Skip to main content

Role of Abnormal Calcium Signaling and Liver Tissue Structure in Glucose and Lipid Metabolism: Mathematical Modeling

  • Conference paper
  • First Online:
Mathematical Modeling and Supercomputer Technologies (MMST 2022)

Abstract

One of the main components of glucose and lipid metabolism in hepatocytes that provide liver’s metabolic flexibility is the cell ability to temporarily store glucose in the form of glycogen. The glycogen storage and release processes are regulated by hormones insulin and glucagon and by intracellular calcium signaling. Correct calcium signaling strongly depends on proper intracellular structure, in particular on adequate functioning of mitochondria-associated membranes (MAMs). MAMs defects were shown to affect calcium signaling and expected to alter glucose metabolism and storage. Using mathematical modeling we research the role of both abnormal MAMs functioning and calcium release from endoplasmic reticulum in hepatocyte glucose and lipid metabolism. Also we estimate the consequences of decreased amount of hormones, that reach pericentral liver zone in comparison to periportal zone, for the amount of stored glycogen, TAG and glucose released by hepatocyte in the glycogenolytic mode.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agius, L.: Glucokinase and molecular aspects of liver glycogen metabolism. Biochem. J. 414, 1–18 (2008). https://doi.org/10.1042/BJ20080595

    Article  Google Scholar 

  2. Amaya, M.J., Nathanson, M.H.: Calcium signaling in the liver. Compr. Physiol. 3, 515 (2013). https://doi.org/10.1002/cphy.c120013

    Article  Google Scholar 

  3. Arruda, A.P., Hotamisligil, G.S.: Calcium homeostasis and organelle function in the pathogenesis of obesity and diabetes. Cell Metabol. 22, 381–397 (2015). https://doi.org/10.1016/j.cmet.2015.06.010

    Article  Google Scholar 

  4. Bayens, J.W., Dominiczak, M.: Medical Biochemistry, 5th edn. Elsevier, Amsterdam (2018)

    Google Scholar 

  5. Ben-Moshe, S., Itzkovitz, S.: Spatial heterogeneity in the mammalian liver. Nat. Rev. Gastroenterol. Hepatol. 16(7), 395–410 (2019). https://doi.org/10.1038/s41575-019-0134-x

    Article  Google Scholar 

  6. Berndt, N., Horger, M.S., Bulik, S., Holzhütter, H.G.: A multiscale modelling approach to assess the impact of metabolic zonation and microperfusion on the hepatic carbohydrate metabolism. PLoS Comput. Biol. 14(2), e1006005 (2018). https://doi.org/10.1371/journal.pcbi.1006005

    Article  Google Scholar 

  7. Berndt, N., et al.: Functional consequences of metabolic zonation in murine livers: insights for an old story. Hepatology 73(2), 795–810 (2021). https://doi.org/10.1002/hep.31274

    Article  Google Scholar 

  8. Berridge, M.J., Bootman, M.D., Roderick, H.L.: Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4, 517–529 (2003). https://doi.org/10.1038/nrm1155

    Article  Google Scholar 

  9. Bhagavan, N.: Medical Biochemistry, 4th edn. Elsevier, Amsterdam (2021). https://doi.org/10.1016/B978-012095440-7/50017-2

    Book  Google Scholar 

  10. Chamlian, A., Benkoel, L., Minko, D., Njee, T., Gulian, J.M.: Ultrastructural heterogeneity of glycogen in human liver. Liver 9(6), 346–350 (1989). https://doi.org/10.1111/j.1600-0676.1989.tb00422.x

    Article  Google Scholar 

  11. Cunningham, R.P., Porat-Shliom, N.: Liver zonation - revisiting old questions with new technologies. Front. Physiol. 12, 1433 (2021). https://doi.org/10.3389/fphys.2021.732929

    Article  Google Scholar 

  12. Day, C.P., James, O.F.: Steatohepatitis: a tale of two ‘hits’? Gastroenterology 114, 842–845 (1998). https://doi.org/10.1016/S0016-5085(98)70599-2

    Article  Google Scholar 

  13. Dokukina, I.V., Yamashev, M.V., Samarina, E.A., Tilinova, O.M., Grachev, E.A.: Calcium-dependent insulin resistance in hepatocytes: mathematical model. J. Theor. Biol. 522, 110684 (2021). https://doi.org/10.1016/j.jtbi.2021.110684

    Article  MATH  Google Scholar 

  14. Dokukina, I., Tsukanov, A., Gracheva, M., Grachev, E.: Effect of the tissue architecture on cell-to-cell calcium signaling. Biofizika 53(2), 305–314 (2008)

    Google Scholar 

  15. Foguet, C., et al.: HepatoDyn: a dynamic model of hepatocyte metabolism that integrates 13C isotopomer data. PLoS Computat. Biol. 12, e1004899 (2016). https://doi.org/10.1371/journal.pcbi.1004899

    Article  Google Scholar 

  16. Freckmann, G., et al.: Continuous glucose profiles in healthy subjects under everyday life conditions and after different meals. J. Diab. Sci. Technol. 1(5), 695–703 (2007). https://doi.org/10.1177/193229680700100513

    Article  Google Scholar 

  17. Grzegorczyk, E., et al.: Effect of sleeve gastrectomy on proprotein convertase subtilisin/kexin type 9 (Pcsk9) content and lipid metabolism in the blood plasma and liver of obese wistar rats. Nutrients 11(9), 2174 (2019). https://doi.org/10.3390/nu11092174

    Article  Google Scholar 

  18. Hall, J.E., Hall, M.: Guyton and Hall Textbook of Medical Physiology, 14th edn. Elsevier, Amsterdam (2021)

    Google Scholar 

  19. Heacock, A.M., Agranoff, B.W.: CDP-diacylglycerol synthase from mammalian tissues. Biochim. Biophys. Acta - Lipids Lipid Metab. 1348, 166–172 (1997). https://doi.org/10.1016/S0005-2760(97)00096-9

    Article  Google Scholar 

  20. Hirata, K., et al.: Regulation of CA\(^{2+}\) signaling in rat bile duct epithelia by inositol 1,4,5-trisphosphate receptor isoforms. Hepatology 36, 284–296 (2002). https://doi.org/10.1053/jhep.2002.34432

    Article  Google Scholar 

  21. Jelic, K., Hallgreen, C.E., Colding-Jørgensen, M.: A model of NEFA dynamics with focus on the postprandial state. Ann. Biomed. Eng. 37(9), 1897–1909 (2009). https://doi.org/10.1007/s10439-009-9738-6

    Article  Google Scholar 

  22. Jungermann, K., Kietzmann, T.: Zonation of parenchymal and nonparenchymal metabolism in liver. Ann. Rev. Nutr. 16, 179–203 (1996). https://doi.org/10.1146/annurev.nu.16.070196.001143

    Article  Google Scholar 

  23. Khan, M.T., Wagner, L., Yule, D.I., Bhanumathy, C., Joseph, S.K.: AKT kinase phosphorylation of inositol 1, 4, 5-trisphosphate receptors. J. Biol. Chem. 281, 3731–3737 (2006). https://doi.org/10.1074/jbc.M509262200

    Article  Google Scholar 

  24. Kietzmann, T.: Metabolic zonation of the liver: the oxygen gradient revisited. Redox Biol. 11, 622–630 (2017). https://doi.org/10.1016/j.redox.2017.01.012

    Article  Google Scholar 

  25. Kim, J.Y., Hickner, R.C., Cortright, R.L., Dohm, G.L., Houmard, J.A.: Lipid oxidation is reduced in obese human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 279, E1039–E1044 (2000). https://doi.org/10.1152/ajpendo.2000.279.5.e1039

    Article  Google Scholar 

  26. König, M., Bulik, S., Holzhütter, H.G.: Quantifying the contribution of the liver to glucose homeostasis: a detailed kinetic model of human hepatic glucose metabolism. PLoS Computat. Biol. 8, e1002577 (2012). https://doi.org/10.1371/journal.pcbi.1002577

    Article  Google Scholar 

  27. Lee, K., Berthiaume, F., Stephanopoulos, G.N., Yarmush, M.L.: Profiling of dynamic changes in hypermetabolic livers. Biotechnol. Bioeng. 83, 400–415 (2003). https://doi.org/10.1002/bit.10682

    Article  Google Scholar 

  28. de Mas, I.M., et al.: Compartmentation of glycogen metabolism revealed from 13C isotopologue distributions. BMC Syst. Biol. 5, 1–14 (2011). https://doi.org/10.1186/1752-0509-5-175

    Article  Google Scholar 

  29. Mine, T., Kojima, I., Ogata, E.: Role of calcium fluxes in the action of glucagon on glucose metabolism in rat hepatocytes. Am. J. Physiol. - Gastrointest. Liver Physiol. 265, G35–G42 (1993). https://doi.org/10.1152/ajpgi.1993.265.1.g35

    Article  Google Scholar 

  30. Okar, D.A., Lange, A.J., Manzano, À., Navarro-Sabatè, A., Riera, L., Bartrons, R.: PFK-2/FBPase-2: maker and breaker of the essential biofactor fructose-2,6-bisphosphate. Trends Biochem. Sci. 26, 30–35 (2001). https://doi.org/10.1016/S0968-0004(00)01699-6

    Article  Google Scholar 

  31. Orman, M.A., Arai, K., Yarmush, M.L., Androulakis, I.P., Berthiaume, F., Ierapetritou, M.G.: Metabolic flux determination in perfused livers by mass balance analysis: effect of fasting. Biotechno. Bioeng. 107, 825–835 (2010). https://doi.org/10.1002/bit.22878

    Article  Google Scholar 

  32. Perry, R.J., et al.: Leptin mediates a glucose-fatty acid cycle to maintain glucose homeostasis in starvation. Cell 172(1–2), 234–248 (2018). https://doi.org/10.1016/j.cell.2017.12.001

    Article  Google Scholar 

  33. Phung, T.L., Roncone, A., Jensen, K.L.D.M., Sparks, C.E., Sparks, J.D.: Phosphoinositide 3-kinase activity is necessary for insulin-dependent inhibition of apolipoprotein b secretion by rat hepatocytes and localizes to the endoplasmic reticulum. J. Biol. Chem. 272, 30693–30702 (1997). https://doi.org/10.1074/jbc.272.49.30693

    Article  Google Scholar 

  34. Pratt, A.C., Wattis, J.A., Salter, A.M.: Mathematical modelling of hepatic lipid metabolism. Math. Biosci. 262, 167–181 (2015). https://doi.org/10.1016/j.mbs.2014.12.012

    Article  MathSciNet  MATH  Google Scholar 

  35. Previs, S.F., Cline, G.W., Shulman, G.I.: A critical evaluation of mass isotopomer distribution analysis of gluconeogenesis in vivo. Am. J. Physiol. - Endocrinol. Metab. 277, E154–E160 (1999). https://doi.org/10.1152/ajpendo.1999.277.1.e154

    Article  Google Scholar 

  36. Roach, P.: Glycogen and its metabolism. Curr. Mol. Med. 2, 101–120 (2005). https://doi.org/10.2174/1566524024605761

    Article  Google Scholar 

  37. Samuel, V.T., Shulman, G.I.: The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J. Clin. Invest. 126, 12–22 (2016). https://doi.org/10.1172/JCI77812

    Article  Google Scholar 

  38. Schleicher, J., et al.: Zonation of hepatic fatty acid metabolism - the diversity of its regulation and the benefit of modeling. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1851(5), 641–656 (2015). https://doi.org/10.1016/j.bbalip.2015.02.004

    Article  Google Scholar 

  39. Schleicher, J., Dahmen, U., Guthke, R., Schuster, S.: Zonation of hepatic fat accumulation: insights from mathematical modelling of nutrient gradients and fatty acid uptake. J. Roy. Soc. Interface 14(133), 20170443 (2017). https://doi.org/10.1098/rsif.2017.0443

    Article  Google Scholar 

  40. Sparks, J.D., Sparks, C.E., Adeli, K.: Selective hepatic insulin resistance, VLDL overproduction, and hypertriglyceridemia. Arterioscler. Thromb. Vasc. Biol. 32, 2104–2112 (2012). https://doi.org/10.1161/ATVBAHA.111.241463

    Article  Google Scholar 

  41. Stephens, F.B., Constantin-teodosiu, D., Greenhaff, P.L.: New insights concerning the role of carnitine in the regulation of fuel metabolism in skeletal muscle. J. Physiol. 581, 431–444 (2007). https://doi.org/10.1113/jphysiol.2006.125799

    Article  Google Scholar 

  42. Stümpel, F., Ott, T., Willecke, K., Jungermann, K.: Connexin 32 gap junctions enhance stimulation of glucose output by glucagon and noradrenaline in mouse liver. Hepatology 28(6), 1616–1620 (1998). https://doi.org/10.1002/hep.510280622

    Article  Google Scholar 

  43. Sydne J. Carlson-Newberry, R.B.C.: Emerging Technologies for Nutrition Research: Potential for Assessing Military Performance Capability. National Academies Press (1997). https://doi.org/10.17226/5827

  44. Theurey, P., et al.: Mitochondria-associated endoplasmic reticulum membranes allow adaptation of mitochondrial metabolism to glucose availability in the liver. J. Mol. Cell Biol. 8, 129–143 (2016). https://doi.org/10.1093/jmcb/mjw004

    Article  Google Scholar 

  45. Thorens, B.: GLUT2, glucose sensing and glucose homeostasis. Diabetologia 58(2), 221–232 (2014). https://doi.org/10.1007/s00125-014-3451-1

    Article  Google Scholar 

  46. Willebrords, J., et al.: Structure, regulation and function of gap junctions in liver. Cell Commun. Adhesion 22(2–6), 29–37 (2015). https://doi.org/10.3109/15419061.2016.1151875

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina V. Dokukina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martyshina, A.V., Dokukina, I.V. (2022). Role of Abnormal Calcium Signaling and Liver Tissue Structure in Glucose and Lipid Metabolism: Mathematical Modeling. In: Balandin, D., Barkalov, K., Meyerov, I. (eds) Mathematical Modeling and Supercomputer Technologies. MMST 2022. Communications in Computer and Information Science, vol 1750. Springer, Cham. https://doi.org/10.1007/978-3-031-24145-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24145-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24144-4

  • Online ISBN: 978-3-031-24145-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics