Skip to main content

Environmentally Benign Pulping Processes

  • Chapter
  • First Online:
Environmentally Benign Pulping

Part of the book series: SpringerBriefs in Molecular Science ((GREENCHEMIST))

  • 138 Accesses

Abstract

The pulp and paper industry has been severely impacted by economic conditions and environmental pressures, and it is under intense pressure to improve performance in relation to the release of pollutants. Pressure to adopt new, environmentally friendly technologies is growing due to growing environmental concerns. The general steps of pulping, bleaching, and paper production are all included in an integrated pulp and paper process. Over the past two decades, new environmental laws and consumer activism have drastically changed how chemical pulps are produced. The pulping processes that can address the environmental challenges of the pulp and paper industry are presented in this chapter. These include Steam explosion pulping; High yield pulping; Ozone for high yield pulping; Oxygen delignification; Ozone delignification; Organosolv Pulping; Ionic liquids; Deep eutectic solvents and Biopulping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 1:70–71

    Article  Google Scholar 

  • Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126(29):9142–9147

    Article  CAS  Google Scholar 

  • Abo-Hamad A, Hayyan M, AlSaadi MA, Hashim MA (2015) Potential applications of deep eutectic solvents in nanotechnology. Chem Eng J 273:551–567

    Article  CAS  Google Scholar 

  • Aehle W (2004) Enzymes in industry, production and application. Wiley-VCH, Weinheim, p 484

    Google Scholar 

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685

    Article  CAS  Google Scholar 

  • Alejandro M, Saldivia G, Jan./Feb (2003) Two-Stage O2 Delignification System Cuts Mill’s Chemical Use, Boosts Pulp Quality. PaperAge 18–24

    Google Scholar 

  • Allison RW (1979) Effect of ozone on high-temperature thermo-mechanical pulp. Appita J 32(4):279–284

    CAS  Google Scholar 

  • Allison RW (1980) Low energy pulping through ozone modification. Appita J 34(3):197–204

    CAS  Google Scholar 

  • Alvarez-Vasco C, Ma R, Quintero M, Guo M, Geleynse S, Ramasamy KK, Wolcott M, Zhang X (2016) Unique low molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization. Green Chem 18:5133–5141

    Article  CAS  Google Scholar 

  • Ander P, Eriksson KE (1975) Influence of carbohydrates on lignin degradation by the white-rot fungus Sporotrichum pulverulentum. Sven Papperstid 78:643–652

    CAS  Google Scholar 

  • Anttila JR, Rousu PP, Tanskanen JP (2006) Chemical recovery in nonwood pulping based on formic acid—application of reactive evaporation. In: New technologies in nonwood fiber pulping and papermaking: 5th international nonwood fiber pulping and papermaking conference. Guangzhou, China, pp 334–338

    Google Scholar 

  • Asiz S, McDonough TJ (1987) Ester pulping. A brief evaluation. Tappi J 70(3):137–138

    Google Scholar 

  • Asiz S, Sarkanen K (1989) Organosolv pulping. A review. Tappi J 72(3):169–175

    Google Scholar 

  • Azeez MA (2018) Pulping of nonwoody biomass, pulp and paper processing, Salim Newaz Kazi, IntechOpen. https://doi.org/10.5772/intechopen, 79749. https://www.intechopen.com/books/pulp-and-paper-processing/pulpingof-nonwoody-biomass

  • Baeza J, Urizar S, Freer J, Rodríguez J, Peralta-Zamora P, Durán N (1999) Organosolv pulping. IX. Formic acid/acetone delignification of Pinus radiata and Eucalyptus globulus. Cellul Chem Technol 33(3/4):289–301

    Google Scholar 

  • Baig K, Wu J, Turcotte G, Doan HD (2015) Novel ozonation technique to delignify wheat straw for biofuel production. Energy Environ 26:303–318

    Article  CAS  Google Scholar 

  • Bajpai P (2010) Environmentally friendly production of pulp and paper. Wiley, New York

    Book  Google Scholar 

  • Bajpai P (2018b) Biotechnology for pulp and paper processing. Springer Nature, Singapore

    Book  Google Scholar 

  • Bajpai P, Bajpai PK, Akhtar M (2001) Biokraft pulping of eucalyptus with selected lignin-degrading fungi. J Pulp Pap Sci 27(7):235–239

    CAS  Google Scholar 

  • Bajpai P, Mishra SP, Mishra OP, Kumar S, Bajpai PK, Singh S (2004) Biochemical pulping of wheat straw. Tappi J 3(8):3–6

    CAS  Google Scholar 

  • Bajpai P (2012) Environmentally benign approaches for pulp bleaching, 2nd ed. Elsevier B.V, 406 p

    Google Scholar 

  • Bajpai P (2015) Minimum impact mill technologies. In: Green chemistry and sustainability in pulp and paper industry. Springer, Cham. https://doi.org/10.1007/978-3-319-18744-0_4

  • Bajpai P (2018a) Biermann’s handbook of pulp and paper: volume 1: raw material and pulp making. Elsevier, USA

    Google Scholar 

  • Bajpai P (2021) Nonwood plant fibers for pulp and paper. Chapter 7 pulping properties/pulping. Elsevier, pp 107–145

    Google Scholar 

  • Balogh DT, Curvelo AAS (1998) Successive and batch extraction of Eucalyptus grandis in dioxane water-HCl solution. Paperi Ja Puu-Paper Timber 80(5):374–378

    CAS  Google Scholar 

  • Binder A, Pelloni L, Fiechter A (1980) Delignification of straw with ozone to enhance biodegradability. Eur J Appl Microbiot Biotechnol 11:1–5

    Article  CAS  Google Scholar 

  • Bludworth J, Knopf FC (1994) Reactive extraction of lignin from wood using supercritical ammonia-water mixtures. J Supercrit Fluids 6(4):249–254

    Article  Google Scholar 

  • Bokström M, Nordén S (1998) Extended oxygen delignification. In: Proceedings of the 1998 international pulp bleaching conference. Helsinki, Finland

    Google Scholar 

  • Brandt A, Grasvik J, Hallett J, Welton T (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 15:550–583

    Article  CAS  Google Scholar 

  • Bräuer P, Großalber J, Münster H, Zhang X, Nagalla RN (2012) China is steaming ahead with high-yield pulping, success story of Chinese paper and board industry with the use of mechanical pulping, what can Asia learn from this, http://papermart.in/2012/09/28/china-is-steaming-ahead-with-high-yield-pulping-success-story-of-chinese-paper-andboard-industry-with-the-use-of-mechanical-pulping-what-can-asia-learn-from-this

  • Cao Y, Li H, Zhang Y, Zhang J, He J (2010) Structure and properties of novel regenerated cellulose films prepared from cornhusk cellulose in room temperature ionic liquids. J Appl Polym Sci 116:547–554

    Article  CAS  Google Scholar 

  • Chaudhuri P (1996) Solvent pulping of bagasse. A process and system concept. In: TAPPI pulping conference proceeding, pp 583–594

    Google Scholar 

  • Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51:1412–1421

    Article  CAS  Google Scholar 

  • Chirat C, Lachenal D, Nyangiro D, Viardin MT, Janel K (2005) Applying ozone on high kappa pulps (kraft and sulfite) to improve the bleached pulp yield. EFPG DAYS 2005. Grenoble, France

    Google Scholar 

  • Claus I, Kordsachia O, Schroeder N, Karstens T (2004) Monoethanolamine (MEA) pulping of beech and spruce wood for production for dissolving pulp. Holzforschung 5886:573–580

    Article  Google Scholar 

  • Colodette JL, Campos AS, Gomide JL (1990a) Attempts to use white liquor as the source of alkali comparison of chemical pretreatment methods for improving saccharification of cotton composition and degradation of wheat straw monosaccharides. Eur J Appl Concept Ind Crops Prod 108:431–441

    Google Scholar 

  • Colodette JL, Campos AS, Gomide JL (1990b) Attempts to use white liquor as the source of alkali in the oxygen delignification of eucalypt kraft pulp. In: 1990 Tappi oxygen delignification symposium notes. Tappi Press, Atlanta, p 145

    Google Scholar 

  • Constant S, Wienk HLJ, Frissen AE, Peinder PD, Boelens R, Es DSV, Grisel RJH, Weckhuysen BM, Huijgen WJJ, Gosselink RJA, Bruijnincx PCA (2016) New insights into the structure and composition of technical lignins: a comparative characterisation study. Green Chem 18(9):2651–2665

    Article  CAS  Google Scholar 

  • Dadi AP, Schall CA, Varanasi S (2007) Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl Biochem Biotechnol 137–140(1–12):407–421

    Google Scholar 

  • De Rosa MR, Da Silva C, Antonio A (1997) Organosolv delignification of wheat straw. In: 5th proceedings of Brazilian symposium on the chemistry of lignins and other wood components, vol 6, pp 224–231

    Google Scholar 

  • De Santi V, Cardellini F, Brinchi L, Germani R (2012) Novel Bronsted acidic deep eutectic solvent as reaction media for esterification of carboxylic acid with alcohols. Tetrahedron Lett 53(38):5151–5155

    Article  Google Scholar 

  • Degam G (2017) Deep eutectic solvents synthesis, characterization and applications in pretreatment of lignocellulosic biomass. http://openprairie.sdstate.edu/etd (2017)

  • Delmas M, Benjelloun-Mlayah B, Avignon G (2006) Pilot plant production of pulp, linear lignin and xylose. In: Processing 60th Appita annual conference and exhibition. Melbourne, Australia, pp 283–287

    Google Scholar 

  • Delpechbarrie F, Robert A (1993) Oxygen delignification in a water plus organic-solvent solution. 1. Delignification of poplar chips (Populus species) in a water-acetone solution. Cellul Chem Technol 27(1):87–105

    Google Scholar 

  • Demirbas A (1998) Aqueous glycerol delignification of wood chips and ground wood. Biores Technol 63(2):179–185

    Article  CAS  Google Scholar 

  • Dillner B, Tibbling P (1991) Use of ozone at medium consistency for fully bleached pulp. Process concept and effluent characteristics. In: International pulp bleaching conference. Stockholm, June 11–14, Proceedings, vol 2, pp 59–74

    Google Scholar 

  • Dyer TJ, Ragauskas AJ (2004) Laccase: a harbinger to kraft pulping. ACS Sym Ser 889:339–362

    Article  CAS  Google Scholar 

  • Elgharbawy AA, Hayyan M, Hayyan A, Basirun WJ, Salleh HM, Mirghani ME (2020) A grand avenue to integrate deep eutectic solvents into biomass processing. Biomass Bioenergy 137:105550

    Article  CAS  Google Scholar 

  • Elmasry AM, Mostafa NYS, Hassan HA, Aboustate MA (1998) Formamide and dimethylformamide and their effects on bagasse dissolving pulps. Cellul Chem Technol 32(5/6):433–440

    CAS  Google Scholar 

  • Enqvist E, Tikka P, Heinrich L, Luhtanen M (2006) Production of pulp using a gaseous organic agent as heating and reaction accelerating media. Patent WO2006103317

    Google Scholar 

  • Enz SM, Emmerling F (1987) North America’s first fully integrated, medium consistency oxygen delignification stage. Tappi J 70(6):105–112

    Google Scholar 

  • Eriksson KE (1985) Swedish developments in biotechnology related to the pulp and paper industry. Tappi J 68(7):46–55

    CAS  Google Scholar 

  • Eriksson KE, Vallander L (1980) Biomechanical pulping. In: Kirk TK, Higuchi T, Chang H-M (eds) Lignin biodegradation: microbiology, chemistry, and potential applications, vol 2. CRC Press, USA, pp 213–233

    Google Scholar 

  • Eriksson KE, Vallander L (1982) Properties of pulps from thermomechanical pulping of chips pretreated with fungi. Sven Papperstid 85:R33–R38

    CAS  Google Scholar 

  • Eriksson KE, Grünewald A, Vallander L (1980) Studies of growth conditions in wood for three white-rot fungi and their cellulase less mutants. Biotech Bioeng 22:363–437

    Article  CAS  Google Scholar 

  • Eriksson KE, Ander P, Henningsson B (1976). Method for producing cellulose pulp. US Patent, 3,962,033

    Google Scholar 

  • European Commission (2001) Integrated pollution prevention and control (IPPC). Reference document on best available techniques in the pulp and paper industry. Institute for Prospective Technological Studies, Seville

    Google Scholar 

  • Feng L, Chen Z (2008) Research progress on dissolution and functional modification of cellulose in ionic liquids. J Mol Liq 142:1–5

    Article  Google Scholar 

  • Ferraz A, Rodríguez J, Freer J, Baeza J (2000) Formic acid/acetone-organosolv pulping of white rotted Pinus radiata softwood. J Chem Technol Biotechnol 75(12):1190–1196

    Article  CAS  Google Scholar 

  • Fink HP, Weigel P, Purz HJ (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. J Prog Polym Sci 26:1473–1524

    Article  CAS  Google Scholar 

  • Ford M, Sharman P (1996) Performance of high yield hardwood pulp is investigated as it should be the choice of the future. Pulp Pap Int 38(10):29

    Google Scholar 

  • Francisco M, van den Bruinhorst A, Kroon MC (2012) New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing. Green Chem 14(8):2153–2157

    Article  CAS  Google Scholar 

  • Freer J, Rodríguez J, Baeza J, Duran N, Urizar S (1999) Analysis of pulp and lignin extracted with formic acid-acetone mixture form Pinus radiata and Eucalyuptus globulus wood. Boletín De La Sociedad Chilena De Química 4482:199–207

    Google Scholar 

  • Garcia-Cubero MT, Gonzalez-Benito G, Indacoechea I, Coca M, Bolado S (2009) Bioresource technology, effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw, vol 100, pp 1608–1613

    Google Scholar 

  • Gast D, Puls J (1985) Ethylene glycol-water pulping. Kinetics of delignification. In: Ferrero GL (ed) Anaerobic digestion and carbohydrate hydrolysis of waste. Elsevier Applied Science Publishers Ltd., Essex, pp 450–453

    Google Scholar 

  • Gorke JT, Srienc F, Kazlauskas RJ (2008) Hydrolase-catalyzed biotransformations in deep eutectic solvents. Chem Commun 10:1235–1237

    Article  Google Scholar 

  • Gullichsen J, Paulapuro H, Sundholm J (ed.) (2000) Papermaking science and technology, Book 5. Mechanical pulping, Fapet Oy, Helsinki, Finland

    Google Scholar 

  • Gullichsen J (2000) Fiber line operations. In: Gullichsen J, Fogelholm C-J (eds) Chemical pulping—papermaking science and technology, Book 6A. Fapet Oy, Helsinki, Finland, p A19

    Google Scholar 

  • Hadj-Kali M (2015) Separation of ethyl benzene and n-octane using deep eutectic solvents. Green Proc Synth 4(2):117–123

    CAS  Google Scholar 

  • Han Y, Law KN, Lanouette R (2008). Modification of jack pine TMP long fibers by alkaline peroxide—Part 1. Chemical characteristics of fibers and spent liquor. BioResources 3(3):870–880

    Google Scholar 

  • Hatakka A, Maijala P, Mettälä A (2002) Fungi as potential assisting agents in softwood pulping. Biotechnol Pulp Paper Ind 21:81–88

    CAS  Google Scholar 

  • Heinze T, Schwikal K, Barthel S (2005) Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci 5:520–525

    Article  CAS  Google Scholar 

  • Hergert HL (1998) Developments in organosolv pulping. An overview. In: Young RA, Akhtar M (eds) Environmental friendly technologies for the pulp and paper industry. Wiley, New York

    Google Scholar 

  • Holm J, Lassi U (2011). Ionic liquids in pretreatment of lignocellulosic biomass. In: Kokorin A (ed) Ionic liquids: application and perspectives. In-Tech, pp 546–560

    Google Scholar 

  • Holmbom B, Ekman R, Sjoholm R, Eckerman C, Thornton J (1991) Chemical-changes in peroxide bleaching of mechanical pulps. Papier 45(10A):16–22

    CAS  Google Scholar 

  • Hostachy JC (2010a) Ozone-enhanced bleaching of softwood kraft pulp. Tappi J 9(8):16–23

    Article  CAS  Google Scholar 

  • Hostachy JC (2010b) Softwood pulp bleaching with ozone: a new concept to reduce the bleaching chemical cost by 25%. Appita 63(2):92–97

    CAS  Google Scholar 

  • Hostachy JC (2010c) Use of ozone in chemical and high yield pulping processes: latest innovations maximizing efficiency and environmental performance. In: 64th Appita annual conference and exhibition, 18–21 April 2010. Melbourne, Australia, pp 349–354

    Google Scholar 

  • Hostachy JC (2010d) Use of ozone in chemical and high yield pulping processes: latest innovations maximizing efficiency and environmental performance. In: 64th Appita annual conference and exhibition, 18–21 April 2010. Melbourne, Australia, pp 349–354

    Google Scholar 

  • Hou XD, Feng GJ, Ye M, Huang CM, Zhang Y (2017) Significantly enhanced enzymatic hydrolysis of rice straw via a high-performance two-stage deep eutectic solvents synergistic pretreatment. Bioresour Technol 238:139–146

    Article  CAS  Google Scholar 

  • Hultholm TEM, Nylund K, Lonnberg KB, Finell M (1995) The IDE-process: a new pulping concept for nonwood annual plants. Processing TAPPI pulping conference. Chicago, IL, Book 1, pp 85–89 (1995)

    Google Scholar 

  • Isaifan RJ, Amhamed A (2018) Review on carbon dioxide absorption by choline chloride/urea deep eutectic solvents. Adv Chem 1–6

    Google Scholar 

  • Jacobs-Young CJ, Venditti RA, Joyce TW (1998) Effect of enzymatic pretreatment on the diffusion of sodium hydroxide in wood. Tappi J 81(1):260–266

    Google Scholar 

  • Jahan MS, Farouqui FI (2000) Pulping of whole jute plant (Corchorus capsularis) by soda-amine process. Holzforschung 54(6):625–630

    Article  CAS  Google Scholar 

  • Jahan MS, Farouqui FI (2003) Kinetics of jute pulping by soda-amine processes. Cellul Chem Technol 36(3/4):357–366

    Google Scholar 

  • Jahan MS, Farouqui FI, Hasan AJM (2001) Kinetics of jute pulping by soda-amine process. Bangladesh J Sci Ind Res 36(1/4):25–31

    CAS  Google Scholar 

  • Jahan MS (2001) Soda-amine pulping of cotton stalk. In: Pulping conference United States, pp 1175–1183

    Google Scholar 

  • Jerschefske D (2012) China invests to meet booming paper demand. http://www.labelsandlabeling.com/news/features/china-invests-meet-booming-paper-demand

  • Jessop PG, Jessop DA, Fu D, Phan L (2012) Solvatochromic parameters for solvents of interest in green chemistry. Green Chem 14:1245–1259

    Article  CAS  Google Scholar 

  • Jiménez L, de la Torre MJ, Maestre F, Ferrer JL, Pérez I (1997a) Organosolv pulping of wheat straw by use of phenol. Biores Technol 60:199–205

    Article  Google Scholar 

  • Jiménez L, Maestre F, Pérez I (1997b) Disolventes orgánicos para la obtención de pastas con celulosa. Review. Afinidad 44(467):45–50

    Google Scholar 

  • Jiménez L, de la Torre MJ, Bonilla JL, Ferrer JL (1998) Organosolv pulping of wheat straw by use of acetone-water mixtures. Process Biochem 33(4):401–408

    Article  Google Scholar 

  • Jiménez L, García JC, Pérez I, Ferrer JL, Chica A (2001b) Influence of the operating conditions in the acetone pulping of wheat straw on the properties of the resulting paper sheets. Biores Technol 79(1):23–27

    Article  Google Scholar 

  • Jiménez L, Villar JC, Rodríguez A, Jiménez RM, Calero A (2002a) Influence of pulping parameters of olive prunnings with ethanolamine and soda on pulp characteristics. Afinidad 59(500):399–408

    Google Scholar 

  • Jiménez L, Domínguez JC, Pérez I (2003) Influence of cooking variables in the organosolv pulping of wheat straw using mixtures of ethanol-acetone and water. Tappi J 2(1):27–31

    Google Scholar 

  • Jiménez L, Rodríguez A, Calero A, Eugenio ME (2004a) Use of ethanolamine-soda-water mixtures for pulping olive wood trimmings. Chem Eng Res Des 82(A8):1037–1042

    Article  Google Scholar 

  • Jiménez L, Rodríguez A, Pérez I, Calero A, Ferrer JL (2004b) Ethylene glycol-soda organosolv pulping of olive tree trimmings. Wood Fiber Sci 36(3):423–431

    Google Scholar 

  • Jiménez L, García JC, Pérez I, Ariza J, López F (2001a) Acetone pulping of wheat straw. Influence of the cooking and beating conditions on the resulting paper sheets. Ind Eng Chem Res 40(26):6201–6206

    Google Scholar 

  • Jiménez L, Pérez I, López F, Ariza J, Rodríguez A (2002b). Ethanol-acetone pulping of wheat straw. Influence of the cooking and the beating of the pulps on the properties of the resulting paper sheets. Bioresour Technol 83(2):139–143

    Google Scholar 

  • Johnson RW, Bird A (1991) CTMP in fine papers: impact of CTMP on permanence of alkaline papers, 1991 papermakers conference proceedings. TAPPI Press, pp 267–273

    Google Scholar 

  • Johnson AP, Johnson BI, Gleadow P, Silva FA, Aquilar RM, Hsiang CJ, Araneda H (2008) 21st century fibrelines. In: Proceedings of the international bleaching conference. Quebec City

    Google Scholar 

  • Johnsrud SC, Eriksson KE (1985) Cross-breeding of selected and mutated homokaryotic strains of Phanerochaete chrysosporium K-3: new cellulase deficient strains with increased ability to degrade lignin. Appl Microbiol Biotechnol 21:320–327

    Article  CAS  Google Scholar 

  • Johnsrud SC, Fernandez N, Lopez P (1987) Properties of fungal pretreated high yield bagasse. Nordic Pulp Pap Res J 2:47–52

    Google Scholar 

  • Keshavarzipour F, Tavakol H (2015) Deep eutectic solvent as a recyclable catalyst for three-component synthesis of β-amino carbonyls. Catal Lett 145(4):1062–1066

    Article  CAS  Google Scholar 

  • Khanolkar VD (1998) Punec pulping. Pudumjee develops clean nonwood pulping. Asia Pac Papermaker 8(12):32–33

    Google Scholar 

  • Kirk TK, Jeffries TW (1996) Roles for microbial enzymes in pulp and paper processing. In: ACS Symposium, 13 pp

    Google Scholar 

  • Kirk TK, Akhtar M, Blanchette RA (1994) Biopulping: seven years of consortia research. Processing tappi biology science symposia. Tappi Press, Atlanta, pp 57–66

    Google Scholar 

  • Kirk TK (1993) Biopulping: a glimpse of the future? Forest products laboratory, madison, WI, Res Rep FPL-RP-523

    Google Scholar 

  • Koell P, Lenhardt H (1987) Organosolv pulping of birch wood in a flow apparatus. Holzforschung 41(2):89–96

    CAS  Google Scholar 

  • Kojima Y, Yoon SL (1991). Distribution of lignin in the cell wall of ozonized CTMP fibres. In: Proceedings from the 1991 6th international symposium on wood and pulp chemistry. Melbourne, Australia, p 109

    Google Scholar 

  • Kubes GJ, Bolker HI (1978) Sulfur-free delignification. I. Alkaline pulping with monoethanolamine and ethylene diamine. Cellul Chem Technol 12(5):621–645

    Google Scholar 

  • Kucuk MH, Demirbas A (1993) Delignification of Ailanthus altissima and Spruce orientalis with glycerol or alkaline glycerol at atmospheric pressure. Cellul Chem Technol 27(6):679–686

    CAS  Google Scholar 

  • Kumar AK, Parikh BS, Pravakar M (2016) Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environ Sci Pollut Res 23(10):9265–9275

    Article  CAS  Google Scholar 

  • Kunaver M, Anžlovar A, Žagar E (2016) The fast and effective isolation of nanocellulose from selected cellulosic feedstocks. Carbohyd Polym 148:251–258

    Article  CAS  Google Scholar 

  • Kuo CH, Lee CK (2009) Enhanced enzymatic hydrolysis of sugarcane bagasse by N-methylmorpholine-N-oxide pretreatment. Bioresour Technol 100:866–871

    Article  CAS  Google Scholar 

  • Lachenal D, Taverdet MT, Muguet M (1991) Improvement in the ozone bleaching of kraft pulps. International pulp bleaching conference. Stockholm, June 11–14, proceedings, vol 2, pp 33–43

    Google Scholar 

  • Lecourt M, Struga B, Delagoutte T, Petit-Conil M (2007) Saving energy by application of ozone in the thermomechanical pulping process. IMPC, Minneapolis, pp 494–507

    Google Scholar 

  • Lee JS (2017) Deep eutectic solvents as versatile media for the synthesis of noble metal nanomaterials. Nanotechnol Rev 6(3):271–278

    Article  CAS  Google Scholar 

  • Leponiemi A (2008) Nonwood pulping possibilities—a challenge for the chemical pulping industry. APPITA J 61(3):234–243

    Google Scholar 

  • Leponiemi A (2011) Fibres and energy from wheat straw by simple practice. Doctoral dissertation, VTT Publication, p 767

    Google Scholar 

  • Levlin JE (1990) On the use of chemi-mechanical pulps in fine papers. Pap Ja Puu-Pap Timber 72(4):301–308

    Google Scholar 

  • Li K, Lei X, Lu L, Camm C (2010) Surface characterization and surface modification of mechanical pulp fibers. Pulp Pap Can 111(1):28–33

    CAS  Google Scholar 

  • Li L, Yu ST, Liu FS, Xie CS, Xu CZ (2011) Efficient enzymatic in situ saccharification of cellulose in aqeous-ionic liquid media by microwave treatment. BioResources 6(4):4494–4504

    CAS  Google Scholar 

  • Lindholm CA (1977a) Ozone treatment of mechanical pulp. Part 2: influence on strength properties. Pap Ja Puu 59(2):47–50, 53–58, 60, 62

    Google Scholar 

  • Lindholm CA (1977b) Ozone treatment of mechanical pulp. Part 3: influence on optical properties. Pap Ja Puu 59(4a):217–218, 221–224, 227–232

    Google Scholar 

  • Lindholm CA (1977c) Ozone treatment of mechanical pulps. Pap Ja Puu (Special No. 4a):217–231.

    Google Scholar 

  • Liu LY, Chen HZ (2006) Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM]Cl. Chin Sci Bull 51:2432–2436

    Article  CAS  Google Scholar 

  • Loow Y-L, New EK, Yang GH, Ang LY, Foo LYW, Wu TY (2017) Potential use of deep eutectic solvents to facilitate lignocellulosic biomass utilization and conversion. Cellulose 24(9):3591–3618

    Article  CAS  Google Scholar 

  • Lynam JG, Kumar N, Wong MJ (2017) Deep eutectic solvents’ ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density. Bioresour Technol 238:684–689

    Article  CAS  Google Scholar 

  • Machado ASR, Sardinha RMA, Gomes de Acebedo E, Nunes da Ponte M (1994) High-pressure delignification of eucalyptus wood by 1,4-dioxane-carbon dioxane mixtures. J Supercrit Fluids 7(2):87–92

    Article  CAS  Google Scholar 

  • Magara K, Ikeda I, Tomimura Y, Hosoya S (1998) Accelerated degradation of cellulose in the presence of lignin during ozone bleaching. J Pulp Pap Sci 24(8):264

    CAS  Google Scholar 

  • Mamleeva NA, Kharlanov AN, Kuznetsova MV, Kosyakov DS (2022) Delignification of wood of populus tremula by treatment with ozone. Russ J Phys Chem 96:2043–2052

    Article  CAS  Google Scholar 

  • Mansour OY, Selim IZ, Mohamed SA (1996) Physical characterization of pulps. I. Rice straw bleached by nonconventional multistage method and paper sheet making. Polym-Plast Technol Eng 35(4):567–580

    Google Scholar 

  • Mbous YP, Hayyan M, Hayyan A, Wong WF, Hashim MA, Looi CY (2017 March–April) Applications of deep eutectic solvents in biotechnology and bioengineering-Promises and challenges. Biotechnol Adv 35(2):105–134

    Google Scholar 

  • McDonough TJ (1996) Oxygen delignification. In: Dence CW, Reeve DW (eds) Pulp bleaching principles and practice. Tappi Press, Atlanta, p 213

    Google Scholar 

  • Meighan BN, Lima DRS, Cardoso WJ, Baêta BEL, Adarme OFH, Santucci BS, Pimenta MTB, de Aquino SF, Gurgel LVA (2017) Two-stage fractionation of sugarcane bagasse by autohydrolysis and glycerol organosolv delignification in a lignocellulosic biorefinery concept. Ind Crops Prod 108:431–441

    Article  CAS  Google Scholar 

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals and biorefinery concept. Prog Energy Combust Sci 38(4):522–550

    Article  CAS  Google Scholar 

  • Messner K, Koller K, Wall MB (1997) Fungal treatment of wood chips for chemical pulping. In: Young RA, Akhtar M (eds) Environmentally friendly technologies for the pulp and paper industry. Wiley, New York, pp 385–419

    Google Scholar 

  • Michel PC (2003) Development of biotechnologies in the production of mechanical pulps (BioHYP). CTP, 26 pp

    Google Scholar 

  • Miron JD, Ben-Ghedalia (1982) Effect of hydrolysing and oxidizing agents on the composition and degradation of wheat straw monosaccharaides. Eur J Appl Microbiol Biotechnol 15:83–87

    Google Scholar 

  • Mondal D, Sharma M, Wang CH, Lin YC, Huang HC, Saha A (2016) Deep eutectic solvent promoted one step sustainable conversion of fresh seaweed biomass to functionalized grapheme as a potential electrocatalyst. Green Chem 18(9):2819–2826

    Article  CAS  Google Scholar 

  • Mora-Pale M, Meli L, Doherty TV, Linhardt RJ, Dordick JS (2011) Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnol Bioeng 108(6):1229–1245

    Article  CAS  Google Scholar 

  • Mosier N, Hendrickson R, Brewer M, Ho N, Sedlak M, Dreshel R (2005a) Industrial scale-up of pH-controlled liquid hot water pretreatment of corn fiber for fuel ethanol production. Appl Biochem Biotechnol 125:77–97

    Article  CAS  Google Scholar 

  • Mosier N, Wyman CE, Dale BE, Elander R, Lee YY, Holtzapple MT (2005b) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  CAS  Google Scholar 

  • Mostafa NYS (1994) Base-catalyzed dioxane and dioxane-borax pulping and fine structure, chemical reactivity and viscose filterability of cotton cellulose. Cellul Chem Technol 28(2):171–175

    CAS  Google Scholar 

  • Moultrop JS, Swatloski RP, Moyna G, Rogers RD (2005) High resolution 13C NMR studies of cellulose and cellulose oligomers in ionic liquid solutions. R Soc Chem Chem Commun 12:1557–1559

    Article  Google Scholar 

  • Muhammad N, Man Z, Bustam MA, Mutalib MIA, Wilfred CD, Rafiq S (2011) Dissolution and delignification of bamboo biomass using amino acid-based ionic liquid. Appl Biochem Biotechnol 165(3–4):998–1009

    Article  CAS  Google Scholar 

  • Musale RM, Shukla SR (2016) Deep eutectic solvent as effective catalyst for aminolysis of polyethylene terephthalate (PET) waste. Int J Plast Technol 20(1):106–120

    Article  CAS  Google Scholar 

  • Muurinen E, Jurva E, Lahtinen I, Sohlo J (1993) Peroxyacid pulping and recovery. In: 7th international symposium on wood and pulping chemistry. Beijing, China, pp 195–200

    Google Scholar 

  • Muurinen E (2000a) Organosolv pulping. Academic dissertation, Faculty of Technology, University of Oulu, Linnanmaa. Ministry of Food, Agriculture and Forestry

    Google Scholar 

  • Muurinen E (2000b) Organosolv pulping. A review and distillation study related to peroxyacid pulping. Tesis doctoral. Departamento de Ingeniería de Procesos, Universidad. de Oulu, Finlandia

    Google Scholar 

  • Neto PG, Delpechbarrie F, Robert A (1993) Oxygen delignification in a water plus organic solvent solution. 2. Comparison of eucalyptus wood (Eucalyptus globulus) and poplar wood (Populus species). Cellul Chem Technol 27(2):185–199

    Google Scholar 

  • Nimz HH (1989) Pulping and bleaching by the Acetosolv process. Papier 43 (10A), V102–V108

    Google Scholar 

  • Ninomiya K, Yamauchi T, Kobayashi M (2013) Cholinium carboxylate ionic liquids for pretreatment of lignocellulosic materials to enhance subsequent enzymatic saccharification. Biochem Eng J 71:25–29

    Article  CAS  Google Scholar 

  • Obst JR, Sanyer N (1980) Effect of quinones and amines on the cleavage rate of β-O-4 ethers in lignin during alkaline pulping. Tappi J 63(7):111–114

    CAS  Google Scholar 

  • Oliet M (1999) Estudio sobre la deslignificación de eucalyptus globulus con etanol/agua como medio de cocción. [Tesis doctoral]. Madrid, Spain: Departamento de Ingeniería Química, Universidad Complutense de Madrid

    Google Scholar 

  • Oliveira VKD, Gregory C, Francois J (2015) Contribution of deep eutectic solvents for biomass processing: opportunities, challenges, and limitations. ChemCatChem 7(8):1250–1260

    Article  Google Scholar 

  • Oriaran TP, Labosky P Jr, Blankenhorn PR (1990) Kraft pulp and papermaking properties of Phanerochaete chrysosporium degraded aspen. Tappi J 73(7):147–152

    CAS  Google Scholar 

  • Oriaran TP, Labosky P Jr, Blankenhorn PR (1991) Kraft Pulp and papermaking properties of Phanerochaete chrysosporium degraded red oak. Wood Fiber Sci 23:316–327

    CAS  Google Scholar 

  • van Osch DJGP, Kollau LJBM, van den Bruinhorst A, Asikainen S, Alves da Rocha MA, Kroon MC (2016) Ionic liquids and deep eutectic solvents for lignocellulosic biomass fractionation. Phys Chem Chem Phys 19(4):2636–2665

    Article  Google Scholar 

  • Paiva A, Craveiro R, Aroso I, Martins M, Reis RL, Duarte ARC (2014) Natural deep eutectic solvents–solvents for the 21st century. ACS Sustain Chem Eng 2(5):1063–1071

    Article  CAS  Google Scholar 

  • Pan GX (2001) An insight into the behaviour of aspen CTMP in peroxide bleaching—alkalinity’s influence is greater than that of peroxide charge. Pulp Pap Can 102(11):41–45

    CAS  Google Scholar 

  • Papa G, Varanasi P, Sun L (2012) Exploring the effect of different plant lignin content and composition on ionic liquid pretreatment efficiency and enzymatic saccharification of Eucalyptus globulus L. Mutants. Bioresour Technol 117:352–359

    Article  CAS  Google Scholar 

  • Patil UB, Singh AS, Nagarkar JM (2014) Choline chloride based eutectic solvent: an efficient and reusable solvent system for the synthesis of primary amides from aldehydes and from nitriles. RSC Adv 4(3):1102–1106

    Article  CAS  Google Scholar 

  • Patt R, Kordsachia O (1986) Production of pulps using alkaline sulphite solutions with the addition of anthraquinone and methanol. Papier 40(10a):V1–V8

    Google Scholar 

  • Patt R, Kordsachia O, Reuter G (1987) Dtsch. Papierwirtschaft 3, T96–T102

    Google Scholar 

  • Patt R, Kordsachia O, Shackford LD, Rockvam LN (1999) Conversion of an acid sulfite mill to the ASAM process for improved quality and economics. In: Processing TAPPI pulping conference, vol 2. Orlando, Florida, pp 667–676

    Google Scholar 

  • Pere J, Ellmen J, Honkasalo J, Taipalus P (2002) Enhancement of TMP reject refining by enzymatic modification of pulp carbohydrates-A mill study. Biotechnol Pulp Paper Ind 21:281–290

    CAS  Google Scholar 

  • Perez-Pimienta JA, Lopez-Ortega MG, Varanasi P (2013) Comparison of the impact of ionic liquid pretreatment on recalcitrance of agave bagasse and switchgrass. Bioresour Technol 127:18–24

    Article  CAS  Google Scholar 

  • Petit-Conil M, Semar S, Niku-Paavola M-L, Sigoillot JC, Asther M, Anke H (2002) Potential of laccases in softwood-hardwood high-yield pulping and bleaching. Prog Biotechnol 21:61–71

    Google Scholar 

  • Petit-Conil M, de Choudens C, Espilit T (1998) Ozone in the production of softwood and hardwood high-yield pulps to save energy and improve quality. Nord Pulp Pap Res J 13(1):16–22

    Google Scholar 

  • Pikka O, Vessala R, Vilpponen A, Dahllof H, Germgard U, Norden S, et al. (2000) Bleaching Applications. In: Gullichsen, J, Fogelholm, C.-J. (Eds.), Chemical Pulping—Papermaking Science and Technology. Fapet Oy, Helsinki, Finland: Book 6A, p. A19

    Google Scholar 

  • Poppius-Levlin K (1991) Milox pulping with acetic acid peroxyacetic acid. Pap Puu 73(2):154–158

    Google Scholar 

  • Procentese A, Johnson E, Orr V, Garruto Campanile A, Wood JA, Marzocchella A, Rehmann L (2015) Deep eutectic solvent pretreatment and subsequent saccharification of corncob. Bioresour Technol 192:31–36

    Article  CAS  Google Scholar 

  • Procentese A, Raganati F, Olivieri G, Russo ME, Rehmann L, Marzocchella A (2018) Deep eutectic solvents pretreatment of agro-industrial food waste. Biotechnol Biofuels 11(1):37

    Article  Google Scholar 

  • Pu YQ, Jiang N, Ragauskas AJ (2007) Ionic liquids as a green solvent for lignin. J Wood Chem Technol 27:23–33

    Article  CAS  Google Scholar 

  • Pursula T (2005) Bringing life to paper, biotechnology in the forest industry. KCL research project, pp 1136–201

    Google Scholar 

  • Pye EK, Lora JH (1991) The Alcell process. In: Papex ‘91: PITA annual conference. Manchester, UK, 7 p

    Google Scholar 

  • Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843

    Article  Google Scholar 

  • Reis R (2001) The increased use of hardwood high yield pulps for functional advantages in papermaking. In: Proceedings of the 2001 papermakers conference. Cincinnati, OH, USA, pp 87–108

    Google Scholar 

  • Ren H, Chen C, Wang Q, Zhao D, Guo S (2016) The properties of choline chloride based deep eutectic solvents and their performance in the dissolution of cellulose. BioResources 11(2):5435–5451

    Article  CAS  Google Scholar 

  • Rezati-Charani P, Mohammadi-Rovshandeh J (2005) Effect of pulping variable with dimethyl formamide on the characteristics of bagasse-fiber. Bioresour Technol 96(15):1658–1669

    Google Scholar 

  • Rezayati-Charani P, Mohammadi-Rovshandeh J, Hashemi SJ, Kazemi-Najafi S (2006) Influence of dimethyl formamide pulping of bagasse on pulp properties. Biores Technol 97(18):2435–2442

    Article  CAS  Google Scholar 

  • Robert DR, Szadeczki M, Lachenal D (1999) Chemical characteristics of lignins extracted from softwood TMP after O3 and ClO2 treatment. In: Proceedings from the 215th national ACS meeting, Lignin: historical, biological and materials perspectives, Dallas, Texas, USA, chapter 27, pp 520–531

    Google Scholar 

  • Rodríguez A, Serrano L, Moral A, Pérez A, Jiménez L (2008) Use of high-boiling point organic solvents for pulping oil palm empty fruit bunches. Biores Technol 99(6):1743–1749

    Article  Google Scholar 

  • Rousu PP, Rousu P (2000) Method of producing pulp using single-stage cooking with formic acid and washing with performic acid. US patent 6156156

    Google Scholar 

  • Rousu P, Rousu P, Anttila J (2002) Sustainable pulp production from agricultural waste. Resour Conserv Recycl 35(1–2):85–103

    Google Scholar 

  • Rousu PP, Rousu P, Rousu E (2003) Process for producing pulp with a mixture of formic acid and acetic acid as cooking chemical. US patent 6562191

    Google Scholar 

  • Roy-Arcand L, Archibald F (1996) Selective removal of resin and fatty acids from mechanical pulp effluents by ozone. Water Res 30(5):1269–1279

    Google Scholar 

  • Ruffini G (1966) Improvement of bonding in wood pulps by the presence of acidic groups. Svensk Papperstding 69(3):72

    CAS  Google Scholar 

  • Rutkowski J, Mroz W, Perlinskasipa K (1995) Glycol-acetic wood delignification. Cellul Chem Technol 28(6):621–628

    Google Scholar 

  • Rutkowski J, Mroz W, Surna-Slusarsaka B, Perlinskasipa K (1993) Glycolic delignification of hardwood. In: Progress 93 conference proceeding, vol 1, pp 190–205

    Google Scholar 

  • Saake B, Lehnen R, Lummitsch S, Nimz HH (1995) Production of dissolving and paper grade pulps by the formacell process. In: 8th international symposium on wood and pulping chemistry. Helsinki, Finland, pp 237–242

    Google Scholar 

  • Salehi K, Kordsachia O, Patt R (2015) Comparison of MEA/AQ, soda and soda/AQ pulping of wheat and rye straw. Ind Crops Prod 52:603–610

    Article  Google Scholar 

  • Sano Y, Endo M, Sakashta Y (1989) Solvolysis pulping of softwoods with aqueous cresols containing a small amount of acetic acid. Mokuzai Gakkaishi 35(9):807–812

    Google Scholar 

  • Sano Y, Shimamoto S (1995) Pulping of birchwood at atmospheric pressure with aqueous acetic acid containing small amounts of sulfuric acid and phenols. Mokuzai Gakkaishi 41(11):1006–1011

    CAS  Google Scholar 

  • Sarwar MJ, Farouqui FI, Abdullah IS (2002) Pulping of jute with amines. Cellul Chem Technol 35(1/2):177–187

    Google Scholar 

  • Sathitsuksanoh N, Zhu Z, Zhang Y-HP (2012) Cellulose solvent and organic solvent-based lignocellulose fractionation enabled efficient sugar release from a variety of lignocellulosic feedstocks. Bioresource Technol 117:228–233

    Article  CAS  Google Scholar 

  • Satlewal A, Agrawal R, Bhagia S, Sangoro J, Ragauskas AJ (2018) Natural deep eutectic solvents for lignocellulosic biomass pretreatment: recent developments, challenges and novel opportunities. Biotechnol Adv 36(8):2032–2050

    Article  CAS  Google Scholar 

  • Savcor Indufor (2007) Pulp quality comparison, Technical report—module 6, 13 p. http://www.ktm.fi/files/17224/Module_6_Final.pdf

  • Schroeter MC, Dahlmann G (1991) Organocell simplifies the solvent sulping process. In: Processing TAPPI pulping conference. Orlando, FL, pp 645–652

    Google Scholar 

  • Schweers WHM (1974) Phenol pulping. Chem Technol 4(8):490–493

    CAS  Google Scholar 

  • Schweers W, Behler H, Beinhoff O (1972) Pulping of wood with phenols II. Phenol balance. Holzforschung 26(3):103–105

    Article  CAS  Google Scholar 

  • Selim IZ, Mansour OY, Mohamed SA (1996) Physical characterization of pulps. II. Rice straw and bagasse pulps bleached by monoconventional two-stage hydrogen peroxide method and paper sheet making. Polym-Plast Technol Eng 35(5):649–667

    Google Scholar 

  • Setliff EC, Marton R, Granzow SG (1990) Biomechanical pulping with white-rot fungi. Tappi J 73(8):141–147

    CAS  Google Scholar 

  • Shishov A, Bulatov A, Locatelli M, Carradori S, Andruch V (2017) Application of deep eutectic solvents in analytical chemistry. A Rev Microchemical J 135:33–38

    Article  CAS  Google Scholar 

  • Silverstein RA, Chen Y, Sharma-Shivappa RR, Boyette MD, Osborne J (2007) A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour Technol 98:3000–3011

    Article  CAS  Google Scholar 

  • Simões R, Castro JA (1999) Ozone delignification of pine and eucalyptus kraft pulps. 2. Selectivity. Ind Eng Chem Res 38:4608–4614

    Google Scholar 

  • Singh B, Lobo H, Shankarling G (2011) Selective N-alkylation of aromatic primary amines catalyzed by bio-catalyst or deep eutectic solvent. Catal Lett 141(1):178–182

    Article  CAS  Google Scholar 

  • Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114(21):11060–11082

    Article  CAS  Google Scholar 

  • Socha AM, Parthasarathi R, Shi J, Pattathil S, Whyte D, Bergeron M, George A, Tran K, Stavila V, Venkatachalam S, Hahn MG, Simmons BA, Singh S (2014) Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose. PNAS. https://doi.org/10.1073/pnas.1405685111

  • Soteland N (1982) Interstage ozone treatment of hardwood high yield pulp. Pap Ja Puu 64(11):707–708, 710, 712–714

    Google Scholar 

  • Spronsen JV, Witkamp GJ, Hollmann F, Choi YH, Verpoorte R (2011) Process for extracting materials from biological material. Patent: WO 2011155829 (A1) European Patent Office

    Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  CAS  Google Scholar 

  • Sun Y, Lanouette R, Cloutier JN, Pelletier E, Épiney M (2014b) Impact of selective refining combined with inter-stage ozone treatment on thermomechanical pulp. BioResources 9(1):1225–1235

    Article  Google Scholar 

  • Sun Y, Lanouette R, Pelletier E, Cloutier JN, Epiney M (2013) Impact of pH during an interstage ozone treatment of thermomechanical pulp. In: PACWEST conference. Kamloops, BC, Canada, 6 p

    Google Scholar 

  • Sun Y, Lanouette R, Pelletier E, Cloutier JN, Epiney M (2014a). Fibre performance of mechanical pulp after selective refining combined with interstage ozone treatment. In: IMPC conference. Helsinki, Finland, 10 p

    Google Scholar 

  • Surma-Slusarska B (1998) Balance of ethylene glycol in organosolv pulping of hardwood. Przeglad Paper 54(12):712–714

    CAS  Google Scholar 

  • Sykes M (1994) Environmental compatibility of effluents of aspen biomechanical pulps. Tappi J 77(1):160–166

    CAS  Google Scholar 

  • Tang B, Row KH (2013) Recent developments in deep eutectic solvents in chemical sciences. Monatshefte Fur Chemie 144(10):1427–1454

    Article  CAS  Google Scholar 

  • Tang X, Zuo M, Li Z, Liu H, Xiong C, Zeng X, Sun Y, Hu L, Liu S, Lei T, Lin L (2017) Green processing of lignocellulosic biomass and its derivatives in deep eutectic solvents. Chemsuschem 10(13):2696–2706

    Article  CAS  Google Scholar 

  • Tatsuishi H, Hatano T, Iwai T, Kovasin K (1987) Practical experiences of medium consistency oxygen delignification by Rauma-Repola and Sumitomo heavy industries. In: Tappi international oxygen delignification conference proceedings. Tappi Press, Atlanta, p 209

    Google Scholar 

  • Tench L, Harper S (1987) Oxygen bleaching practices and benefits – an overview. In: Tappi international oxygen delignification conference proceedings. Tappi Press, Atlanta, p 1

    Google Scholar 

  • Tran PH, Nguyen HT, Hansen PE, Le TN (2016) An efficient and green method for regio- and chemo-selective friedel-crafts acylations using a deep eutectic solvent ([CholineCl][ZnCl2]3). RSC Adv 6:37031–37038

    Article  CAS  Google Scholar 

  • Ãœnlü AE, Takaç S (2020) Use of deep eutectic solvents in the treatment of agro-industrial lignocellulosic wastes for bioactive compounds [Online First]. IntechOpen, https://doi.org/10.5772/intechopen.92747

  • Usta M, Eroglu H, Karaoglu C (1999) ASAE pulping of wheat straw (Triticum aestivum L.). Cellul Chem Technol 33(1–2):91–102

    Google Scholar 

  • Vaheri M, Salama N, Ruohoniemi K (1991) Procedure for the production of pulp. Eur Pat Appl EP429422. 29 May 1991

    Google Scholar 

  • Vaidya AA, Murton KD, Smith DA, Dedual G (2022) A review on organosolv pretreatment of softwood with a focus on enzymatic hydrolysis of cellulose. Biomass Conv Bioref 12:5427–5442

    Article  CAS  Google Scholar 

  • Vancov T, Alston AS, Brown T, McIntosh S (2012) Use of ionic liquids in converting lignocellulosic material to biofuels. Renew Energy 45:1–6

    Article  CAS  Google Scholar 

  • Vasudevan B, Panchapakesan B, Gratzl, JS, Holmbom B (1987) The effect of ozone on strength development and brightness reversion characteristics of high yield pulps. In: Proceedings from the 1987 tappi pulping conference, proceedings. Washington, DC, pp 517–523

    Google Scholar 

  • Vega A, Bao M, Lamas J (1997) Application of factorial design to the modelling of organosolv delignification of miscanthus sinensis (elephant grass) with phenol and dilute acid solutions. Biores Technol 61:1–7

    Article  CAS  Google Scholar 

  • Vega A, Bao M (1993) Organosolv fractionation of Ulex europaeus with dilute hydrochloric acid and phenol. Two simple kinetic models for prehydrolisis and delignification. Wood Sci Technol 27(1):61–68

    Google Scholar 

  • Ventura SPM, Santos LDF, Saraiva JA, Coutinho JAP (2012) Concentration effect of hydrophilic ionic liquids on the enzymatic activity of Candida antarctica lipase B. World J Microbiol Biotechnol 28:2303–2310

    Article  CAS  Google Scholar 

  • Vidal PF, Molinier J (1988) Ozonolysis of lignin–improvement of in vitro digestibility of poplar sawdust. Biomass 161–167

    Google Scholar 

  • Vigier KDO, Chatel G, Jerome F (2015) Contribution of deep eutectic solvents for biomass processing: opportunities, challenges, and limitations. ChemCatChem 7:1250–1260

    Article  CAS  Google Scholar 

  • Wall MB, Stafford G, Noel Y (1996) Treatment with Ophiostoma piliferum improves chemical pulping efficiency. In: Srebotnik E, Messner K (eds) Biotechnology in the pulp and paper industry. Recent advances in applied and fundamental research. Facultas-Universitatsverlag, Vienna, Austria, pp 205–210

    Google Scholar 

  • Wallis AFA (1978) Wood pulping with mono-, di- and triethanolamine. Appita J 31(6):443–448

    CAS  Google Scholar 

  • Wallis AFA (1980) Wood pulping with monoethanolamine in pressure vessels. Appita J 33(5):351–355

    CAS  Google Scholar 

  • Wang K, Yang HY, Xu F, Sun RC (2011) Structural comparison and enhanced enzymatic hydrolysis of the cellulosic preparation from populus tomentosa Carr. by different cellulose-soluble solvent systems. Bioresour Technol 102:4524–4529

    Article  CAS  Google Scholar 

  • Wang L, Zhou M, Chen Q, He MY (2013) Bronsted acidic deep eutectic solvent catalysed the one-pot synthesis of 2H-indazolo[2,1-b]phthalazinetriones. J Chem Res 37(10):598–600

    Google Scholar 

  • Wasserscheid P, Keim W (2000) Ionic liquids—new solutions for transition metal catalyst. Angew Chem Int Ed 39:3773–3789

    Article  Google Scholar 

  • Weerachanchai P, Leong SSJL, Chang MW, Ching CB, Lee JM (2012) Improvement of biomass properties by pretreatment with ionic liquids for bioconversion process. Bioresour Technol 111:453–459

    Article  CAS  Google Scholar 

  • Weil JR, Sariyaka A, Rau SL, Goetz J, Ladisch CM, Brewer M (1997) Pretreatment of yellow poplar wood sawdust by pressure cooking in water. Appl Biochem Biotechnol 68:21–40

    Article  CAS  Google Scholar 

  • Westmoreland RA, Jefcoat IA (1991) Sulfur dioxide-ethanol-water pulping of hardwoods. Chem Eng Commun 104:101–115

    Article  CAS  Google Scholar 

  • Widsten P, Kandelba A (2008) Laccase applications in the forest products industry: a review. Enzyme Microbial Technol 42(2008):293–307

    Article  CAS  Google Scholar 

  • Winner SR, Minogue LA, Lora JH (1997) ALCELL pulping of annual fibers. In: 9th international symposium on wood and pulping chemistry, Poster presentations. pp 120–1–120–4

    Google Scholar 

  • Wolfaardt JF, Bosman JL, Jacobs A (1996) Bio-kraft pulping of softwood. Biotechnology in the pulp and paper industry. In: Srebotnik E, Messner K (eds) Recent advances in applied and fundamental research. Facultas-Universitatsverlag, Vienna, Austria, pp 211–216

    Google Scholar 

  • Wright JD (1998) Ethanol from biomass by enzymatic hydrolysis. Chem Eng Prog 84(8):62–74

    Google Scholar 

  • Wu J, Zhang J, He J (2004) Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromol 5:266–268

    Article  CAS  Google Scholar 

  • Wu H, Mora-Pale M, Miao J, Doherty TV, Linhardt RJ, Dordick JS (2011) Facile pretreatment of lignocellulosic biomass at high loadings in room temperature ionic liquids. Biotechnol Bioeng 108(12):2865–2875

    Article  CAS  Google Scholar 

  • Xie RQ, Li XY, Zhang YF (2012) Cellulose pretreatment with 1-methyl-3-methylimidazoliumdimethylphosphate for enzymatic hydrolysis. Cellul Chem Technol 46(5–6):349–356

    CAS  Google Scholar 

  • Xu EC (2001) P-RC alkaline peroxide mechanical pulping of hardwood, part 1: aspen, beech, birch, cottonwood and maple. Pulp Paper Can 102(2):44–47

    CAS  Google Scholar 

  • Xu GC, Ding JC, Han RZ, Dong JJ, Ni Y (2016) Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. Bioresour Technol 203:364–369

    Article  CAS  Google Scholar 

  • Xu P, Zheng GW, Zong MH, Li N, Lou WY (2017) Recent progress on deep eutectic solvents in biocatalysis. Bioresour Bioprocess 4(1):34

    Google Scholar 

  • Yanhong G, Jing S, Qun L (2015) China’s high-yield pulp sector and its carbon dioxide emission: considering the saved standing wood as an increase of carbon storage. BioResources 10(1):10–13

    Google Scholar 

  • Yoo CG, Pu Y, Ragauskas AJ (2017) Ionic liquids: promising green solvents for lignocellulosic biomass utilization. Curr Opin Green Sustain Chem 5:5–11

    Article  Google Scholar 

  • Young RA, Akhtar M (1998) Environmentally friendly technologies for the pulp and paper industry. Wiley, New York, ISBN 0-471-15770-8

    Google Scholar 

  • Young RA, Baierl KW (1985) Ester pulping of wood: a revolutionary process. Southern Pulp Paper 48:15–17

    Google Scholar 

  • Zainal-Abidin MH, Hayyan M, Hayyan A, Jayakumar NS (2017 Aug 1) New horizons in the extraction of bioactive compounds using deep eutectic solvents: a review. Anal Chim Acta 979:1–23

    Google Scholar 

  • Zavrel M, Bross D, Funke M, Buchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-) cellulose. Bioresour Technol 100:2580–2587

    Article  CAS  Google Scholar 

  • Zhang Z, O’Hara IM, Doherty WOS (2012a) Pretreatment of sugarcane bagasse by acid-catalysed process in aqueous ionic liquid solutions. Bioresour Technol 120:149–156

    Article  CAS  Google Scholar 

  • Zhang T, Kumar R, Wyman CE (2013a) Sugar yields from dilute oxalic acid pretreatment of maple wood compared to those with other dilute acids and hot water. Carbohydr Polym 92:334–344

    Article  CAS  Google Scholar 

  • Zhang DS, Yang Q, Zhu JY, Pan XJ (2013b) Sulfite (SPORL) pretreatment of switchgrass for enzymatic saccharification. Bioresour Technol 129:127–134

    Article  CAS  Google Scholar 

  • Zhang CW, Xia SQ, Ma PS (2016a) Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Biores Technol 219:1–5

    Article  CAS  Google Scholar 

  • Zhang K, Pei Z, Wang D (2016b) Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review. Biores Technol 199:21–33

    Article  CAS  Google Scholar 

  • Zhang Q, De Oliveira VK, Royer S, Jerome F (2012b) Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 41:7109–7146

    Google Scholar 

  • Zhi S, Yu X, Wang X, Lu X (2012) Enzymatic hydrolysis of cellulose after pretreated by ionic liquids: focus on one-pot process. Energy Procedia 14:1741–1747

    Article  Google Scholar 

  • Zhou Y, Zhang D, Li G (2005) An overview of BCTMP: process, development, pulp quality and utilization. China Pulp Pap 24(5):51–60

    Google Scholar 

  • Zhou Y (2004) Overview of high yield pulps (HYP) in paper and board. In: PAPTAC 90th annual meeting. Montreal, Canada, pp B143–B148

    Google Scholar 

  • Zhu SD (2008) Perspective used of ionic liquids for the efficient utilization of lignocellulosic materials. J Chem Technol Biotechnol 83:777–779

    Article  CAS  Google Scholar 

  • Zulkefli S, Abdulmalek E, Abdul Rahman MB (2017) Pretreatment of oil palm trunk in deep eutectic solvent and optimization of enzymatic hydrolysis of pretreated oil palm trunk. Renewable Energy, Elsevier, vol 107(C):36–41

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bajpai, P. (2023). Environmentally Benign Pulping Processes. In: Environmentally Benign Pulping. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-031-23693-8_5

Download citation

Publish with us

Policies and ethics