar function. Math Biosci. 1971;10(1):25–61.

    Article  Google Scholar 

  • Ashizawa T, Figueroa KP, Perlman SL, Gomez CM, Wilmot GR, Schmahmann JD, et al. Clinical characteristics of patients with spinocerebellar ataxias 1, 2, 3 and 6 in the US; a prospective observational study. Orphanet J Rare Dis. 2013;8:177.

    Article  PubMed  PubMed Central  Google Scholar 

  • Babinski J. De l’asynergie cérébelleuse. Rev Neurol. 1899;7:784.

    Google Scholar 

  • Bando K, Honda T, Ishikawa K, Takahashi Y, Mizusawa H, Hanakawa T. Impaired adaptive motor learning is correlated with cerebellar hemispheric gray matter atrophy in spinocerebellar ataxia patients: a voxel-based morphometry study. Front Neurol. 2019;10:1183.

    Article  PubMed  PubMed Central  Google Scholar 

  • Craik H. The nature of explanation. Cambridge University Press; 1943.

    Google Scholar 

  • Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89(1):634–9.

    Article  PubMed  Google Scholar 

  • Ebner TJ, Pasalar S. Cerebellum predicts the future motor state. Cerebellum. 2008;7(4):583–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ebner TJ, Hewitt AL, Popa LS. What features of limb movements are encoded in the discharge of cerebellar neurons? Cerebellum. 2011;10(4):683–93.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eccles J, Ito M, Szentagothai J. The cerebellum as a neuronal machine. Berlin: Springer-Verlag; 1967.

    Book  Google Scholar 

  • Fujita M. Adaptive filter model of the cerebellum. Biol Cybern. 1982;45(3):195–206.

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto Y, Honda T, Matsumura K, Nakao M, Soga K, Katano K, et al. Quantitative evaluation of human cerebellum-dependent motor learning through prism adaptation of hand-reaching movement. PLoS One. 2015;10(3):e0119376.

    Article  PubMed  PubMed Central  Google Scholar 

  • Holmes G. The cerebellum of man. Brain. 1939;62(1):1–30.

    Article  Google Scholar 

  • Honda T, Ito M. Development from Marr’s theory of the cerebellum. In: Vaina ML, Passingham ER, editors. Computational theories and their implementation in the brain: the legacy of David Marr. Oxford: Oxford University Press; 2017.

    Google Scholar 

  • Honda T, Yamazaki T, Tanaka S, Nagao S, Nishino T. Stimulus-dependent state transition between synchronized oscillation and randomly repetitive burst in a model cerebellar granular layer. PLoS Comput Biol. 2011;7(7):e1002087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honda T, Nagao S, Hashimoto Y, Ishikawa K, Yokota T, Mizusawa H, et al. Tandem internal models execute motor learning in the cerebellum. Proc Natl Acad Sci U S A. 2018;115(28):7428–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honda T, Mitoma H, Yoshida H, Bando K, Terashi H, Taguchi T, et al. Assessment and rating of motor cerebellar ataxias with the Kinect v2 depth sensor: extending our appraisal. Front Neurol. 2020;11:179.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ito M. Neurophysiological aspects of the cerebellar motor control system. Int J Neurol. 1970;7(2):162–76.

    CAS  PubMed  Google Scholar 

  • Ito M. Neural design of the cerebellar motor control system. Brain Res. 1972;40(1):81–4.

    Article  CAS  PubMed  Google Scholar 

  • Ito M. The control mechanisms of cerebellar motor control system. Massachusetts: MIT Press; 1974.

    Google Scholar 

  • Ito M. The cerebellum and neural control. New York: Raven Press; 1984.

    Google Scholar 

  • Ito M, Kano M. Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci Lett. 1982;33(3):253–8.

    Article  CAS  PubMed  Google Scholar 

  • Ito M, Sakurai M, Tongroach P. Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol. 1982;324:113–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito M, Nagao S, Kawaguchi Y. Effects of TRH upon vestibulo-ocular reflex. In: Spobue I, editor. TRH and spinocerebellar degeneration. Amsterdam: Elsevier; 1986. p. 93–6.

    Google Scholar 

  • Jacobi H, Bauer P, Giunti P, Labrum R, Sweeney MG, Charles P, et al. The natural history of spinocerebellar ataxia type 1, 2, 3, and 6: a 2-year follow-up study. Neurology. 2011;77(11):1035–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawato M, Furukawa K, Suzuki R. A hierarchical neural-network model for control and learning of voluntary movement. Biol Cybern. 1987;57(3):169–85.

    Article  CAS  PubMed  Google Scholar 

  • Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci Off J Soc Neurosci. 2003;23(23):8432–44.

    Article  CAS  Google Scholar 

  • Kobayashi Y, Kawano K, Takemura A, Inoue Y, Kitama T, Gomi H, et al. Temporal firing patterns of Purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys II. Complex spikes. J Neurophysiol. 1998;80(2):832–48.

    Article  CAS  PubMed  Google Scholar 

  • Manto M, Pandolfo M. The cerebellum and its disorders. Cambridge: Cambridge University Press; 2002.

    Google Scholar 

  • Marr D. A theory of cerebellar cortex. J Physiol. 1969;202(2):437–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT. Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain. 1996;119(Pt 4):1183–98.

    Article  PubMed  Google Scholar 

  • Moriarty A, Cook A, Hunt H, Adams ME, Cipolotti L, Giunti P. A longitudinal investigation into cognition and disease progression in spinocerebellar ataxia types 1, 2, 3, 6, and 7. Orphanet J Rare Dis. 2016;11(1):82.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagao S. Ocular reflex adaptation as an experimental model of cerebellar learning – in memory of Masao Ito. Neuroscience. 2021;462:191–204.

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa M, Onodera O, Hirakawa A, Shimizu Y, Yamada M. Effect of rovatirelin in patients with cerebellar ataxia: two randomised double-blind placebo-controlled phase 3 trials. J Neurol Neurosurg Psychiatry. 2020;91(3):254–62.

    Article  PubMed  Google Scholar 

  • Schmitz-Hubsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006;66(11):1717–20.

    Article  CAS  PubMed  Google Scholar 

  • Shotton J, Fitzgibbon A, Cook M, Sharp T, Finocchio M, Moore R, et al. Real-time human pose recognition in parts from single depth images. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society; 2011. p. 1297–304.

    Google Scholar 

  • Sobue I, Takayanagi T, Nakanishi T, Tsubaki T, Uono M, Kinoshita M, et al. Controlled trial of thyrotropin releasing hormone tartrate in ataxia of spinocerebellar degenerations. J Neurol Sci. 1983;61(2):235–48.

    Article  CAS  PubMed  Google Scholar 

  • Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, et al. International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci. 1997;145(2):205–11.

    Article  CAS  PubMed  Google Scholar 

  • Winkelman B, Frens M. Motor coding in floccular climbing fibers. J Neurophysiol. 2006;95(4):2342–51.

    Article  PubMed  Google Scholar 

  • Yamazaki T, Tanaka S. The cerebellum as a liquid state machine. Neural Netw. 2007;20(3):290–7.

    Article  PubMed  Google Scholar 

  • Yasui K, Yabe I, Yoshida K, Kanai K, Arai K, Ito M, et al. A 3-year cohort study of the natural history of spinocerebellar ataxia type 6 in Japan. Orphanet J Rare Dis. 2014;9:118.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidehiro Mizusawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Honda, T., Mizusawa, H. (2023). Cerebellar Learning in the Prism Adaptation Task. In: Soong, Bw., Manto, M., Brice, A., Pulst, S.M. (eds) Trials for Cerebellar Ataxias. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-031-24345-5_12

Download citation

Publish with us

Policies and ethics