Skip to main content
Log in

Deep eutectic solvent as effective catalyst for aminolysis of polyethylene terephthalate (PET) waste

  • Research Article
  • Published:
International Journal of Plastics Technology

Abstract

Aminolytic depolymerization of poly (ethylene terephthalate) (PET) bottle waste was carried out by diethanolamine and ethanolamine using synthesized deep eutectic solvents, choline chloride.x ZnCl2 and choline chloride.2 urea, as catalyst. The reaction parameters were optimized through variation in the time of aminolysis, catalyst concentration and the PET: amine ratio. Pure products N1,N1,N4,N4-tetrakis (2-hydroxyethyl)-terephthalamide (THETA) and terephthalic acid (TPA), and bis (2-hydroxy ethylene) terephthalamide (BHETA) in yields 82, 83 and 95 % respectively, were obtained. These products were characterized by FTIR spectroscopy, 1H NMR, 13C NMR spectroscopy and differential scanning calorimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. George N, Kurian T (2014) Recent developments in the chemical recycling of postconsumer poly(ethylene terephthalate) waste. Ind Eng Chem Res 53:4185–14198. doi:10.1021/ie501995m

    Google Scholar 

  2. Carta D, Cao G, D’Angeli C (2003) Chemical recycling of poly(ethylene terephthalate) (PET) by hydrolysis and Glycolysis. Environ Sci Pollut Res 10:390–394. doi:10.1065/espr2001.12.104.8

    Article  CAS  Google Scholar 

  3. Liu F, Cui X, Yu S, Li Z, Ge X (2009) Hydrolysis reaction of poly(ethylene terephthalate) using ionic liquids as solvent and catalyst. J App Poly Sci 114:3561–3565. doi:10.1002/app.30981

    Article  CAS  Google Scholar 

  4. Yue QF, Xiao LF, Zang ML, Bai XF (2013) The glycolysis of poly(ethylene terephthalate) waste: lewis acidic ionic liquids as high efficient catalysts. Polymer 5:1258–1271. doi:10.3390/polym5041258

    Article  CAS  Google Scholar 

  5. Kosmidis VA, Achilias DS, Karayannidis GP (2001) Poly(ethylene terephthalate) recycling and recovery of pure terephthalic acid. Kinetics of a phase transfer catalyzed alkaline hydrolysis. Macromol Mater Eng 286:640–647. doi:10.1002/1439-2054(20011001)286:10<640:AID-MAME640>3.0.CO;2-1

    Article  CAS  Google Scholar 

  6. Siddiqui MN, Achilias DS, Redhwi HH, Bikiaris DN, Katsogiannis KG, Karayannidis GP (2010) Hydrolytic depolymerization of PET in a microwave reactor. Macromol Mater Eng 295:575–584. doi:10.1002/mame.201000050

    Article  CAS  Google Scholar 

  7. Mansour SH, Ikladious NE (2002) Depolymerization of poly(ethylene terephthalate) wastes using 1,4-butanediol and triethylene glycol. Polym Test 21:497–505. doi:10.1016/S0142-9418(01)00115-5

    Article  CAS  Google Scholar 

  8. Kurokawa H, Ohshima M, Sugiyama K, Miura H (2003) Methanolysis of polyethylene terephthalate (PET) in the presence of aluminium tiisopropoxide catalyst to form dimethyl terephthalate and ethylene glycol. Polym Degrad Stab 79:529–533. doi:10.1016/S0141-3910(02)00370-1

    Article  CAS  Google Scholar 

  9. Shukla SR, Harad AM (2006) Aminolysis of polyethylene terephthalate waste. Polym Degrad Stab 91:1850–1854. doi:10.1016/j.polymdegradstab.2005.11.005

    Article  CAS  Google Scholar 

  10. Palekar VS, Shah RV, Shukla SR (2012) Ionic liquid-catalyzed aminolysis of poly(ethylene terephthalate) waste. J App Poly Sci 126:1174–1181. doi:10.1002/app.36878

    Article  CAS  Google Scholar 

  11. Parab YS, Shukla SR (2013) Novel synthesis, characterization of N1, N1, N4, N4-tetrakis (2-hydroxyethyl) terephthalamide (THETA) and terephthalic Acid (TPA) by depolymerization of PET bottle waste using diethanolamine. J Macromol Sci A 50:1149–1156. doi:10.1080/10601325.2013.830004

    Article  CAS  Google Scholar 

  12. Shah RV, Shukla SR (2012) Effective aminolytic depolymerization of poly(ethylene terephthalate) waste and synthesis of bisoxazoline therefrom. J App Poly Sci 125:3666–3675. doi:10.1002/app.36649

    Article  CAS  Google Scholar 

  13. Shah RV, Borude VS, Shukla SR (2013) Recycling of PET waste using 3-amino-1-propanol by conventional or microwave irradiation and synthesis of bis-oxazin there from. J App Poly Sci 127:323–328. doi:10.1002/app.37900

    Article  CAS  Google Scholar 

  14. Goje AS, Thakur SA, Diware VR, Chauhan YP, Mishra S (2004) Aminolysis of poly(ethylene terephthalate) waste for recovery of value added comonomeric product. Polym Plast Technol Eng 43:407–426. doi:10.1081/PPT-120029971

    Article  CAS  Google Scholar 

  15. Pingale ND, Palekar VS, Shukla SR (2010) Glycolysis of postconsumer polyethylene terephthalate waste. J App Poly Sci 115:249–254. doi:10.1002/app.31092

    Article  CAS  Google Scholar 

  16. Wang Q, Yao X, Geng Y, Zhou Q, Lu X, Zhang S (2015) Deep eutectic solvents as highly active catalysts for the fast and mild glycolysis of poly(ethylene terephthalate) (PET). Green Chem 17:2473–2479. doi:10.1039/C4GC02401J

    Article  CAS  Google Scholar 

  17. Yue FQ, Yang GH, Zang ML, Bai XF (2014) Metal-containing ionic liquids: highly effective catalysts for degradation of poly(ethylene terephthalate). Adv Mater Sci Eng. doi:10.1155/2014/454756

    Google Scholar 

  18. Fukushima K, Lecuyer MJ, Wei SD, Horn WH, Jones OG, Al-Megren AH, Alabdulrahman MA, Alsewailem DF, McNeil AM, Rice EJ, Hedrick LJ (2013) Advanced chemical recycling of poly(ethylene terephthalate) through organocatalytic aminolysis. Polym Chem 4:1610–1616. doi:10.1039/C2PY20793A

    Article  CAS  Google Scholar 

  19. Spychaj T, Pilawka R, Spychaj S, Bartkowiak A (2004) Aminolytic depolymerization of poly(ethylene terephthalate) waste in a microwave reactor. Ind Eng Chem Res 43:862–874. doi:10.1002/pi.2976

    Article  CAS  Google Scholar 

  20. Elsaeed SM, Farag RK (2009) Synthesis and characterization of unsaturated polyesters based on the aminolysis of poly(ethylene terephthalate). J Appl Polym Sci 112:3327–3336. doi:10.1002/app.29527

    Article  CAS  Google Scholar 

  21. Elsaeed SM (2008) Synthesis of some nonionic polymeric surfactants based on aminolized PET as corrosion inhibitors. Int J Polym Mater 57:615–634. doi:10.1080/00914030801891260

    Article  CAS  Google Scholar 

  22. Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082. doi:10.1021/cr300162p

    Article  CAS  Google Scholar 

  23. Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2002) Quaternary ammonium zinc- or tin-containing ionic liquids: water insensitive, recyclable catalysts for Diels-Alder reactions. Green Chem 4:24–26. doi:10.1039/B108431C

    Article  CAS  Google Scholar 

  24. Morales RC, Tambyrajah V, Jenkins PR, Davies DL, Abbott AP (2004) The regiospecific Fischer indole reaction in choline chloride·2ZnCl2 with product isolation by direct sublimation from the ionic liquid. Chem Commun 2:158–159. doi:10.1039/b313655h

    Article  Google Scholar 

  25. Sunitha S, Kanjilal S, Reddy PS, Prasad RBN (2007) Liquid–liquid biphasic synthesis of long chain wax esters using the Lewis acidic ionic liquid choline chloride·2ZnCl2. Tetrahedron Lett 48:6962–6965. doi:10.1016/j.tetlet.2007.07.159

    Article  CAS  Google Scholar 

  26. Abbott AP, Bell TJ, Handa S, Stoddart B (2005) O-Acetylation of cellulose and monosaccharides using a zinc based ionic liquid. Green Chem 7:705–707. doi:10.1039/B511691K

    Article  CAS  Google Scholar 

  27. Duan Z, Gu Y, Deng Y (2006) Green and moisture-stable Lewis acidic ionic liquids (choline chloride · xZnCl2) catalyzed protection of carbonyls at room temperature under solvent-free conditions. Cat Comm 7:651–656. doi:10.1016/j.catcom.2006.02.008

    Article  CAS  Google Scholar 

  28. Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 70:70–71. doi:10.1039/B210714G

    Article  Google Scholar 

  29. Popoola VA (1988) Polyester formation: aminolytic degradation and proposed mechanisms of the reaction. J Appl Polym Sci 36:1677–1683. doi:10.1002/app.1988.070360716

    Article  CAS  Google Scholar 

  30. Vaidya UR, Nadkarni VM (1987) Unsaturated polyesters from PET waste: kinetics of polycondensation. J Appl Polym Sci 34:235–245. doi:10.1039/B210714G

    Article  CAS  Google Scholar 

  31. Guclu G, Orbay M (2009) Alkyd resins synthesized from postconsumer PET bottles. Prog Org Coat 65:362–365. doi:10.1016/j.porgcoat.2009.02.004

    Article  Google Scholar 

  32. Spychaj T, Paszun D (1998) New trends in chemical recycling of poly(ethylene terephthalate). Macromol Symp 135:137–145. doi:10.1002/masy.19981350116

    Article  CAS  Google Scholar 

  33. Spychaj T, Fabrycy E, Spychaj S, Kacperski M (2001) Aminolysis and aminoglycolysis of waste poly(ethylene terephthalate). J Mater Cycles Waste Manage 3:24–31. doi:10.1007/s10163-000-0036-5

    CAS  Google Scholar 

  34. Güçlü G, Yalçınyuva T, Özgümüs S, Orbay M (2003) Hydrolysis of waste polyethylene terephthalate and characterization of products by differential scanning calorimetry. Thermochim Acta 404:193–205. doi:10.1016/S0040-6031(03)00160-6

    Article  Google Scholar 

Download references

Acknowledgments

Authors are thankful to University Grant Commission, New Delhi for fellowship to Rakesh Musale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev R. Shukla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musale, R.M., Shukla, S.R. Deep eutectic solvent as effective catalyst for aminolysis of polyethylene terephthalate (PET) waste. Int J Plast Technol 20, 106–120 (2016). https://doi.org/10.1007/s12588-016-9134-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12588-016-9134-7

Keywords

Navigation