Skip to main content

ConDistFL: Conditional Distillation for Federated Learning from Partially Annotated Data

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 Workshops (MICCAI 2023)

Abstract

Developing a generalized segmentation model capable of simultaneously delineating multiple organs and diseases is highly desirable. Federated learning (FL) is a key technology enabling the collaborative development of a model without exchanging training data. However, the limited access to fully annotated training data poses a major challenge to training generalizable models. We propose “ConDistFL”, a framework to solve this problem by combining FL with knowledge distillation. Local models can extract the knowledge of unlabeled organs and tumors from partially annotated data from the global model with an adequately designed conditional probability representation. We validate our framework on four distinct partially annotated abdominal CT datasets from the MSD and KiTS19 challenges. The experimental results show that the proposed framework significantly outperforms FedAvg and FedOpt baselines. Moreover, the performance on an external test dataset demonstrates superior generalizability compared to models trained on each dataset separately. Our ablation study suggests that ConDistFL can perform well without frequent aggregation, reducing the communication cost of FL. Our implementation will be available at https://github.com/NVIDIA/NVFlare/tree/main/research/condist-fl.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Altini, N., et al.: Liver, kidney and spleen segmentation from CT scans and MRI with deep learning: a survey. Neurocomputing 490, 30–53 (2022)

    Article  Google Scholar 

  2. Asad, M., Moustafa, A., Ito, T.: FedOpt: towards communication efficiency and privacy preservation in federated learning. Appl. Sci. 10(8), 2864 (2020)

    Article  Google Scholar 

  3. Cardoso, M.J., et al.: MONAI: an open-source framework for deep learning in healthcare. arXiv preprint arXiv:2211.02701 (2022)

  4. Cerrolaza, J.J., et al.: Computational anatomy for multi-organ analysis in medical imaging: a review. Med. Image Anal.56, 44–67 (2019). https://doi.org/10.1016/j.media.2019.04.002, https://linkinghub.elsevier.com/retrieve/pii/S1361841518306273

  5. Fang, X., Yan, P.: Multi-organ segmentation over partially labeled datasets with multi-scale feature abstraction. IEEE Trans. Med. Imaging 39(11), 3619–3629 (2020)

    Article  Google Scholar 

  6. Fu, Y., Lei, Y., Wang, T., Curran, W.J., Liu, T., Yang, X.: A review of deep learning based methods for medical image multi-organ segmentation. Physica Med. 85, 107–122 (2021)

    Article  Google Scholar 

  7. Gul, S., Khan, M.S., Bibi, A., Khandakar, A., Ayari, M.A., Chowdhury, M.E.: Deep learning techniques for liver and liver tumor segmentation: a review. Comput. Biol. Med. 157, 105620 (2022)

    Google Scholar 

  8. Heller, N., et al.: The KiTs19 challenge data: 300 kidney tumor cases with clinical context, CT semantic segmentations, and surgical outcomes. https://doi.org/10.48550/ARXIV.1904.00445, https://arxiv.org/abs/1904.00445 (2019)

  9. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network (2015)

    Google Scholar 

  10. Hongdong, M., et al.: Multi-scale organs image segmentation method improved by squeeze-and-attention based on partially supervised learning. Int. J. Comput. Assist. Radiol. Surg. 17(6), 1135–1142 (2022)

    Article  Google Scholar 

  11. Huang, R., Zheng, Y., Hu, Z., Zhang, S., Li, H.: Multi-organ segmentation via co-training weight-averaged models from few-organ datasets. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 146–155. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_15

    Chapter  Google Scholar 

  12. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  13. Ji, Y., et al.: AMOS: a large-scale abdominal multi-organ benchmark for versatile medical image segmentation. arXiv preprint arXiv:2206.08023 (2022)

  14. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. Proc. Mach. learn. Syst. 2, 429–450 (2020)

    Google Scholar 

  15. Liu, P., Sun, M., Zhou, S.K.: Multi-site organ segmentation with federated partial supervision and site adaptation (2023). http://arxiv.org/abs/2302.03911

  16. McMahan, H.B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: AISTATS (2017)

    Google Scholar 

  17. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3d Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  18. Roth, H.R., et al.: NVIDIA FLARE: Federated learning from simulation to Real-World. (2022)

    Google Scholar 

  19. Sheller, M.J., et al.: Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci. Rep. 10(1), 1–12 (2020)

    Article  Google Scholar 

  20. Shen, C., et al.: Joint multi organ and tumor segmentation from partial labels using federated learning. In: Albarqouni, S., et al. Distributed, Collaborative, and Federated Learning, and Affordable AI and Healthcare for Resource Diverse Global Health, pp. 58–67. Springer Nature, Switzerland (2022). https://doi.org/10.1007/978-3-031-18523-6_6

  21. Shi, G., Xiao, L., Chen, Y., Kevin Zhou, S.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation (2020)

    Google Scholar 

  22. Simpson, A.L., et al.: A large annotated medical image dataset for the development and evaluation of segmentation algorithms. CoRR abs/1902.09063. http://arxiv.org/abs/1902.09063 (2019)

  23. Tajbakhsh, N., Jeyaseelan, L., Li, Q., Chiang, J.N., Wu, Z., Ding, X.: Embracing imperfect datasets: a review of deep learning solutions for medical image segmentation. Med. Image Anal. 63, 101693 (2020)

    Article  Google Scholar 

  24. Tajbakhsh, N., Roth, H., Terzopoulos, D., Liang, J.: Guest editorial annotation-efficient deep learning: the holy grail of medical imaging. IEEE Trans. Med. Imaging 40(10), 2526–2533 (2021)

    Article  Google Scholar 

  25. Xu, J., Glicksberg, B.S., Su, C., Walker, P., Bian, J., Wang, F.: Federated learning for healthcare informatics. J. Healthc. Inf. Res. 5, 1–19 (2021)

    Article  Google Scholar 

  26. Xu, X., Yan, P.: Federated multi-organ segmentation with partially labeled data. arXiv preprint arXiv:2206.07156 (2022)

  27. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 1–19 (2019)

    Article  Google Scholar 

  28. Yi-de, M., Qing, L., Zhi-Bai, Q.: Automated image segmentation using improved PCNN model based on cross-entropy. In: Proceedings of 2004 International Symposium on Intelligent Multimedia, Video and Speech Processing, 2004, pp. 743–746. IEEE (2004)

    Google Scholar 

  29. Zhang, J., Xie, Y., Xia, Y., Shen, C.: DoDNet: learning to segment multi-organ and tumors from multiple partially labeled datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1195–1204 (2021)

    Google Scholar 

  30. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning with Non-IID data. arXiv preprint arXiv:1806.00582 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger R. Roth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, P. et al. (2023). ConDistFL: Conditional Distillation for Federated Learning from Partially Annotated Data. In: Celebi, M.E., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 Workshops . MICCAI 2023. Lecture Notes in Computer Science, vol 14393. Springer, Cham. https://doi.org/10.1007/978-3-031-47401-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47401-9_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47400-2

  • Online ISBN: 978-3-031-47401-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics