Skip to main content
Log in

A Model of NEFA Dynamics with Focus on the Postprandial State

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

To improve the understanding of the mechanisms underlying the behavior of plasma non-esterified fatty acids (NEFA) in the postprandial state, we have developed a physiology-based mathematical model of plasma NEFA dynamics. Known physiological mechanisms are quantified and used to describe NEFA dynamics. Insulin is the major regulator of NEFA metabolism in the postprandial state. Plasma NEFA levels are thus highly dependent on the insulin concentration, the insulin sensitivity of adipose tissue, and the maximal lipolytic rate. In the postabsorptive state, e.g., at low insulin, adipose tissue lipolysis results in a net export of NEFA from adipose tissue to other tissues. Postprandially, the rise in insulin results in: Decreased lipolysis; a higher rate of lipoprotein lipase (LPL) activity; and decreased NEFA uptake and reesterification by adipose tissue stimulation of reesterification. The result is a drop in plasma NEFA after a carbohydrate containing meal. When insulin returns to postabsorptive levels, a rebound in plasma NEFA often occurs. This rebound is due to a restoration of lipolysis, a decrease in NEFA reesterification by adipose tissue and an increased LPL—as insulin activates LPL with a delay of several hours. In conclusion, movements of NEFA depend strongly on insulin—with postprandial plasma NEFA being almost inversely related to the insulin concentration in healthy humans. The model provides an integrative view of NEFA dynamics and a framework for quantitative and conceptual understanding of plasma NEFA fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Acheson, K. J., Y. Schutz, T. Bessard, E. Ravussin, E. Jequier, and J. P. Flatt. Nutritional influences on lipogenesis and thermogenesis after a carbohydrate meal. Am. J. Physiol. 246:E62–E70, 1984.

    PubMed  CAS  Google Scholar 

  2. Appel, B., and S. K. Fried. Effects of insulin and dexamethasone on lipoprotein lipase in human adipose tissue. Am. J. Physiol. 262:E695–E699, 1992.

    PubMed  CAS  Google Scholar 

  3. Armstrong, D. T., R. Steele, N. Altszuler, A. Dunn, J. S. Bishop, and R. C. de Bodo. Regulation of plasma free fatty acid turnover. Am. J. Physiol. 201:9–15, 1961.

    PubMed  CAS  Google Scholar 

  4. Bajaj, M., T. Pratipanawatr, R. Berria, W. Pratipanawatr, S. Kashyap, K. Cusi, L. Mandarino, and R. A. DeFronzo. Free fatty acids reduce splanchnic and peripheral glucose uptake in patients with type 2 diabetes. Diabetes 51:3043–3048, 2002. doi:10.2337/diabetes.51.10.3043.

    Article  PubMed  CAS  Google Scholar 

  5. Bassingthwaighte, J. B., L. Noodleman, G. van der Vusse, and J. F. Glatz. Modeling of palmitate transport in the heart. Mol. Cell. Biochem. 88:51–58, 1989. doi:10.1007/BF00223423.

    Article  PubMed  CAS  Google Scholar 

  6. Bobbioni-Harsch, E., F. Habicht, T. Lehmann, R. W. James, F. Rohner-Jeanrenaud, and A. Golay. Energy expenditure and substrates oxidative patterns, after glucose, fat or mixed load in normal weight subjects. Eur. J. Clin. Nutr. 51:370–374, 1997. doi:10.1038/sj.ejcn.1600413.

    Article  PubMed  CAS  Google Scholar 

  7. Boden, G. Free fatty acids (FFA), a link between obesity and insulin resistance. Front. Biosci. 3:169–175, 1998.

    Google Scholar 

  8. Boden, G., X. H. Chen, J. Ruiz, J. V. White, and L. Rossetti. Mechanisms of fatty acid-induced inhibition of glucose-uptake. J. Clin. Invest. 93:2438–2446, 1994. doi:10.1172/JCI117252.

    Article  PubMed  CAS  Google Scholar 

  9. Boer, P. Estimated lean body mass as an index for normalization of body fluid volumes in humans. Am. J. Physiol. 247:F632–F636, 1984.

    PubMed  CAS  Google Scholar 

  10. Bolinder, J., L. Kager, J. Ostman, and P. Arner. Differences at the receptor and postreceptor levels between human omental and subcutaneous adipose tissue in the action of insulin on lipolysis. Diabetes 32:117–123, 1983. doi:10.2337/diabetes.32.2.117.

    Article  PubMed  CAS  Google Scholar 

  11. Bonadonna, R. C., L. C. Groop, K. Zych, M. Shank, and R. A. DeFronzo. Dose-dependent effect of insulin on plasma free fatty acid turnover and oxidation in humans. Am. J. Physiol. 259:E736–E750, 1990.

    PubMed  CAS  Google Scholar 

  12. Brunzell, J. D., W. R. Hazzard, D. Porte, and E. L. Bierman. Evidence for a common, saturable, triglyceride removal mechanism for chylomicrons and very low density lipoproteins in man. J. Clin. Invest. 52:1578–1585, 1973. doi:10.1172/JCI107334.

    Article  PubMed  CAS  Google Scholar 

  13. Bulow, J., L. Simonsen, D. Wiggins, S. M. Humphreys, K. N. Frayn, D. Powell, and G. F. Gibbons. Co-ordination of hepatic and adipose tissue lipid metabolism after oral glucose. J. Lipid Res. 40:2034–2043, 1999.

    PubMed  CAS  Google Scholar 

  14. Campbell, P. J., M. G. Carlson, J. O. Hill, and N. Nurjhan. Regulation of free fatty acid metabolism by insulin in humans: role of lipolysis and reesterification. Am. J. Physiol. 263:E1063–E1069, 1992.

    PubMed  CAS  Google Scholar 

  15. Campbell, P. J., M. G. Carlson, and N. Nurjhan. Fat-metabolism in human obesity. Am. J. Physiol. 266:E600–E605, 1994.

    PubMed  CAS  Google Scholar 

  16. Connelly, P. W., G. F. Maguire, C. Vezina, R. A. Hegele, and A. Kuksis. Kinetics of lipolysis of very-low-density lipoproteins by lipoprotein-lipase—importance of particle number and noncompetitive inhibition by particles with low triglyceride content. J. Biol. Chem. 269:20554–20560, 1994.

    PubMed  CAS  Google Scholar 

  17. Coppack, S. W., D. L. Chinkes, J. M. Miles, B. W. Patterson, and S. Klein. A multicompartmental model of in vivo adipose tissue glycerol kinetics and capillary permeability in lean and obese humans. Diabetes 54:1934–1941, 2005. doi:10.2337/diabetes.54.7.1934.

    Article  PubMed  CAS  Google Scholar 

  18. Coppack, S. W., R. D. Evans, R. M. Fisher, K. N. Frayn, G. F. Gibbons, S. M. Humphreys, M. L. Kirk, J. L. Potts, and T. D. Hockaday. Adipose tissue metabolism in obesity: lipase action in vivo before and after a mixed meal. Metabolism 41:264–272, 1992. doi:10.1016/0026-0495(92)90269-G.

    Article  PubMed  CAS  Google Scholar 

  19. Coppack, S. W., and K. N. Frayn. Adipose tissue balance technique: application in human disease. In: The Diabetes Annual 13, edited by M. Walker, P. Butler, and R. A. Rizza. Elsevier Science, Ltd., 2000.

  20. Coppack, S. W., K. N. Frayn, and S. M. Humphreys. Plasma triacylglycerol extraction in human adipose tissue in vivo: effects of glucose ingestion and insulin infusion. Eur. J. Clin. Nutr. 43:493–496, 1989.

    PubMed  CAS  Google Scholar 

  21. Coppack, S. W., K. N. Frayn, S. M. Humphreys, H. Dhar, and T. D. Hockaday. Effects of insulin on human adipose tissue metabolism in vivo. Clin. Sci. (Colch) 77:663–670, 1989.

    CAS  Google Scholar 

  22. Coppack, S. W., M. D. Jensen, and J. M. Miles. In vivo regulation of lipolysis in humans. J. Lipid Res. 35:177–193, 1994.

    PubMed  CAS  Google Scholar 

  23. Coppack, S. W., M. Persson, R. L. Judd, and J. M. Miles. Glycerol and nonesterified fatty acid metabolism in human muscle and adipose tissue in vivo. Am. J. Physiol. 276:E233–E240, 1999.

    PubMed  CAS  Google Scholar 

  24. Cryer, A. Tissue lipoprotein lipase activity and its action in lipoprotein metabolism. Int. J. Biochem. 13:525–541, 1981. doi:10.1016/0020-711X(81)90177-4.

    Article  PubMed  CAS  Google Scholar 

  25. Cunningham, J. J. Body composition as a determinant of energy expenditure a synthetic review and a proposed general prediction equation. Am. J. Clin. Nutr. 54:963–969, 1991.

    PubMed  CAS  Google Scholar 

  26. Evans, K., G. C. Burdge, S. A. Wootton, M. L. Clark, and K. N. Frayn. Regulation of dietary fatty acid entrapment in subcutaneous adipose tissue and skeletal muscle. Diabetes 51:2684–2690, 2002. doi:10.2337/diabetes.51.9.2684.

    Article  PubMed  CAS  Google Scholar 

  27. Evans, K., M. L. Clark, and K. N. Frayn. Effects of an oral and intravenous fat load on adipose tissue and forearm lipid metabolism. Am. J. Physiol. 276:E241–E248, 1999.

    PubMed  CAS  Google Scholar 

  28. Faraj, M., P. Jones, A. D. Sniderman, and K. Cianflone. Enhanced dietary fat clearance in postobese women. J. Lipid Res. 42:571–580, 2001.

    PubMed  CAS  Google Scholar 

  29. Fery, F., L. Plat, and E. O. Balasse. Effect of fasting on the intracellular metabolic partition of intravenously infused glucose in humans. Am. J. Physiol. Endocrinol. Metab. 277:E815–E823, 1999.

    CAS  Google Scholar 

  30. Fielding, B. A., and K. N. Frayn. Lipoprotein lipase and the disposition of dietary fatty acids. Br. J. Nutr. 80:495–502, 1998.

    PubMed  CAS  Google Scholar 

  31. Frayn, K. N. Metabolic Regulation. A Human Perspective. Portland Press, 1999.

  32. Frayn, K. N., S. W. Coppack, B. A. Fielding, and S. M. Humphreys. Coordinated regulation of hormone-sensitive lipase and lipoprotein lipase in human adipose tissue in vivo: implications for the control of fat storage and fat mobilization. Adv. Enzyme Regul. 35:163–178, 1995. doi:10.1016/0065-2571(94)00011-Q.

    Article  PubMed  CAS  Google Scholar 

  33. Frayn, K. N., S. Shadid, R. Hamlani, S. M. Humphreys, M. L. Clark, B. A. Fielding, O. Boland, and S. W. Coppack. Regulation of fatty acid movement in human adipose tissue in the postabsorptive-to-postprandial transition. Am. J. Physiol. 266:E308–E317, 1994.

    PubMed  CAS  Google Scholar 

  34. Frohnert, B. I., and D. A. Bernlohr. Regulation of fatty acid transporters in mammalian cells. Prog. Lipid Res. 39:83–107, 2000. doi:10.1016/S0163-7827(99)00018-1.

    Article  PubMed  CAS  Google Scholar 

  35. Groop, L. C., R. C. Bonadonna, S. DelPrato, K. Ratheiser, K. Zyck, E. Ferrannini, and R. A. DeFronzo. Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus. Evidence for multiple sites of insulin resistance. J. Clin. Invest. 84:205–213, 1989. doi:10.1172/JCI114142.

    Article  PubMed  CAS  Google Scholar 

  36. Groop, L. C., R. C. Bonadonna, M. Shank, A. S. Petrides, and R. A. DeFronzo. Role of free fatty acids and insulin in determining free fatty acid and lipid oxidation in man. J. Clin. Invest. 87:83–89, 1991. doi:10.1172/JCI115005.

    Article  PubMed  CAS  Google Scholar 

  37. Groop, L. C., R. C. Bonadonna, D. C. Simonson, A. S. Petrides, M. Shank, and R. A. DeFronzo. Effect of insulin on oxidative and nonoxidative pathways of free fatty acid metabolism in human obesity. Am. J. Physiol. 263:E79–E84, 1992.

    PubMed  CAS  Google Scholar 

  38. Groop, L. C., C. Saloranta, M. Shank, R. C. Bonadonna, E. Ferrannini, and R. A. DeFronzo. The role of free fatty acid metabolism in the pathogenesis of insulin resistance in obesity and noninsulin-dependent diabetes mellitus. J. Clin. Endocrin. Metab. 72:96–107, 1991.

    Article  CAS  Google Scholar 

  39. Hamilton, J. A., and F. Kamp. How are free fatty acids transported in membranes? Is it by proteins or by free diffusion through the lipids? Diabetes 48:2255–2269, 1999. doi:10.2337/diabetes.48.12.2255.

    Article  PubMed  CAS  Google Scholar 

  40. Havel, R. J., A. Naimark, and C. F. Borchgrevink. Turnover rate and oxidation of free fatty acids of blood plasma in man during exercise: studies during continuous infusion of palmitate-1-C14. J. Clin. Invest. 42:1054–1063, 1963. doi:10.1172/JCI104791.

    Article  PubMed  CAS  Google Scholar 

  41. Heimberg, M., H. G. Wilcox, G. D. Dunn, W. F. Woodside, K. J. Brent, and C. Soler-Argilaga. Studies on the regualtion of secretion of the very low density lipoprotein, and on ketogenesis by the liver. In: F. Lundquist, and N. Tygstrup 6:119–141, 1973. Copenhagen, Scandinavian University Books. Alfred Benzon Symposium, 1973.

  42. Jansson, P. A., J. P. Fowelin, H. P. von Schenck, U. P. Smith, and P. N. Lonnroth. Measurement by microdialysis of the insulin concentration in subcutaneous interstitial fluid. Importance of the endothelial barrier for insulin. Diabetes 42:1469–1473, 1993. doi:10.2337/diabetes.42.10.1469.

    Article  PubMed  CAS  Google Scholar 

  43. Jensen, M. D., K. Ekberg, and B. R. Landau. Lipid metabolism during fasting. Am. J. Physiol. 281:E789–E793, 2001.

    CAS  Google Scholar 

  44. Kalant, D., S. Phelis, B. A. Fielding, K. N. Frayn, K. Cianflone, and A. D. Sniderman. Increased postprandial fatty acid trapping in subcutaneous adipose tissue in obese women. J. Lipid Res. 41:1963–1968, 2000.

    PubMed  CAS  Google Scholar 

  45. Karpe, F., B. A. Fielding, J. L. Ardilouze, V. Ilic, I. A. MacDonald, and K. N. Frayn. Effects of insulin on adipose tissue blood flow in man. J. Physiol. 540:1087–1093, 2002. doi:10.1113/jphysiol.2001.013358.

    Article  PubMed  CAS  Google Scholar 

  46. Knutson, V. P. The release of lipoprotein lipase from 3T3-L1 adipocytes is regulated by microvessel endothelial cells in an insulin-dependent manner. Endocrinology 141:693–701, 2000. doi:10.1210/en.141.2.693.

    Article  PubMed  CAS  Google Scholar 

  47. Kohout, M., B. Kohoutova, and M. Heimberg. The regulation of hepatic triglyceride metabolism by free fatty acids. J. Biol. Chem. 246:5067–5074, 1971.

    PubMed  CAS  Google Scholar 

  48. Levitt, D. G. The pharmacokinetics of the interstitial space in humans. BMC Clin. Pharmacol. 3:3, 2003. doi:10.1186/1472-6904-3-3.

  49. Lewis, G. F., A. Carpentier, K. Adeli, and A. Giacca. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr. Rev. 23:201–229, 2002. doi:10.1210/er.23.2.201.

    Article  PubMed  CAS  Google Scholar 

  50. Madsen, J., J. Bulow, and N. E. Nielsen. Inhibition of fatty acid mobilization by arterial free fatty acid concentration. Acta Physiol. Scand. 127:161–166, 1986. doi:10.1111/j.1748-1716.1986.tb07889.x.

    Article  PubMed  CAS  Google Scholar 

  51. Manganiello, V. C., F. Murad, and M. Vaughan. Effects of lipolytic and antilipolytic agents on cyclic 3′,5′-adenosine monophosphate in fat cells. J. Biol. Chem. 246:2195–2202, 1971.

    PubMed  CAS  Google Scholar 

  52. McGarry, J. D., and D. W. Foster. The regulation of ketogenesis from oleic acid and the influence of antiketogenic agents. J. Biol. Chem. 246:6247–6253, 1971.

    PubMed  CAS  Google Scholar 

  53. Miles, J. M., D. Wooldridge, W. J. Grellner, S. Windsor, W. L. Isley, S. Klein, and W. S. Harris. Nocturnal and postprandial free fatty acid kinetics in normal and type 2 diabetic subjects: effects of insulin sensitization therapy. Diabetes 52:675–681, 2003. doi:10.2337/diabetes.52.3.675.

    Article  PubMed  CAS  Google Scholar 

  54. Moeri, R., A. Golay, Y. Schutz, E. Temler, E. Jequier, and J. P. Felber. Oxidative and nonoxidative glucose metabolism following graded doses of oral glucose in man. Diabetes Metab. 14:1–7, 1988.

    CAS  Google Scholar 

  55. Morino, K., K. F. Petersen, and G. I. Shulman. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes 55:S9–S15, 2006. doi:10.2337/db06-S002.

    Article  PubMed  CAS  Google Scholar 

  56. Richelsen, B., S. B. Pedersen, T. Moller-Pedersen, and J. F. Bak. Regional differences in triglyceride breakdown in human adipose tissue: effects of catecholamines, insulin, and prostaglandin E2. Metabolism 40:990–996, 1991. doi:10.1016/0026-0495(91)90078-B.

    Article  PubMed  CAS  Google Scholar 

  57. Rosato, E. F., P. Vemulapalli, C. H. Lang, and S. Lanza-Jacoby. Insulin stimulates lipoprotein lipase activity and synthesis in adipocytes from septic rats. J. Surg. Res. 73:73–79, 1997. doi:10.1006/jsre.1997.5199.

    Article  PubMed  CAS  Google Scholar 

  58. Saleh, J., L. K. M. Summers, K. Cianflone, B. A. Fielding, A. D. Sniderman, and K. N. Frayn. Coordinated release of acylation stimulating protein (ASP) and triacylglycerol clearance by human adipose tissue in vivo in the postprandial period. J. Lipid Res. 39:884–891, 1998.

    PubMed  CAS  Google Scholar 

  59. Samra, J. S., M. L. Clark, S. M. Humphreys, I. A. MacDonald, P. A. Bannister, and K. N. Frayn. Effects of physiological hypercortisolemia on the regulation of lipolysis in subcutaneous adipose tissue. J. Clin. Endocrin. Metab. 83:626–631, 1998. doi:10.1210/jc.83.2.626.

    Article  CAS  Google Scholar 

  60. Santomauro, A. T., G. Boden, M. E. Silva, D. M. Rocha, R. F. Santos, M. J. Ursich, P. G. Strassmann, and B. L. Wajchenberg. Overnight lowering of free fatty acids with Acipimox improves insulin resistance and glucose tolerance in obese diabetic and nondiabetic subjects. Diabetes 48:1836–1841, 1999. doi:10.2337/diabetes.48.9.1836.

    Article  PubMed  CAS  Google Scholar 

  61. Schwartz, R. S., E. Ravussin, M. Massari, M. O’Connell, and D. C. Robbins. The thermic effect of carbohydrate versus fat feeding in man. Metabolism 34:285–293, 1985. doi:10.1016/0026-0495(85)90014-9.

    Article  PubMed  CAS  Google Scholar 

  62. Soler-Argilaga, C., and M. Heimberg. Comparison of metabolism of free fatty acid by isolated perfused livers from male and female rats. J. Lipid Res. 17:605–615, 1976.

    PubMed  CAS  Google Scholar 

  63. Stumvoll, M., H. G. Wahl, F. Machicao, and H. Haring. Insulin sensitivity of glucose disposal and lipolysis: no influence of common genetic variants in IRS-1 and CAPN10. Diabetologia 45:651–656, 2002. doi:10.1007/s00125-002-0793-x.

    Article  PubMed  CAS  Google Scholar 

  64. Sztalryd, C., and F. B. Kraemer. Regulation of hormone-sensitive lipase during fasting. Am. J. Physiol. 266:E179–E185, 1994.

    PubMed  CAS  Google Scholar 

  65. Thompson, M. P., S. T. Cooper, B. R. Parry, and J. A. Tuckey. Increased expression of the mRNA for hormone-sensitive lipase in adipose tissue of cancer patients. Biochim. Biophys. Acta 1180:236–242, 1993.

    PubMed  CAS  Google Scholar 

  66. Van Harken, D. R., C. W. Dixon, and M. Heimberg. Hepatic lipid metabolism in experimental diabetes. V. The effect of concentration of oleate on metabolism of triglycerides and on ketogenesis. J. Biol. Chem. 244:2278–2285, 1969.

    PubMed  Google Scholar 

  67. Van Harmelen, V., S. Reynisdottir, K. Cianflone, E. Degerman, J. Hoffstedt, K. Nilsell, A. Sniderman, and P. Arner. Mechanisms involved in the regulation of free fatty acid release from isolated human fat cells by acylation-stimulating protein and insulin. J. Biol. Chem. 274:18243–18251, 1999. doi:10.1074/jbc.274.26.18243.

    Article  PubMed  Google Scholar 

  68. Vernet, O., L. Christin, Y. Schutz, E. Danforth, and E. Jequier. Enteral versus parenteral nutrition: comparison of energy metabolism in lean and moderately obese women. Am. J. Clin. Nutr. 43:194–209, 1986.

    PubMed  CAS  Google Scholar 

  69. Wang, Z. M., S. Heshka, K. Zhang, C. N. Boozer, and S. B. Heymsfield. Resting energy expenditure: systematic organization and critique of prediction methods. Obes. Res. 9:331–336, 2001. doi:10.1038/oby.2001.42.

    Article  PubMed  CAS  Google Scholar 

  70. Webber, J., J. Taylor, H. Greathead, J. Dawson, P. J. Buttery, and I. A. MacDonald. Effects of fasting on fatty acid kinetics and on the cardiovascular, thermogenic and metabolic responses to the glucose clamp. Clin. Sci. 87:697–706, 1994.

    PubMed  CAS  Google Scholar 

  71. Wolfe, R. R., S. Klein, F. Carraro, and J. M. Weber. Role of triglyceride-fatty acid cycle in controlling fat metabolism in humans during and after exercise. Am. J. Physiol. 258:E382–E389, 1990.

    PubMed  CAS  Google Scholar 

  72. Yang, Y. J., I. D. Hope, M. Ader, and R. N. Bergman. Insulin transport across capillaries is rate limiting for insulin action in dogs. J. Clin. Invest. 84:1620–1628, 1989. doi:10.1172/JCI114339.

    Article  PubMed  CAS  Google Scholar 

  73. Zauner, C., B. Schneeweiss, A. Kranz, C. Madl, K. Ratheiser, L. Kramer, E. Roth, B. Schneider, and K. Lenz. Resting energy expenditure in short-term starvation is increased as a result of an increase in serum norepinephrine. Am. J. Clin. Nutr. 71:1511–1515, 2000.

    PubMed  CAS  Google Scholar 

  74. Zierath, J. R., J. N. Livingston, A. Thorne, J. Bolinder, S. Reynisdottir, F. Lonnqvist, and P. Arner. Regional difference in insulin inhibition of non-esterified fatty acid release from human adipocytes: relation to insulin receptor phosphorylation and intracellular signalling through the insulin receptor substrate-1 pathway. Diabetologia 41:1343–1354, 1998. doi:10.1007/s001250051075.

    Article  PubMed  CAS  Google Scholar 

  75. Zimmermann, R., J. G. Strauss, G. Haemmerle, G. Schoiswohl, R. Birner-Gruenberger, M. Riederer, A. Lass, G. Neuberger, F. Eisenhaber, A. Hermetter, and R. Zechner. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306:1383–1386, 2004. doi:10.1126/science.1100747.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was in part supported by the European Commission through the BIOSIM project (Contract Number LSHB-CT-2004-005137), which is gratefully acknowledged. Professor Keith N. Frayn (Oxford Centre for Diabetes, Endocrinology and Metabolism) is appreciated for sharing his group’s tremendous amount of data on NEFA dynamics with us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten Colding-Jørgensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jelic, K., Hallgreen, C.E. & Colding-Jørgensen, M. A Model of NEFA Dynamics with Focus on the Postprandial State. Ann Biomed Eng 37, 1897–1909 (2009). https://doi.org/10.1007/s10439-009-9738-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9738-6

Keywords

Navigation