Skip to main content

Non-Vital Pulp Therapies in Primary Teeth

  • Chapter
  • First Online:
Contemporary Endodontics for Children and Adolescents
  • 778 Accesses

Abstract

Treatment options for primary teeth diagnosed with irreversible pulpitis or necrotic pulp are pulp treatment or extractions. Primary teeth are the best space maintainers for their successors, and pulp therapy aims to ensure normal physiologic exfoliation and eruption of the successor tooth (or long-term survival when required). Pulpectomy is a root canal procedure for primary teeth that is indicated when the radicular pulp exhibits clinical signs of irreversible pulpitis or pulp necrosis while the roots show minimal or no resorption. The procedure includes the removal of the inflamed or necrotic pulp and pulpal debris, cleaning and shaping the root canals and their obturation with a resorbable root filling material. The goal is to create conditions that lead to the healing of the lesion and the periradicular tissues. Pulpectomy in primary teeth is challenging due to the polymicrobial nature of the infection, complex root canal morphology, inherent physiologic root resorption, and the roots’ proximity to the permanent successors.

This chapter elaborates on the clinical steps of the technique-sensitive pulpectomy treatment, reviews new concepts and technologies, and describes the materials and instruments that are used. We also discuss considerations for treatment, adjacent antibiotics administration, and contraindications for pulpectomy treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ozcan G, Sekerci AE, Cantekin K, Aydinbelge M, Dogan S. Evaluation of root canal morphology of human primary molars by using CBCT and comprehensive review of the literature. Acta Odontol Scand. 2016;74(4):250–8.

    Article  PubMed  Google Scholar 

  2. Reddy NV, Daneswari V, Patil R, Meghana B, Reddy A, Niharika P. Three-dimensional assessment of root canal morphology of human deciduous molars using cone beam computed tomography: an in vitro study. Int J Pedod Rehabil. 2018;3(1):36.

    Article  Google Scholar 

  3. Ahmed HMA, Musale PK, El Shahawy OI, Dummer PMH. Application of a new system for classifying tooth, root and canal morphology in the primary dentition. Int Endod J. 2020;53(1):27–35.

    Article  PubMed  Google Scholar 

  4. Wrbas KT, Kielbassa AM, Hellwig E. Clinic: microscopic studies of accessory canals in primary molar furcations. J Dent Child. 1997;64(2):118–22.

    Google Scholar 

  5. Dammaschke T, Witt M, Ott KSE. Scanning electron microscopic investigation of incidence, location, and size of accessory foramina in primary and permanent molars. Quintessence Int. 2004;35(9):699–705. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L39233418.

    PubMed  Google Scholar 

  6. Sharma U, Gulati A, Gill N. An investigation of accessory canals in primary molars—an analytical study. Int J Paediatr Dent. 2016;26(2):149–56.

    Article  PubMed  Google Scholar 

  7. Kramer PF, Faraco Júnior IM, Meira R. A SEM investigation of accessory foramina in the furcation areas of primary molars. J Clin Pediatr Dent. 2003;27(2):157–61.

    Article  PubMed  Google Scholar 

  8. Cleghorn BM, Boorberg NB, Christie WH. Primary human teeth and their root canal systems. Endod Top. 2010;23(1):6–33.

    Article  Google Scholar 

  9. Dou G, Wang D, Zhang S, Ma W, Xu M, Xia B. A retrospective study on the long-term outcomes of pulpectomy and influencing factors in primary teeth. J Dent Sci. 2022;17(2):771–9.

    Article  PubMed  Google Scholar 

  10. Sarkar S, Rao AP. Number of root canals, their shape, configuration, accessory root canals in radicular pulp morphology. A preliminary study. J Indian Soc Pedod Prev Dent. 2002;20(3):93–7.

    PubMed  Google Scholar 

  11. Ramakrishnan M, Niveditha MS, Gurunathan D. A short review on the root canal configuration of primary maxillary molars. Bioinformation. 2020;16(12):1033–6.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fumes AC, Sousa-Neto MD, Leoni GB, Versiani MA, da Silva LAB, da Silva RAB, et al. Root canal morphology of primary molars: a micro-computed tomography study. Eur Arch Paediatr Dent. 2014;15(5):317–26.

    Article  PubMed  Google Scholar 

  13. Aminabadi NA, Farahani RMZ, Gajan EB. Study of root canal accessibility in human primary molars. J Oral Sci. 2008;50(1):69–74.

    Article  PubMed  Google Scholar 

  14. Ahmed HMA. Anatomical challenges, electronic working length determination and current developments in root canal preparation of primary molar teeth. Int Endod J. 2013;46(11):1011–22.

    Article  PubMed  Google Scholar 

  15. Asl Aminabadi N, Sighari Deljavan A, Samiei M, Jamali Z. Are referred inaccessible human primary molar teeth really inaccessible? J Oral Sci. 2013;55(2):167–73.

    Article  Google Scholar 

  16. Rimondini L, Baroni C. Morphologic criteria for root canal treatment of primary molars undergoing resorption. Dent Traumatol. 1995;11(3):136–41.

    Article  Google Scholar 

  17. El Hachem C, Kaloustian MK, Nehme W, Ghosn N, Abou Chedid JC. Three-dimensional modeling and measurements of root canal anatomy in second primary mandibular molars: a case series micro CT study. Eur Arch Paediatr Dent. 2019;20(5):457–65.

    Article  PubMed  Google Scholar 

  18. Song JS, Kim SO, Choi BJ, Choi HJ, Son HK, Lee JH. Incidence and relationship of an additional root in the mandibular first permanent molar and primary molars. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107(1):e55–60.

    Article  Google Scholar 

  19. De Moor RJG, Deroose CAJG, Calberson FLG. The radix entomolaris in mandibular first molars: an endodontic challenge. Int Endod J. 2004;37(11):789–99.

    Article  PubMed  Google Scholar 

  20. Nagaveni NB, Umashankara KV. Radix entomolaris and paramolaris in children: a review of the literature. J Indian Soc Pedod Prev Dent. 2012;30(2):94–102.

    Article  Google Scholar 

  21. Jafarzadeh H, Azarpazhooh A, Mayhall JT. Taurodontism: a review of the condition and endodontic treatment challenges. Int Endod J. 2008;41(5):375–88.

    Article  PubMed  Google Scholar 

  22. Eden EK, Koca H, Şen BH. Dens invaginatus in a primary molar: report of case. J Dent Child. 2002;69(1):49–53.

    Google Scholar 

  23. Kupietzky A, Rozenfarb N. Enamel pearls in the primary dentition: report of two cases. ASDC J Dent Child. 1993;60(1):63–6.

    PubMed  Google Scholar 

  24. Boutsiouki C, Frankenberger R, Krämer N. Clinical and radiographic success of (partial) pulpotomy and pulpectomy in primary teeth: a systematic review. Eur J Paediatr Dent. 2021;22(4):273–85.

    PubMed  Google Scholar 

  25. Mathur VP, Gowthaman K, Shrivstava N, Atif M, Tewari N, Rahul M, et al. An insight into systematic review and meta-analysis of nonvital pulp therapy for primary teeth. Pediatr Dent. 2021;43(5):338–9.

    PubMed  Google Scholar 

  26. Coll JA, Dhar V, Vargas K, Chen CY, Crystal YO, AlShamali S, et al. Use of non-vital pulp therapies in primary teeth. Pediatr Dent. 2020;42(5):337–49.

    PubMed  Google Scholar 

  27. Mutluay M, Arikan V, Sari S, Kisa Ü. Does achievement of hemostasis after pulp exposure provide an accurate assessment of pulp inflammation? Pediatr Dent. 2018;40(1):37–42.

    PubMed  Google Scholar 

  28. SmaĂŻl-Faugeron V, Fron Chabouis H, Durieux P, Attal JP, Muller-Bolla M, Courson F. Development of a core set of outcomes for randomized controlled trials with multiple outcomes-example of pulp treatments of primary teeth for extensive decay in children. PLoS One. 2013;8(1):e51908.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Coll JA, Vargas K, Marghalani AA, Chen CY, AlShamali S, Dhar V, et al. A systematic review and meta-analysis of nonvital pulp therapy for primary teeth. Pediatr Dent. 2020;42(4):256–461.

    PubMed  Google Scholar 

  30. Clinical efficacy of single-visit pulpectomy over multiple-visit pulpectomy in primary teeth: a systematic review. Int J Clin Pediatr Dent. 2019;12(5):453–9.

    Google Scholar 

  31. Garg N, Garg A. Pediatric endodontics. In: Ingle J, editor. Textbook of endodontics. Philadelphia: Lea & Febiger; 2014. p. 538.

    Chapter  Google Scholar 

  32. Goerig AC, Camp JH. Root canal treatment in primary teeth: a review. Pediatr Dent. 1983;5(1):33–7.

    PubMed  Google Scholar 

  33. Manchanda S, Sardana D, Yiu CKY. A systematic review and meta-analysis of randomized clinical trials comparing rotary canal instrumentation techniques with manual instrumentation techniques in primary teeth. Int Endod J. 2020;53(3):333–53.

    Article  PubMed  Google Scholar 

  34. Kaya E, Elbay M, Yiğit D. Evaluation of the self-adjusting file system (SAF) for the instrumentation of primary molar root canals: a micro-computed tomographic study. Eur J Paediatr Dent. 2017;18(2):105–10.

    PubMed  Google Scholar 

  35. Esentürk G, Akkas E, Cubukcu E, Nagas E, Uyanik O, Cehreli ZC. A micro-computed tomographic assessment of root canal preparation with conventional and different rotary files in primary teeth and young permanent teeth. Int J Paediatr Dent. 2020;30(2):202–8.

    Article  PubMed  Google Scholar 

  36. Elheeny AAH, Abdelmotelb MA. Postoperative pain after primary molar pulpectomy using rotary or reciprocating single files: a superior, parallel, randomized clinical trial. Int J Paediatr Dent. 2022;32(6):819–27.

    Article  PubMed  Google Scholar 

  37. Abd El Fatah YAM, Khattab NMA, Gomaa YF, Elheeny AAH. Cone-beam computed tomography analysis of primary root canals transportation and dentin loss after instrumentation with two-pediatric rotary files. BMC Oral Health. 2022;22(1):214. https://doi.org/10.1186/s12903-022-02245-8.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zanza A, D’angelo M, Reda R, Gambarini G, Testarelli L, Di Nardo D. An update on nickel-titanium rotary instruments in endodontics: mechanical characteristics, testing and future perspective—an overview. Bioengineering (Basel). 2021;8(12):218.

    Article  PubMed  Google Scholar 

  39. Soares F, Varella CH, Pileggi R, Adewumi A, Guelmann M. Impact of Er,Cr:YSGG laser therapy on the cleanliness of the root canal walls of primary teeth. J Endod. 2008;34(4):474–7.

    Article  PubMed  Google Scholar 

  40. Pozos-Guillen A, Garcia-Flores A, Esparza-Villalpando V, Garrocho-Rangel A. Intracanal irrigants for pulpectomy in primary teeth: a systematic review and meta-analysis. Int J Paediatr Dent. 2016;26(6):412–25.

    Article  PubMed  Google Scholar 

  41. Ercan E, Ozekinci T, Atakul F, Gül K. Antibacterial activity of 2% chlorhexidine gluconate and 5.25% sodium hypochlorite in infected root canal: in vivo study. J Endod. 2004;30(2):84–7.

    Article  PubMed  Google Scholar 

  42. Zehnder M. Root canal irrigants. J Endod. 2006;32(5):389–98.

    Article  PubMed  Google Scholar 

  43. Kaur R, Singh R, Sethi K, Garg S, Miglani S. Irrigating solutions in pediatric dentistry: literature review and update. J Adv Med Dent Sci Res. 2014;2(2):104–15.

    Google Scholar 

  44. Wong J, Manoil D, Näsman P, Belibasakis GN, Neelakantan P. Microbiological aspects of root canal infections and disinfection strategies: an update review on the current knowledge and challenges. Front Oral Heal. 2021;2:672887.

    Article  Google Scholar 

  45. Williams CE, Reid JS, Sharkey SW, Saunders WP. In-vitro measurement of apically extruded irrigant in primary molars. Int Endod J. 1995;28(4):221–5.

    Article  PubMed  Google Scholar 

  46. Zhu W, Gyamfi J, Niu L, Schoeffel GJ, Liu S, Santarcangelo F, et al. Anatomy of sodium hypochlorite accidents involving facial ecchymosis—a review. J Dent. 2013;41(11):935–48.

    Article  PubMed  Google Scholar 

  47. Klein U, Kleier DJ. Sodium hypochlorite accident in a pediatric patient. Pediatr Dent. 2013;35(7):534–8.

    PubMed  Google Scholar 

  48. Mehdipour O, Kleier DJ, Averbach RE. Anatomy of sodium hypochlorite accidents. Compend Contin Educ Dent. 2007;28(10):544–6, 548, 550.

    PubMed  Google Scholar 

  49. Bahrololoomi Z, Poursina F, Birang R, Foroughi E, Yousefshahi H. The effect of Er:YAG laser on enterococcus faecalis bacterium in the pulpectomy of anterior primary teeth. J Lasers Med Sci. 2017;8(4):166–71.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Fedorowicz Z, Nasser M, Sequeira-Byron P, de Souza RF, Carter B, Heft M. Irrigants for non-surgical root canal treatment in mature permanent teeth. Cochrane Database Syst Rev. 2012;9:CD008948.

    Google Scholar 

  51. Barcelos R, Tannure PN, Gleiser R, Luiz RR, Primo LG. The influence of smear layer removal on primary tooth pulpectomy outcome: a 24-month, double-blind, randomized, and controlled clinical trial evaluation. Int J Paediatr Dent. 2012;22(5):369–81.

    Article  PubMed  Google Scholar 

  52. Tannure PN, Azevedo CP, Barcelos R, Gleiser R, Primo LG. Long-term outcomes of primary tooth pulpectomy with and without smear layer removal: a randomized split-mouth clinical trial. Pediatr Dent. 2011;33(4):316–20.

    PubMed  Google Scholar 

  53. Kamberi B, Bajrami D, Stavileci M, Omeragiq S, Dragidella F, Koçani F. The antibacterial efficacy of Biopure MTAD in root canal contaminated with enterococcus faecalis. ISRN Dent. 2012:1–5.

    Google Scholar 

  54. Opstrup MS, Jemec GBE, Garvey LH. Chlorhexidine allergy: on the rise and often overlooked. Curr Allergy Asthma Rep. 2019;19(5):23.

    Article  PubMed  Google Scholar 

  55. Fuks AB, Guelmann M, Kupietzky A. Current developments in pulp therapy for primary teeth. Endod Top. 2010;23(1):50–72.

    Article  Google Scholar 

  56. Pramila R, Muthu MS, Deepa G, Farzan JM, Rodrigues SJL. Pulpectomies in primary mandibular molars: a comparison of outcomes using three root filling materials. Int Endod J. 2016;49(5):413–21.

    Article  PubMed  Google Scholar 

  57. Coll JA. Predicting pulpectomy success and its relationship to exfoliation and succedaneous dentition. Pediatr Dent. 1996;18(1):57–63.

    PubMed  Google Scholar 

  58. Casas MJ, Kenny DJ, Johnston DH, Judd PL. Long-term outcomes of primary molar ferric sulfate pulpotomy and root canal therapy. Pediatr Dent. 2004;26(1):44–8.

    PubMed  Google Scholar 

  59. Primosch RE, Ahmadi A, Setzer B, Guelmann M. A retrospective assessment of zinc oxide-eugenol pulpectomies in vital maxillary primary incisors successfully restored with composite resin crowns. Pediatr Dent. 2005;27(6):470–7.

    PubMed  Google Scholar 

  60. Özalp N, Şaroǧlu I, Sönmez H. Evaluation of various root canal filling materials in primary molar pulpectomies: an in vivo study. Am J Dent. 2005;18(6):347–50.

    PubMed  Google Scholar 

  61. Chen J-W, Jorden M. Materials for primary tooth pulp treatment: the present and the future. Endod Top. 2010;23(1):41–9.

    Article  Google Scholar 

  62. Kubota K, Golden BE, Penugonda B. Root canal filling materials for primary teeth: a review of the literature. ASDC J Dent Child. 1992;59(3):225–7.

    PubMed  Google Scholar 

  63. Bodur H, Odabaş M, Tulunoğlu Ö, Tinaz AC. Accuracy of two different apex locators in primary teeth with and without root resorption. Clin Oral Investig. 2008;12(2):137–41.

    Article  PubMed  Google Scholar 

  64. Barja-Fidalgo F, Moutinho-Ribeiro M, Oliveira MAA, de Oliveira BH. A systematic review of root canal filling materials for deciduous teeth: is there an alternative for zinc oxide-eugenol? ISRN Dent. 2011;2011:367318.

    PubMed  Google Scholar 

  65. Fuks AB, Eidelman E. Pulp therapy in the primary dentition. Curr Opin Dent. 1991;1(5):556–63.

    PubMed  Google Scholar 

  66. Mortazavi M, Mesbahi M. Comparison of zinc oxide and eugenol, and Vitapex for root canal treatment of necrotic primary teeth. Int J Paediatr Dent. 2004;14(6):417–24.

    Article  PubMed  Google Scholar 

  67. Ozalp N, Saroğlu I, Sönmez H. Evaluation of various root canal filling materials in primary molar pulpectomies: an in vivo study. Am J Dent. 2005;18(6):347–50.

    PubMed  Google Scholar 

  68. Reddy S, Ramakrishna Y. Evaluation of antimicrobial efficacy of various root canal filling materials used in primary teeth: a microbiological study. J Clin Pediatr Dent. 2007;31(3):193–8.

    Article  PubMed  Google Scholar 

  69. Subramaniam P, Gilhotra K. Endoflas, zinc oxide eugenol and metapex as root canal filling materials in primary molars—a comparative clinical study. J Clin Pediatr Dent. 2011;35(4):365–9.

    Article  PubMed  Google Scholar 

  70. Tchaou WS, Turng BF, Minah GE, Coll JA. Inhibition of pure cultures of oral bacteria by root canal filling materials. Pediatr Dent. 1996;18(7):444–9.

    PubMed  Google Scholar 

  71. Tchaou WS, Turng BF, Minah GE, Coll JA. In vitro inhibition of bacteria from root canals of primary teeth by various dental materials. Pediatr Dent. 1995;17(5):351–5.

    PubMed  Google Scholar 

  72. Garcia-Godoy F. Evaluation of an iodoform paste in root canal therapy for infected primary teeth. ASDC J Dent Child. 1987;54(1):30–4.

    PubMed  Google Scholar 

  73. Barcelos R, Santos MPA, Primo LG, Luiz RR, Maia LC. ZOE paste pulpectomies outcome in primary teeth: a systematic review. J Clin Pediatr Dent. 2011;35(3):241–8.

    Article  PubMed  Google Scholar 

  74. Holan G, Fuks AB. A comparison of pulpectomies using ZOE and KRI paste in primary molars: a retrospective study. Pediatr Dent. 1993;15(6):403–7.

    PubMed  Google Scholar 

  75. Bresolin CR, Marques RPS, Okamura B, Costa C, Moura-Netto C, Lara JS, et al. Efficacy of an iodoform-based filling material for pulpectomy of primary teeth: a 24-month non-inferiority randomized clinical trial. Int J Paediatr Dent. 2022;32(5):668–6.

    Article  PubMed  Google Scholar 

  76. Najjar RS, Alamoudi NM, El-Housseiny AA, Al Tuwirqi AA, Sabbagh HJ. A comparison of calcium hydroxide/iodoform paste and zinc oxide eugenol as root filling materials for pulpectomy in primary teeth: a systematic review and meta-analysis. Clin Exp Dent Res. 2019;5(3):294–310.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Memarpour M, Shahidi S, Meshki R. Comparison of different obturation techniques for primary molars by digital radiography. Pediatr Dent. 2013;35(3):236–40.

    PubMed  Google Scholar 

  78. Silva LAB, Leonardo MR, Nelson-Filho P, Tanomaru JMG. Comparison of rotary and manual instrumentation techniques on cleaning capacity and instrumentation time in deciduous molars. J Dent Child (Chic). 2004;71(1):45–7.

    PubMed  Google Scholar 

  79. Adriano LZ, Barasuol JC, Cardoso M, Bolan M. In vitro comparison between apex locators, direct and radiographic techniques for determining the root canal length in primary teeth. Eur Arch Paediatr Dent. 2019;20(5):403–8.

    Article  PubMed  Google Scholar 

  80. Kayabasi M, Oznurhan F. Evaluation of the accuracy of electronic apex locators, cone-beam computed tomography, and radiovisiography in primary teeth: an in vitro study. Microsc Res Tech. 2020;83(11):1330–5.

    Article  PubMed  Google Scholar 

  81. de Alencar NA, Oriano MDA, Bolan M, Cardoso M. Is there any difference in length measurement methods for pulpectomies in primary teeth?—a double-blind, controlled clinical trial. Int J Paediatr Dent. 2019;29(6):712–9.

    Article  PubMed  Google Scholar 

  82. Oznurhan F, Tüzüner T, Baygin O, Unal M, Kapdan A, Ozturk C. Accuracy of three different apex locators and visual exam in primary teeth with and without root resorption in vitro. Eur J Paediatr Dent. 2014;15(4):381–4.

    PubMed  Google Scholar 

  83. Tosun G, Erdemir A, Eldeniz AU, Sermet U, Sener Y. Accuracy of two electronic apex locators in primary teeth with and without apical resorption: a laboratory study. Int Endod J. 2008;41(5):436–41.

    Article  PubMed  Google Scholar 

  84. Kumar LV, Sreelakshmi N, Reddy ER, Manjula M, Rani ST, Rajesh A. Clinical evaluation of conventional radiography, radiovisiography, and an electronic apex locator in determining the working length in primary teeth. Pediatr Dent. 2016;38(1):37–41.

    PubMed  Google Scholar 

  85. Ahmad IA, Pani SC. Accuracy of electronic apex locators in primary teeth: a meta-analysis. Int Endod J. 2015;48(3):298–307.

    Article  PubMed  Google Scholar 

  86. Singh R, Barua P, Kumar M, Safaya R, Monajemi H, Monajemi H. Effect of ultrasonic instrumentation in treatment of primary molars. J Contemp Dent Pract. 2017;18(9):750–3.

    Article  PubMed  Google Scholar 

  87. da Costa CC, Kunert GG, da Costa Filho LC, KI. Endodontics in primary molars using ultrasonic instrumentation. J Dent Child. 2008;75(1):20–3.

    Google Scholar 

  88. Elbarbary M, Sgro A, Khazaei S, Goldberg M, Tenenbaum HC, Azarpazhooh A. The applications of ultrasound, and ultrasonography in dentistry: a scoping review of the literature. Clin Oral Investig. 2022;26(3):2299–316.

    Article  PubMed  Google Scholar 

  89. Burrus D, Barbeau L, Hodgson B. Treatment of abscessed primary molars utilizing lesion sterilization and tissue repair: literature review and report of three cases. Pediatr Dent. 2014;36(3):240–4.

    PubMed  Google Scholar 

  90. Parhizkar A, Nojehdehian H, Asgary S. Triple antibiotic paste: momentous roles and applications in endodontics: a review. Restor Dent Endod. 2018;43(3):e28.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Chouchene F, Masmoudi F, Baaziz A, Maatouk F, Ghedira H. Antibiotic mixtures in noninstrumental endodontic treatment of primary teeth with necrotic pulps: a systematic review. Int J Dent. 2021;2021:5518599.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Nakornchai S, Banditsing P, Visetratana N. Clinical evaluation of 3Mix and Vitapex® as treatment options for pulpally involved primary molars. Int J Paediatr Dent. 2010;20(3):214–21.

    Article  PubMed  Google Scholar 

  93. Raslan N, Mansour O, Assfoura L. Evaluation of antibiotic mix in non-instrumentation endodontic treatment of necrotic primary molars. Eur J Paediatr Dent. 2017;18(4):285–90.

    PubMed  Google Scholar 

  94. Rivera-Albarrán CA, Morales-Dorantes V, Ayala-Herrera JL, Castillo-Aguillón M, Soto-Barreras U, Cabeza-Cabrera CV, Domínguez-Pérez RA. Antibiotic resistance decreases the efficacy of endodontic filling pastes for root canal treatment in children’s teeth. Child Aust. 2021;8(8):692.

    Article  Google Scholar 

  95. Jaya AR, Praveen P, Anantharaj A, Venkataraghavan K, Rani PS. In vivo evaluation of lesion sterilization and tissue repair in primary teeth pulp therapy using two antibiotic drug combinations. J Clin Pediatr Dent. 2012;37(2):189–91.

    Article  PubMed  Google Scholar 

  96. Trairatvorakul C, Detsomboonrat P. Success rates of a mixture of ciprofloxacin, metronidazole, and minocycline antibiotics used in the non-instrumentation endodontic treatment of mandibular primary molars with carious pulpal involvement. Int J Paediatr Dent. 2012;22(3):217–27.

    Article  PubMed  Google Scholar 

  97. Grewal N, Sharma N, Chawla S. Comparison of resorption rate of primary teeth treated with alternative lesion sterilization and tissue repair and conventional endodontic treatment: an in vivo randomized clinical trial. J Indian Soc Pedod Prev Dent. 2018;36(3):262–7.

    Article  PubMed  Google Scholar 

  98. Songvejkasem M, Auychai P, Chankanka O, Songsiripradubboon S. Survival rate and associated factors affecting pulpectomy treatment outcome in primary teeth. Clin Exp Dent Res. 2021;7(6):978–86.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Moskovitz M, Yahav D, Tickotsky N, Holan G. Long-term follow up of root canal treated primary molars. Int J Paediatr Dent. 2010;20(3):207–13.

    Article  PubMed  Google Scholar 

  100. Reddy VV, Fernandes. Clinical and radiological evaluation of zinc oxide-eugenol and Maisto’s paste as obturating materials in infected primary teeth—nine months study. J Indian Soc Pedod Prev Dent. 1996;14(2):39–44.

    PubMed  Google Scholar 

  101. SmaĂŻl-Faugeron V, Glenny AM, Courson F, Durieux P, Muller-Bolla M, Fron Chabouis H. Pulp treatment for extensive decay in primary teeth. Cochrane Database Syst Rev. 2014;(8):CD003220.

    Google Scholar 

  102. Coll JA, Josell S, Casper JS. Evaluation of a one-appointment formocresol pulpectomy technique for primary molars. Pediatr Dent. 1985;7(2):123–9.

    PubMed  Google Scholar 

  103. Sadrian R, Coll JA. A long-term followup on the retention rate of zinc oxide eugenol filler after primary tooth pulpectomy. Pediatr Dent. 1993;15(4):249–53.

    PubMed  Google Scholar 

  104. Bar-Hillel R, Feuerstein O, Tickotsky N, Shapira J, Moskovitz M. Effects of amorphous calcium phosphate stabilized by casein phosphopeptides on enamel de-and remineralization in primary teeth: an in vitro study. J Dent Child (Chic). 2012;79(1):9–14. http://www.ncbi.nlm.nih.gov/pubmed/22449503.

    PubMed  Google Scholar 

  105. Petel R, Moskovitz M, Tickotsky N, Halabi A, Goldstein J, Houri-Haddad Y. Cytotoxicity and proliferative effects of Iodoform-containing root canal-filling material on RAW 264.7 macrophage and RKO epithelial cell lines. Arch Oral Biol. 2013;58(1):75–81.

    Article  PubMed  Google Scholar 

  106. Fuks AB, Eidelman E, Pauker N. Root fillings with Endoflas in primary teeth: a retrospective study. J Clin Pediatr Dent. 2002;27(1):41–5.

    Article  PubMed  Google Scholar 

  107. Weiss EI, Shalhav M, Fuss Z. Assessment of antibacterial activity of endodontic sealers by a direct contact test. Endod Dent Traumatol. 1996;12(4):179–84.

    Article  PubMed  Google Scholar 

  108. Geetha Priya PR, John JB, Elango I. Turner’s hypoplasia and non-vitality: a case report of sequelae in permanent tooth. Contemp Clin Dent. 2010;1(4):251–4. http://www.ncbi.nlm.nih.gov/pubmed/22114432%0A, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3220148.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Jerrell RG, Ronk SL. Developmental arrest of a succedaneous tooth following pulpectomy in a primary tooth. J Pedod. 1982;6(4):337–42.

    PubMed  Google Scholar 

  110. Cope AL, Chestnutt IG. Inappropriate prescribing of antibiotics in primary dental care: reasons and resolutions. Prim Dent J. 2014;3(4):33–7.

    Article  PubMed  Google Scholar 

  111. Goel D, Goel G, Chaudhary S, Jain D. Antibiotic prescriptions in pediatric dentistry: a review. J Family Med Prim Care. 2020;9(2):473.

    Article  PubMed  PubMed Central  Google Scholar 

  112. AAE Position Statement. AAE guidance on the use of systemic antibiotics in endodontics. J Endod. 2017;43(9):1409–13.

    Google Scholar 

  113. Segura-Egea JJ, Gould K, Şen BH, Jonasson P, Cotti E, Mazzoni A, et al. European Society of endodontology position statement: the use of antibiotics in endodontics. Int Endod J. 2018;51(1):20–5.

    Article  PubMed  Google Scholar 

  114. Use of antibiotic therapy for pediatric dental patients. Pediatr Dent. 2018;40(6):383–5.

    Google Scholar 

  115. Bansal R, Jain A, Goyal M, Singh T, Sood H, Malviya H. Antibiotic abuse during endodontic treatment: a contributing factor to antibiotic resistance. J Fam Med Prim Care. 2019;8(11):3518.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moti Moskovitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moskovitz, M., Tickotsky, N. (2023). Non-Vital Pulp Therapies in Primary Teeth. In: Fuks, A.B., Moskovitz, M., Tickotsky, N. (eds) Contemporary Endodontics for Children and Adolescents. Springer, Cham. https://doi.org/10.1007/978-3-031-23980-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23980-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23979-3

  • Online ISBN: 978-3-031-23980-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics