Skip to main content

The Changes of the Nervous System from Fetal Stages to Early Adulthood, as Seen in Different Imaging Modalities

  • Chapter
  • First Online:
Pediatric Neurosurgery Board Review

Abstract

The embryology of the fetal brain is a complex, eloquent process that begins in the embryonic period, conception through the eighth week of gestation. During gestation, the brain shows a sequential development of transient laminar compartments, from the center to the periphery: the proliferative zone (ventricular and subventricular zone), the intermediate zone (future white matter [WM]), the subplate zone, the cortical plate (future gray mater [GM]), and the marginal zone. Neural proliferation and migration are predominant during the first trimester of pregnancy, while axon and dendrite growth and proliferation occur mainly during the second and third trimester of gestation. Subsequently, prolonged maturation phenomena are observed, with synaptogenesis and pruning mechanisms, myelination, and neurochemical maturation being the most influential [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stiles J, Jernigan TL. The basics of brain development. Neuropsychol Rev. 2010;20:327–48. https://doi.org/10.1007/s11065-010-9148-4.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Garel C, Chantrel E, Brisse H, et al. Fetal cerebral cortex: normal gestational landmarks identified using prenatal MR imaging. AJNR Am J Neuroradiol. 2001;22:184–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Orman G, Benson JE, Kweldam CF, et al. Neonatal head ultrasonography today: a powerful imaging tool! J Neuroimaging. 2015;25:31–55. https://doi.org/10.1111/jon.12108.

    Article  PubMed  Google Scholar 

  4. Leijser LM, Srinivasan L, Rutherford MA, et al. Structural linear measurements in the newborn brain: accuracy of cranial ultrasound compared to MRI. Pediatr Radiol. 2007;37:640–8. https://doi.org/10.1007/s00247-007-0485-2.

    Article  PubMed  Google Scholar 

  5. Hall EJ. Lessons we have learned from our children: cancer risks from diagnostic radiology. Pediatr Radiol. 2002;32:700–6. https://doi.org/10.1007/s00247-002-0774-8.

    Article  PubMed  Google Scholar 

  6. Berrington de González A, Mahesh M, Kim K-P, et al. Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med. 2009;169:2071–7. https://doi.org/10.1001/archinternmed.2009.440.

    Article  PubMed  Google Scholar 

  7. James Barkovich A, Raybaud C. Pediatric neuroimaging. 6th ed; 2018.

    Google Scholar 

  8. King MA, Kanal KM, Relyea-Chew A, et al. Radiation exposure from pediatric head CT: a bi-institutional study. Pediatr Radiol. 2009;39:1059–65. https://doi.org/10.1007/s00247-009-1327-1.

    Article  PubMed  Google Scholar 

  9. Smith AB, Dillon WP, Gould R, Wintermark M. Radiation dose-reduction strategies for neuroradiology CT protocols. AJNR Am J Neuroradiol. 2007;28:1628–32. https://doi.org/10.3174/ajnr.A0814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Knickmeyer RC, Gouttard S, Kang C, et al. A structural MRI study of human brain development from birth to 2 years. J Neurosci. 2008;28:12176–82. https://doi.org/10.1523/JNEUROSCI.3479-08.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Glenn OA, Barkovich AJ. Magnetic resonance imaging of the fetal brain and spine: an increasingly important tool in prenatal diagnosis, part 1. AJNR Am J Neuroradiol. 2006;27:1604–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Glenn OA, Barkovich J. Magnetic resonance imaging of the fetal brain and spine: an increasingly important tool in prenatal diagnosis: part 2. AJNR Am J Neuroradiol. 2006;27:1807–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Meoded A, Orman G, Huisman TAGM. Diffusion weighted and diffusion tensor MRI in pediatric neuroimaging including connectomics: principles and applications. Semin Pediatr Neurol. 2020;33:100797. https://doi.org/10.1016/j.spen.2020.100797.

    Article  PubMed  Google Scholar 

  14. Meoded A, Poretti A, Mori S, Zhang J. Diffusion tensor imaging. In: Reference module in neuroscience and biobehavioral psychology. 2017. p. 1–11.

    Google Scholar 

  15. Poretti A, Meoded A, Huisman T. Maturation of the brainstem and cerebellar white matter tracts from the neonatal period to adolescence: a diffusion tensor imaging study. Neuropediatrics. 2013;44:PS21_1043. https://doi.org/10.1055/s-0033-1337861.

    Article  Google Scholar 

  16. International Society of Ultrasound in Obstetrics & Gynecology Education Committee. Sonographic examination of the fetal central nervous system: guidelines for performing the “basic examination” and the “fetal neurosonogram”. Ultrasound Obstet Gynecol. 2007;29:109–16. https://doi.org/10.1002/uog.3909.

    Article  Google Scholar 

  17. Cohen-Sacher B, Lerman-Sagie T, Lev D, Malinger G. Sonographic developmental milestones of the fetal cerebral cortex: a longitudinal study. Ultrasound Obstet Gynecol. 2006;27:494–502. https://doi.org/10.1002/uog.2757.

    Article  CAS  PubMed  Google Scholar 

  18. Chi JG, Dooling EC, Gilles FH. Gyral development of the human brain. Ann Neurol. 1977;1:86–93. https://doi.org/10.1002/ana.410010109.

    Article  CAS  PubMed  Google Scholar 

  19. Norman MG. Normal and abnormal development of the human nervous system. Ronald J. Lemire, John D. Loeser, Richard W. Leech, Ellsworth C. Alvord Jr. Harper and Row, Hagerstown, Maryland, 1975, 237 pp. + ix. Teratology. 1976;14:359. https://doi.org/10.1002/tera.1420140312.

    Article  Google Scholar 

  20. van der Knaap MS, van Wezel-Meijler G, Barth PG, et al. Normal gyration and sulcation in preterm and term neonates: appearance on MR images. Radiology. 1996;200:389–96. https://doi.org/10.1148/radiology.200.2.8685331.

    Article  PubMed  Google Scholar 

  21. Hill J, Dierker D, Neil J, et al. A surface-based analysis of hemispheric asymmetries and folding of cerebral cortex in term-born human infants. J Neurosci. 2010;30:2268–76. https://doi.org/10.1523/JNEUROSCI.4682-09.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Girard N, Raybaud C, Poncet M. In vivo MR study of brain maturation in normal fetuses. AJNR Am J Neuroradiol. 1995;16:407–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Levine D, Barnes PD. Cortical maturation in normal and abnormal fetuses as assessed with prenatal MR imaging. Radiology. 1999;210:751–8. https://doi.org/10.1148/radiology.210.3.r99mr47751.

    Article  CAS  PubMed  Google Scholar 

  24. Chung R, Kasprian G, Brugger PC, Prayer D. The current state and future of fetal imaging. Clin Perinatol. 2009;36:685–99. https://doi.org/10.1016/j.clp.2009.07.004.

    Article  PubMed  Google Scholar 

  25. Kostović I, Judas M, Rados M, Hrabac P. Laminar organization of the human fetal cerebrum revealed by histochemical markers and magnetic resonance imaging. Cereb Cortex. 2002;12:536–44. https://doi.org/10.1093/cercor/12.5.536.

    Article  PubMed  Google Scholar 

  26. Allendoerfer KL, Shatz CJ. The subplate, a transient neocortical structure: its role in the development of connections between thalamus and cortex. Annu Rev Neurosci. 1994;17:185–218. https://doi.org/10.1146/annurev.ne.17.030194.001153.

    Article  CAS  PubMed  Google Scholar 

  27. Kostovic I, Rakic P. Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J Comp Neurol. 1990;297:441–70. https://doi.org/10.1002/cne.902970309.

    Article  CAS  PubMed  Google Scholar 

  28. Counsell SJ, Maalouf EF, Fletcher AM, et al. MR imaging assessment of myelination in the very preterm brain. AJNR Am J Neuroradiol. 2002;23:872–81.

    PubMed  PubMed Central  Google Scholar 

  29. Sie LT, van der Knaap MS, van Wezel-Meijler G, Valk J. MRI assessment of myelination of motor and sensory pathways in the brain of preterm and term-born infants. Neuropediatrics. 1997;28:97–105. https://doi.org/10.1055/s-2007-973680.

    Article  CAS  PubMed  Google Scholar 

  30. Martin E, Krassnitzer S, Kaelin P, Boesch C. MR imaging of the brainstem: normal postnatal development. Neuroradiology. 1991;33:391–5. https://doi.org/10.1007/BF00598609.

    Article  CAS  PubMed  Google Scholar 

  31. van der Knaap MS, Valk J. MR imaging of the various stages of normal myelination during the first year of life. Neuroradiology. 1990;31:459–70. https://doi.org/10.1007/BF00340123.

    Article  PubMed  Google Scholar 

  32. Barkovich AJ. MR of the normal neonatal brain: assessment of deep structures. AJNR Am J Neuroradiol. 1998;19:1397–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Steen RG, Ogg RJ, Reddick WE, Kingsley PB. Age-related changes in the pediatric brain: quantitative MR evidence of maturational changes during adolescence. AJNR Am J Neuroradiol. 1997;18:819–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Barkovich AJ, Kjos BO, Jackson DE, Norman D. Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology. 1988;166:173–80. https://doi.org/10.1148/radiology.166.1.3336675.

    Article  CAS  PubMed  Google Scholar 

  35. Welker K, Patton A. Assessment of normal myelination with magnetic resonance imaging. Semin Neurol. 2012;32:015–28. https://doi.org/10.1055/s-0032-1306382.

    Article  Google Scholar 

  36. Chokshi FH, Poretti A, Meoded A, Huisman TAGM. Normal and abnormal development of the cerebellum and brainstem as depicted by diffusion tensor imaging. Semin Ultrasound CT MR. 2011;32:539–54. https://doi.org/10.1053/j.sult.2011.06.005.

    Article  PubMed  Google Scholar 

  37. Conturo TE, Lori NF, Cull TS, et al. Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A. 1999;96:10422–7. https://doi.org/10.1073/pnas.96.18.10422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Berman JI, Mukherjee P, Partridge SC, et al. Quantitative diffusion tensor MRI fiber tractography of sensorimotor white matter development in premature infants. NeuroImage. 2005;27:862–71. https://doi.org/10.1016/j.neuroimage.2005.05.018.

    Article  PubMed  Google Scholar 

  39. Berman JI, Glass HC, Miller SP, et al. Quantitative fiber tracking analysis of the optic radiation correlated with visual performance in premature newborns. AJNR Am J Neuroradiol. 2009;30:120–4. https://doi.org/10.3174/ajnr.A1304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lebel C, Caverhill-Godkewitsch S, Beaulieu C. Age-related regional variations of the corpus callosum identified by diffusion tensor tractography. NeuroImage. 2010;52:20–31. https://doi.org/10.1016/j.neuroimage.2010.03.072.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avner Meoded .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meoded, A., Huisman, T.A.G.M. (2023). The Changes of the Nervous System from Fetal Stages to Early Adulthood, as Seen in Different Imaging Modalities. In: Shimony, N., Jallo, G. (eds) Pediatric Neurosurgery Board Review. Springer, Cham. https://doi.org/10.1007/978-3-031-23687-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23687-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23686-0

  • Online ISBN: 978-3-031-23687-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics