Skip to main content

Fluorescent Biosensors Based on II–VI Quantum Dots

  • Chapter
  • First Online:
Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors

Abstract

This chapter presents the fluorescent biosensors (FBSs) using II–VI compound quantum dots (QDs). To make it easier for the readers to follow, we organise the chapter as follows. First, we briefly describe what biosensors are, paying more attention to the FBSs. Particularly, the unique advantages of fluorescent II–VI QDs in FBSs, despite certain limitations relating to the Cd-containing toxicity to the human body, are made clear. Then, aiming to possible applications, FBSs can be reasonably classified into five kinds for detecting: (i) viruses, mycotoxins, pathogens, specific proteins, enzymes, nucleic acids, cellular, in vivo targeting imaging for diagnostics, disease treatments and health care; (ii) residues of pesticides, herbicides, growth-promoting hormone in agricultural productions; (iii) banned/toxic residuals, bacteria-contaminated in foods, drinking water, agricultural products for food safety; (iv) heavy metals in environmental samples and (v) latent fingerprints, security markers and TNT explosive for criminal, forensic and security investigations. In each kind of FBS, we illustrate the structure/design, operating principle, signal detection, sensitivity/limit of detection, linearity, precision/repeatability and reproducibility, as well as its advantages/disadvantages. Finally, in the conclusion, we remark the FBSs based on II–VI QDs possess unique advantages such as easy fabrication, high fluorescence efficiency in the whole UV-to-IR spectral region, large Stokes shift with the emission dependent on their size or composition, particularly when they are in the type-II quantum structure that has long fluorescence decay time for fluorescence imaging out from the natural/self-fluorescence noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sapsford KE, Pons T, Medintz IL, Mattoussi H. Biosensing with luminescent semiconductor quantum dots. Sensors. 2006;6:925–53. https://doi.org/10.3390/s6080925.

    Article  ADS  Google Scholar 

  2. Lia J, Zhu J-J. Quantum dots for fluorescent biosensing and bio-imaging applications. Analyst. 2013;138:2506–15. https://doi.org/10.1039/c3an36705c.

    Article  ADS  Google Scholar 

  3. Ma F, Li C-c, Zhang C-y. Development of quantum dot-based biosensors: principles and applications. J Mater Chem B. 2018;6:6173–90. https://doi.org/10.1039/C8TB01869C.

    Article  Google Scholar 

  4. Lesiak A, Drzozga K, Cabaj J, Ba’nski M, Malecha K, Podhorodecki A. Optical sensors based on II-VI quantum dots. Nanomaterials. 2019;9:192. (24 pages). https://doi.org/10.3390/nano9020192.

    Article  Google Scholar 

  5. Şahin S, Ünlü C, Trabzon L. Affinity biosensors developed with quantum dots in microfluidic systems. Emerg Mater. 2021;4:187–209. https://doi.org/10.1007/s42247-021-00195-5.

    Article  Google Scholar 

  6. Rogatch A. Semiconductor nanocrystal quantum dots. Springer-Verlag/Wien; 2008, ISBN: 978-3-211-75235-7.

    Google Scholar 

  7. Liem NQ. CdSe, CdTe, InP and CuInS2 semiconductor quantum dots: synthesis, optical properties and applications. Publishing House for Science and Technology, VAST; ISBN: 978-604-913-029-8 (in Vietnamese).

    Google Scholar 

  8. McConnell EM, Nguyen J, Li Y. Aptamer-based biosensors for environmental monitoring. Front Chem. 2020;8:434. https://doi.org/10.3389/fchem.2020.00434.

    Article  ADS  Google Scholar 

  9. Bea Murray C, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc. 1993;115:8706–15. https://doi.org/10.1021/ja00072a025.

    Article  Google Scholar 

  10. Bruchez M Jr, Moronne M, Gin P, Shimon W, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science. 1998;281:2013–6. https://doi.org/10.1126/science.281.5385.2013.

    Article  ADS  Google Scholar 

  11. Chan WC, Nie S. Quantum dot bBioconjugates for ultrasensitive nonisotopic detection. Science. 1998;281:2016–8. https://doi.org/10.1126/science.281.5385.2016.

    Article  ADS  Google Scholar 

  12. Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, Eychmüller A, Weller H. Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. J Phys Chem B. 2002;106:7177–85. https://doi.org/10.1021/jp025541k.

    Article  Google Scholar 

  13. Thuy UTD, Tu LA, Loan NT, Chi TTK, Liem NQ. Comparative photoluminescence properties of type-I and type-II CdTe/CdS core/shell quantum dots. Opt Mater. 2016;53:34–8. https://doi.org/10.1016/j.optmat.2016.01.022.

    Article  ADS  Google Scholar 

  14. Nguyen TH, Ung TDT, Vu TH, Tran TKC, Dong VQ, Dinh DK, Nguyen QL. Fluorescence biosensor based on CdTe quantum dots for specific detection of H5N1 avian influenza virus. Adv Nat Sci. 2012;3:035014. (5pp). https://doi.org/10.1088/2043-6262/3/3/035014.

    Article  Google Scholar 

  15. Hamidi SV, Ghourchian H, Tavoosidana G. Real-time detection of H5N1 influenza virus through hyperbranched rolling circle amplification. Analyst. 2015;140:1502–9. https://doi.org/10.1039/C4AN01954G.

    Article  ADS  Google Scholar 

  16. Wu F, Yuan H, Zhou CH, Mao M, Liu Q, Shen HB, Cen Y, Qin ZF, Ma L, Li LS. Multiplexed detection of influenza A virus subtype H5 and H9 via quantum dot-based immunoassay. Biosens Bioelectron. 2016;77:464–70. https://doi.org/10.1016/j.bios.2015.10.002.

    Article  Google Scholar 

  17. Zhang Y, Fei M, Duan Y, Li Q, Pan Y, Hongfang D, He P, Shen X, Luo Z, Zhu C, Wang L. Label-free analysis of H5N1 virus based on three-segment branched DNA-templated fluorescent silver nanoclusters. ACS Appl Mater Interfaces. 2020;12(43):48357–62. https://doi.org/10.1021/acsami.0c14509.

    Article  Google Scholar 

  18. Babamiri B, Hallaj R, Salimi A. Solid surface fluorescence immunosensor for ultrasensitive detection of hepatitis B virus surface antigen using PAMAM/CdTe@CdS QDs nanoclusters. Methods Appl Fluoresc. 2018;6:035013. https://doi.org/10.1088/2050-6120/aac8f7.

    Article  ADS  Google Scholar 

  19. Boeneman K, Mei BC, Dennis AM, Bao G, Deschamps JR, Mattoussi H, Medintz IL. Sensing Caspase 3 activity with quantum dot-fluorescent protein assemblies. J Am Chem Soc. 2009;131:3828–9. https://doi.org/10.1021/ja809721j.

    Article  Google Scholar 

  20. Lv Y, Wu R, Feng K, Li J, Mao Q, Yuan H, Shen H, Chai X, Li LS. Highly sensitive and accurate detection of C-reactive protein by CdSe/ZnS quantum dot-based fluorescence-linked immunosorbent assay. J Nanobiotechnol. 2017;15:35. https://doi.org/10.1186/s12951-017-0267-4.

    Article  Google Scholar 

  21. Liu Z, Liu S, Wang X, Li P, He Y. A novel quantum dots-based OFF–ON fluorescent biosensor for highly selective and sensitive detection of double-strand DNA. Sens Actuators B. 2013;176:1147–53. https://doi.org/10.1016/j.snb.2012.10.085.

    Article  Google Scholar 

  22. Moulick A, Milosavljevic V, Vlachova J, Podgajny R, Hynek D, Kopel P, Adam V. Using CdTe/ZnSe core/shell quantum dots to detect DNA and damage to DNA. Int J Nanomed. 2017;12:1277–91. https://doi.org/10.2147/IJN.S121840.

    Article  Google Scholar 

  23. Wang X, Liu Z, Gao P, Li Y, Qu X. Quantum dots mediated fluorescent “turn-off-on” sensor for highly sensitive and selective sensing of protein. Colloids Surfaces B. 2020;185:110599. https://doi.org/10.1016/j.colsurfb.2019.110599.

    Article  Google Scholar 

  24. Ebrahim S, Reda M, Hussien A, Zayed D. CdTe quantum dots as a novel biosensor for Serratia marcescens and Lipopolysaccharide. Biomol Spectrosc. 2015;150:212–9. https://doi.org/10.1016/j.saa.2015.05.042.

    Article  Google Scholar 

  25. Xue Y, Thalmayer AS, Zeising S, Fischer G, Lübke M. Commercial and scientific solutions for blood glucose monitoring—a review. Sensors. 2022;22:425. https://doi.org/10.3390/s22020425.

    Article  ADS  Google Scholar 

  26. Duong HD, Sohn O-J, Rhee JI. Development of a ratiometric fluorescent glucose sensor using an oxygen-sensing membrane immobilized with glucose oxidase for the detection of glucose in tears. Biosensors. 2020;10:86. https://doi.org/10.3390/bios10080086.

    Article  Google Scholar 

  27. Chen G, Hu Q, Shu H, Lu W, Cui X, Han J, Bashir K, Luo Z, Chang C, Fu Q. Fluorescent biosensor based on magnetic cross-linking enzyme aggregates/CdTe quantum dots for the detection of H2O2-bioprecursors. New J Chem. 2020;44:17984–92. https://doi.org/10.1039/d0nj03761c.

    Article  Google Scholar 

  28. Hu M, Tian J, Lu H-T, Weng L-X, Wang L-H. H2O2-sensitive quantum dots for the label-free detection of glucose. Talanta. 2010;82:997–1002. https://doi.org/10.1016/j.talanta.2010.06.005.

    Article  Google Scholar 

  29. Cao L, Ye J, Tong L, Tang B. A new route to the considerable enhancement of glucose oxidase (GOx) activity: the simple assembly of a complex from CdTe quantum dots and GOx and its glucose sensing. Chem Eur J. 2008;14:9633–40. https://doi.org/10.1002/chem.200800681.

    Article  Google Scholar 

  30. Rahman SA, Ariffin N, Yusof NA, Abdullah J, Mohammad F, Zubir ZA, Aziz NMANA. Thiolate-Capped CdSe/ZnS core-shell quantum dots for the sensitive detection of glucose. Sensors. 2017;17(7):1537. https://doi.org/10.3390/s17071537.

    Article  ADS  Google Scholar 

  31. Mai HH, Pham VT, Nguyen VT, Sai CD, Hoang CH, Nguyen TB. Non-enzymatic fluorescent biosensor for glucose sensing based on ZnO nanorods. J Electron Mater. 2017;46:3714–9. https://doi.org/10.1007/s11664-017-5300-8.

    Article  ADS  Google Scholar 

  32. Miao Y-m, Yang Q, Lv J-z, Yan G-q. A two-dimensional sensing device based on manganese doped zinc sulfide quantum dots for discrimination and identification of common sugars. New J Chem. 2017;41:14882–9. https://doi.org/10.1039/c7nj02169k.

    Article  Google Scholar 

  33. Saran AD, Sadawana MM, Srivastava R, Bellare JR. An optimized quantum dot-ligand system for biosensing applications: Evaluation as a glucose biosensor. Colloids Surf A. 2011;384:393–400. https://doi.org/10.1016/j.colsurfa.2011.04.022.

    Article  Google Scholar 

  34. Yu M, Zhao K, Zhu X, Tang S, Nie Z, Huang Y, Zhao P, Yao S. Development of near-infrared ratiometric fluorescent probe based on cationic conjugated polymer and CdTe/CdS QDs for label-free determination of glucose in human body fluids. Biosens Bioelectron. 2017;95:41–7. https://doi.org/10.1016/j.bios.2017.03.065.

    Article  Google Scholar 

  35. Eleonora P, Russ Algar W, Medintz IL. Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging. Appl Spectrosc. 2013;67:215–52. https://doi.org/10.1366/12-06948.

    Article  ADS  Google Scholar 

  36. Chinnathambi S, Shirahata N. Recent advances on fluorescent biomarkers of near-infrared quantum dots for in vitro and in vivo imaging. Sci Technol Adv Mater. 2019;20:337–55. https://doi.org/10.1080/14686996.2019.1590731.

    Article  Google Scholar 

  37. Xing Y, Chaudry Q, Shen C, Kong KY, Zhau HE, Chung LW, Petros JA, O’Regan RM, Yezhelyev MV, Simons JW, Wang MD, Nie S. Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat Protoc. 2007;2(5):1152–65. https://doi.org/10.1038/nprot.2007.107.

    Article  Google Scholar 

  38. He Y, Zhong Y, Yuanyuan S, Lu Y, Jiang Z, Peng F, Xu T, Shao S, Huang Q, Fan C, Lee S-T. Water-dispersed near-infrared-emitting quantum dots of ultra small sizes for in vitro and in vivo imaging. Angew Chem Int Ed. 2011;50:5695–8. https://doi.org/10.1002/anie.201004398.

    Article  Google Scholar 

  39. Hu D, Zhang P, Gong P, Lian S, Lu Y, Gao D, Cai L. A fast synthesis of near-infrared emitting CdTe/CdSe quantum dots with small hydrodynamic diameter for in vivo imaging probes. Nanoscale. 2011;3:4724–32. https://doi.org/10.1039/C1NR10933B.

    Article  ADS  Google Scholar 

  40. Sun X, Huang X, Guo J, Zhu W, Ding Y, Niu G, Wang A, Kiesewetter DO, Wang ZL, Sun S, Chen X. Self-illuminating 64Cu-doped CdSe/ZnS nanocrystals for in vivo tumor imaging. J Am Chem Soc. 2014;136:1706–9. https://doi.org/10.1021/ja410438n.

    Article  Google Scholar 

  41. Nsibande SA, Forbes PBC. Fluorescence detection of pesticides using quantum dot materials – a review. Anal Chim Acta. 2016;945:9–22. https://doi.org/10.1016/j.aca.2016.10.002.

    Article  Google Scholar 

  42. Chauhan N, Narang J, Jain U. Amperometric acetylcholinesterase biosensor for pesticides monitoring utilising iron oxide nanoparticles and poly(indole-5-carboxylic acid). J Exp Nanosci. 2016;11:111–22. https://doi.org/10.1080/17458080.2015.1030712.

    Article  Google Scholar 

  43. Tran TKC, Vu DC, Ung TDT, Nguyen HY, Nguyen NH, Dao TC, Pham TN, Nguyen QL. Fabrication of fluorescence-based biosensors from functionalized CdSe and CdTe quantum dots for pesticide detection. Adv Nat Sci. 2012;3:035008. (4pp). https://doi.org/10.1088/2043-6262/3/3/035008.

    Article  Google Scholar 

  44. Kanagasubbulakshmi S, Kathiresan R, Kadirvelu K. Structure and physiochemical properties based interaction patterns of organophosphorous pesticides with quantum dots: Experimental and theoretical studies. Eng Aspects. 2018;549:155–63. https://doi.org/10.1016/j.colsurfa.2018.04.007.

    Article  Google Scholar 

  45. Sheng E, Lu Y, Tan Y, Xiao Y, Li Z, Dai Z. A ratiometric fluorescent quantum dot-based biosensor for chlorothalonil detection via an inner-filter effect. Anal Chem. 2020;92:4364–70. https://doi.org/10.1021/acs.analchem.9b05199.

    Article  Google Scholar 

  46. Nguyen DN, Ngo TT, Nguyen QL. Highly sensitive fluorescence resonance energy transfer (FRET)-based nanosensor for rapid detection of clenbuterol. Adv Nat Sci. 2012;3:035011. (6pp). https://doi.org/10.1088/2043-6262/3/3/035011.

    Article  Google Scholar 

  47. Tashkhourian J, Absalan G, Jafari M, Zare S. A rapid and sensitive assay for determination of doxycycline using thioglycolic acid-capped cadmium telluride quantum dots. Spectrochim Acta Part A. 2016;152:119–25. https://doi.org/10.1016/j.saa.2015.07.063.

    Article  ADS  Google Scholar 

  48. Zhang K, Mei Q, Guan G, Liu B, Wang S, Zhang Z. Ligand replacement-induced fluorescence switches of quantum dots for ultrasensitive detection of organophorothioate pesticides. Anal Chem. 2010;82:9579–86. https://doi.org/10.1021/ac102531z.

    Article  Google Scholar 

  49. Liu Q, Jiang M, Zeliang J, Qiao X, Xu Z. Development of direct competitive biomimetic immunosorbent assay based on quantum dot label for determination of trichlorfon residues in vegetables. Food Chem. 2018;250:134–9. https://doi.org/10.1016/j.foodchem.2017.12.079.

    Article  Google Scholar 

  50. Cheng Z, Zhang K, Zhao T, Liu B, Wang Z, Zhang Z. Selective phosphorescence sensing of pesticide based on the inhibition of silver(I) quenched ZnS:Mn2+ quantum dots. Sens Actuators B. 2017;252:1083–8. https://doi.org/10.1016/j.snb.2017.06.087.

    Article  Google Scholar 

  51. Gao F, Ye Q, Cui P, Zhang L. Efficient fluorescence energy transfer system between CdTe-Doped silica nanoparticles and gold nanoparticles for turn-on fluorescence detection of melamine. J Agric Food Chem. 2012;60:4550–8. https://doi.org/10.1021/jf300386y.

    Article  Google Scholar 

  52. Zhang M, Ping H, Cao X, Li H, Guan F, Sun C, Liu J. Rapid determination of melamine in milk using watersoluble CdTe quantum dots as fluorescence probes. Food Addit Contam. 2012;29:333–44. https://doi.org/10.1080/19440049.2011.643459.

    Article  Google Scholar 

  53. Xue L, Zheng L, Zhang H, Jin X, Lin J. An ultrasensitive fluorescent biosensor using high gradient magnetic separation and quantum dots for fast detection of foodborne pathogenic bacteria. Sens Actuators B. 2018;265:318–25. https://doi.org/10.1016/j.snb.2018.03.014.

    Article  Google Scholar 

  54. Wu P, Huang R, Li G, He Y, Chen C, Xiao W, Ding P. Optimization of synthesis and modification of ZnSe/ZnS quantum dots for fluorescence detection of Escherichia coli. J Nanosci Nanotechnol. 2018;18:3654–9. https://doi.org/10.1166/jnn.2018.14673.

    Article  Google Scholar 

  55. Ding X, Lingbo Q, Yang R, Zhou Y, Li J. A highly selective and simple fluorescent sensor for mercury (II) ion detection based on cysteamine-capped CdTe quantum dots synthesized by the reflux method. Luminescence. 2015;30(4):465–71. https://doi.org/10.1002/bio.2761.

    Article  Google Scholar 

  56. Labeb M, Sakr A-H, Soliman M, Abdel-Fettah TM, Ebrahim S. Effect of capping agent on selectivity and sensitivity of CdTe quantum dots optical sensor for detection of mercury ions. Opt Mater. 2018;79:331–5. https://doi.org/10.1016/j.optmat.2018.03.060.

    Article  ADS  Google Scholar 

  57. Zhang Y, Xiao J-Y, Zhu Y, Tian L-J, Wang W-K, Zhu T-T, Li W-W, Han-Qing Y. Fluorescence sensor based on biosynthetic CdSe/CdS quantum dots and liposome carrier signal amplification for mercury detection. Anal Chem. 2020;92:3990–7. https://doi.org/10.1021/acs.analchem.9b05508.

    Article  Google Scholar 

  58. Xu H, Zhang K, Liu Q, Liu Y, Xie M. Visual and fluorescent detection of mercury ions by using a dually emissive ratiometric nanohybrid containing carbon dots and CdTe quantum dots. Microchim Acta. 2017;184:1199–206. https://doi.org/10.1007/s00604-017-2099-1.

    Article  Google Scholar 

  59. Yao J, Zhang K, Zhu H, Ma F, Sun M, Yu H, Sun J, Wang S. Efficient ratiometric fluorescence probe based on dual-emission quantum dots hybrid for on-site determination of copper ions. Anal Chem. 2013;85:6461–8. https://doi.org/10.1021/ac401011r.

    Article  Google Scholar 

  60. Zhou M, Guo J, Yang C. Ratiometric fluorescence sensor for Fe3+ ions detection based on quantum dot-doped hydrogel optical fiber. Sensors Actuators B Chem. 2018;264:52–8. https://doi.org/10.1016/j.snb.2018.02.119.

    Article  Google Scholar 

  61. Zhou J, Li B, Qi A, Shi Y, Qi J, Xu H, Chen L. ZnSe quantum dot based ion imprinting technology for fluorescence detecting cadmium and lead ions on a three-dimensional rotary paper-based microfluidic chip. Sens Actuators B. 2020;305:127462. https://doi.org/10.1016/j.snb.2019.127462.

    Article  Google Scholar 

  62. Li M, Zhou X, Guo S, Wu N. Detection of lead(II) with a “turn-on” fluorescent biosensor based on energy transfer from CdSe/ZnS quantum dots to graphene oxide. Biosens Bioelectron. 2013;43:69–74. https://doi.org/10.1016/j.bios.2012.11.039.

    Article  Google Scholar 

  63. Cai K, Yang R, Wang Y, Yu X, Liu J. Super fast detection of latent fingerprints with water soluble CdTe quantum dots. Forensic Sci Int. 2013;226:240–3. https://doi.org/10.1016/j.forsciint.2013.01.035.

    Article  Google Scholar 

  64. Wang Z, Xue J, Liu W, Lu G, Huang X. A rapid and operator-safe powder approach for latent fingerprint detection using hydrophilic Fe3O4@SiO2-CdTe nanoparticles. Sci China Chem. 2019;62:889–96. https://doi.org/10.1007/s11426-019-9460-0.

    Article  Google Scholar 

  65. Wang Y, Zou W. 3-Aminopropyltriethoxysilane-functionalized manganese doped ZnS quantum dots for room-temperature phosphorescence sensing ultratrace 2,4,6-trinitrotoluene in aqueous solution. Talanta. 2011;85:469–75. https://doi.org/10.1016/j.talanta.2011.04.014.

    Article  Google Scholar 

  66. Qian J, Hua M, Wang C, Wang K, Liu Q, Hao N, Wang K. Fabrication of l-cysteine-capped CdTe quantum dots based ratiometric fluorescence nanosensor for onsite visual determination of trace TNT explosive. Anal Chim Acta. 2016;946:80–7. https://doi.org/10.1016/j.aca.2016.10.007.

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to express their sincere gratitude to Academician Nguyen Van Hieu for his continuous encouragement on the topic and kindly acknowledge the supports from Vietnam Academy of Science and Technology (codes NVCC04.01/22-23 and CSCL04.01/22-23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Quang Liem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Loan, N.T., Thuy, U.T.D., Liem, N.Q. (2023). Fluorescent Biosensors Based on II–VI Quantum Dots. In: Korotcenkov, G. (eds) Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors. Springer, Cham. https://doi.org/10.1007/978-3-031-24000-3_18

Download citation

Publish with us

Policies and ethics