Skip to main content

Knowledge Distillation from Cross Teaching Teachers for Efficient Semi-supervised Abdominal Organ Segmentation in CT

  • Conference paper
  • First Online:
Fast and Low-Resource Semi-supervised Abdominal Organ Segmentation (FLARE 2022)

Abstract

For more clinical applications of deep learning models for medical image segmentation, high demands on labeled data and computational resources must be addressed. This study proposes a coarse-to-fine framework with two teacher models and a student model that combines knowledge distillation and cross teaching, a consistency regularization based on pseudo-labels, for efficient semi-supervised learning. The proposed method is demonstrated on the abdominal multi-organ segmentation task in CT images under the MICCAI FLARE 2022 challenge, with mean Dice scores of 0.8429 and 0.8520 in the validation and test sets, respectively. The code is available at https://github.com/jwc-rad/MISLight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://flare22.grand-challenge.org/.

  2. 2.

    https://github.com/seung-lab/connected-components-3d.

  3. 3.

    https://github.com/seung-lab/fastremap.

References

  1. Alalwan, N., Abozeid, A., ElHabshy, A.A., Alzahrani, A.: Efficient 3d deep learning model for medical image semantic segmentation. Alex. Eng. J. 60(1), 1231–1239 (2021)

    Article  Google Scholar 

  2. Bilic, P., et al.: The liver tumor segmentation benchmark (LITS). arXiv preprint arXiv:1901.04056 (2019)

  3. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: Semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  4. Chen, X., Yuan, Y., Zeng, G., Wang, J.: Semi-supervised semantic segmentation with cross pseudo supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2613–2622 (2021)

    Google Scholar 

  5. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  6. Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)

    Article  Google Scholar 

  7. Gou, J., Yu, B., Maybank, S.J., Tao, D.: Knowledge distillation: a survey. Int. J. Comput. Vision 129(6), 1789–1819 (2021)

    Article  Google Scholar 

  8. Heller, N., et al.: The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: results of the kits19 challenge. Med. Image Anal. 67, 101821 (2021)

    Article  Google Scholar 

  9. Heller, N., et al.: An international challenge to use artificial intelligence to define the state-of-the-art in kidney and kidney tumor segmentation in ct imaging. Proc. Am. Soc. Clin. Oncol. 38(6), 626–626 (2020)

    Article  Google Scholar 

  10. Hinton, G., Vinyals, O., Dean, J., et al.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 2(7) (2015)

  11. Howard, A.G., et al.: Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  12. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  13. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: NNU-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  14. Isensee, F., Maier-Hein, K.H.: An attempt at beating the 3d u-net. arXiv preprint arXiv:1908.02182 (2019)

  15. Kavur, A.E., et al.: Chaos challenge-combined (CT-MR) healthy abdominal organ segmentation. Med. Image Anal. 69, 101950 (2021)

    Article  Google Scholar 

  16. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  17. Liu, Y., Chen, K., Liu, C., Qin, Z., Luo, Z., Wang, J.: Structured knowledge distillation for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2604–2613 (2019)

    Google Scholar 

  18. Luo, X., Chen, J., Song, T., Wang, G.: Semi-supervised medical image segmentation through dual-task consistency. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 8801–8809 (2021)

    Google Scholar 

  19. Luo, X., Hu, M., Song, T., Wang, G., Zhang, S.: Semi-supervised medical image segmentation via cross teaching between cnn and transformer. arXiv preprint arXiv:2112.04894 (2021)

  20. Luo, X., et al.: Efficient semi-supervised gross target volume of nasopharyngeal carcinoma segmentation via uncertainty rectified pyramid consistency. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 318–329. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_30

    Chapter  Google Scholar 

  21. Ma, J., et al.: Loss odyssey in medical image segmentation. Med. Image Anal. 71, 102035 (2021)

    Article  Google Scholar 

  22. Ma, J., et al.: Fast and low-GPU-memory abdomen CT organ segmentation: the flare challenge. Med. Image Anal. 82, 102616 (2022). https://doi.org/10.1016/j.media.2022.102616

    Article  Google Scholar 

  23. Ma, J., et al.: Abdomenct-1k: is abdominal organ segmentation a solved problem? IEEE Trans. Pattern Anal. Mach. Intell. 44(10), 6695–6714 (2022)

    Google Scholar 

  24. Mehta, S., Rastegari, M., Caspi, A., Shapiro, L., Hajishirzi, H.: ESPNet: efficient spatial pyramid of dilated convolutions for semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 561–580. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_34

    Chapter  Google Scholar 

  25. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  26. Qin, D., et al.: Efficient medical image segmentation based on knowledge distillation. IEEE Trans. Med. Imaging 40(12), 3820–3831 (2021)

    Article  Google Scholar 

  27. Rundo, L., et al.: Use-net: incorporating squeeze-and-excitation blocks into u-net for prostate zonal segmentation of multi-institutional mri datasets. Neurocomputing 365, 31–43 (2019)

    Article  Google Scholar 

  28. Simpson, A.L., et al.: A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv preprint arXiv:1902.09063 (2019)

  29. Soffer, S., Ben-Cohen, A., Shimon, O., Amitai, M.M., Greenspan, H., Klang, E.: Convolutional neural networks for radiologic images: a radiologist’s guide. Radiology 290(3), 590–606 (2019)

    Article  Google Scholar 

  30. Taha, A.A., Hanbury, A.: Metrics for evaluating 3d medical image segmentation: analysis, selection, and tool. BMC Med. Imaging 15(1), 1–28 (2015)

    Article  Google Scholar 

  31. Thaler, F., Payer, C., Bischof, H., Stern, D.: Efficient multi-organ segmentation using spatial configuration-net with low GPU memory requirements. arXiv preprint arXiv:2111.13630 (2021)

  32. Wang, L., Yoon, K.J.: Knowledge distillation and student-teacher learning for visual intelligence: a review and new outlooks. IEEE Trans. Pattern Anal. Mach. Intell. 44, 3048–3068 (2021)

    Article  Google Scholar 

  33. Wu, Y., Xu, M., Ge, Z., Cai, J., Zhang, L.: Semi-supervised left atrium segmentation with mutual consistency training. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 297–306. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_28

    Chapter  Google Scholar 

  34. Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 605–613. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_67

    Chapter  Google Scholar 

  35. Zhang, F., Wang, Y., Yang, H.: Efficient context-aware network for abdominal multi-organ segmentation. arXiv preprint arXiv:2109.10601 (2021)

Download references

Acknowledgements

The author of this paper declares that the segmentation method implemented for participation in the FLARE 2022 challenge has not used any pre-trained models or additional datasets other than those provided by the organizers. Also, the proposed solution is fully automatic without any manual intervention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Won Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Choi, J.W. (2022). Knowledge Distillation from Cross Teaching Teachers for Efficient Semi-supervised Abdominal Organ Segmentation in CT. In: Ma, J., Wang, B. (eds) Fast and Low-Resource Semi-supervised Abdominal Organ Segmentation. FLARE 2022. Lecture Notes in Computer Science, vol 13816. Springer, Cham. https://doi.org/10.1007/978-3-031-23911-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23911-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23910-6

  • Online ISBN: 978-3-031-23911-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics