Skip to main content

Fully Bio-based Transparent Wood

  • Chapter
  • First Online:
Transparent Wood Materials

Abstract

Due to its high optical transparency, excellent thermal insulation, and great durability, transparent wood is a desirable structural material for energy-efficient buildings, electronics, packaging, and nanotechnologies. The transparent wood enhances the aesthetic and practical qualities of wood. A lot of work has gone into making transparent wood with luminous, electrochromic, thermochromic, and photo-switchable functionalities by incorporating quantum dots, nanoparticles, or dyes. Because of their superior mechanical qualities and immense potential to function as renewable and CO2-storing cellulose scaffolds for cutting-edge hybrid materials with embedded functionality, wood-derived cellulose materials obtained by structure-retaining delignification are gaining increasing attention. A wide range of characteristics is produced by applying various delignification protocols and numerous additional processes, such as polymer impregnation and densification. Due to the scarcity of bio-based monomers that combine advantageous processing with high performance, the sustainable development of biocomposites has been constrained. Nonetheless, because of its renewable and biodegradable qualities, transparent wood has the potential to replace traditional petroleum-based polymers because of the growing knowledge obtained during the last few years which is presented in the following chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O. Vay, K. De Borst, C. Hansmann, A. Teischinger, U. Müller, Thermal conductivity of wood at angles to the principal anatomical directions. Wood Sci. Technol. 49(3), 577–589 (2015). https://doi.org/10.1007/s00226-015-0716-x

    Article  CAS  Google Scholar 

  2. E. Cabane, T. Keplinger, T. Künniger, V. Merk, I. Burgert, Functional lignocellulosic materials prepared by ATRP from a wood scaffold. Sci. Rep. 6(1), 31287 (2016). https://doi.org/10.1038/srep31287

    Article  CAS  Google Scholar 

  3. Q. Fu, Y. Chen, M. Sorieul, Wood-based flexible electronics. ACS Nano 14(3), 3528–3538 (2020). https://doi.org/10.1021/acsnano.9b09817

    Article  CAS  Google Scholar 

  4. Y. Li, Q. Fu, S. Yu, M. Yan, L. Berglund, Optically Transparent wood from a nanoporous cellulosic template: combining functional and structural performance. Biomacromol 17(4), 1358–1364 (2016). https://doi.org/10.1021/acs.biomac.6b00145

    Article  CAS  Google Scholar 

  5. T. Li et al., Wood composite as an energy efficient building material: guided sunlight transmittance and effective thermal insulation. Adv. Energy Mater. 6(22), 1601122 (2016). https://doi.org/10.1002/aenm.201601122

    Article  CAS  Google Scholar 

  6. R. Mi et al., Scalable aesthetic transparent wood for energy efficient buildings. Nat. Commun. 11(1), 3836 (2020). https://doi.org/10.1038/s41467-020-17513-w

    Article  CAS  Google Scholar 

  7. J. Song et al., Processing bulk natural wood into a high-performance structural material. Nature 554(7691), 224–228 (2018). https://doi.org/10.1038/nature25476

    Article  CAS  Google Scholar 

  8. R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40(7), 3941–3994 (2011). https://doi.org/10.1039/C0CS00108B

    Article  CAS  Google Scholar 

  9. J. van Spronsen, M.A.T. Cardoso, G.-J. Witkamp, W. de Jong, M.C. Kroon, Separation and recovery of the constituents from lignocellulosic biomass by using ionic liquids and acetic acid as co-solvents for mild hydrolysis. Chem. Eng. Process. Process Intensif. 50(2), 196–199 (2011). https://doi.org/10.1016/j.cep.2010.12.010

    Article  CAS  Google Scholar 

  10. J. Fahlén, L. Salmén, Pore and matrix distribution in the fiber wall revealed by atomic force microscopy and image analysis. Biomacromol 6(1), 433–438 (2005). https://doi.org/10.1021/bm040068x

    Article  CAS  Google Scholar 

  11. O.M. Terrett et al., Molecular architecture of softwood revealed by solid-state NMR. Nat. Commun. 10(1), 4978 (2019). https://doi.org/10.1038/s41467-019-12979-9

  12. C. Chen et al., Scalable and sustainable approach toward highly compressible, anisotropic, lamellar carbon sponge. Chem 4(3), 544–554 (2018). https://doi.org/10.1016/j.chempr.2017.12.028

    Article  CAS  Google Scholar 

  13. M. Frey et al., Tunable wood by reversible interlocking and bioinspired mechanical gradients. Adv. Sci. 6(10), 1802190 (2019). https://doi.org/10.1002/advs.201802190

    Article  CAS  Google Scholar 

  14. A.J. Stamm, Wood and Cellulose Science (Ronald Press Co., New York, 1964)

    Google Scholar 

  15. E. Obataya, S. Shibutani, Swelling of acetylated wood in organic solvents. J. Mater. Sci. 40(15), 4113–4115 (2005). https://doi.org/10.1007/s10853-005-0641-8

    Article  CAS  Google Scholar 

  16. N. Shiraishi, Plasticization of wood. J. Japan Wood Res. Soc. (1986)

    Google Scholar 

  17. M. Seki, S. Tanaka, T. Miki, I. Shigematsu, K. Kanayama, Extrudability of solid wood by acetylation and in-situ polymerisation of methyl methacrylate. BioResources 11, 4025–4036 (2016). https://doi.org/10.15376/biores.11.2.4025-4036

    Article  CAS  Google Scholar 

  18. Y. Li, X. Yang, Q. Fu, R. Rojas, M. Yan, L. Berglund, Towards centimeter thick transparent wood through interface manipulation. J. Mater. Chem. A 6(3), 1094–1101 (2018). https://doi.org/10.1039/C7TA09973H

    Article  CAS  Google Scholar 

  19. H. Chang, K. Tu, X. Wang, J. Liu, Fabrication of mechanically durable superhydrophobic wood surfaces using polydimethylsiloxane and silica nanoparticles. RSC Adv. 5(39), 30647–30653 (2015). https://doi.org/10.1039/C5RA03070F

    Article  CAS  Google Scholar 

  20. M. Matsunaga, D.C. Hewage, Y. Kataoka, A. Ishikawa, M. Kobayashi, M. Kiguchi, Acetylation of wood using supercritical carbon dioxide. J. Trop. For. Sci. 28(2), 132–138 (2016)

    Google Scholar 

  21. K. Wang et al., Highly hydrophobic and self-cleaning bulk wood prepared by grafting long-chain alkyl onto wood cell walls. Wood Sci. Technol. 51(2), 395–411 (2017). https://doi.org/10.1007/s00226-016-0862-9

    Article  CAS  Google Scholar 

  22. S. Fink, Transparent wood—a new approach in the functional study of wood structure. Holzforschung—Int. J. Biol. Chem. Phys. Technol. Wood 46, 403 (1992). https://doi.org/10.1515/hfsg.1992.46.5.403

  23. S. Liu et al., Bioinspired thermochromic transparent hydrogel wood with advanced optical regulation abilities and mechanical properties for windows. Appl. Energy 297, 117207 (2021). https://doi.org/10.1016/j.apenergy.2021.117207

    Article  CAS  Google Scholar 

  24. S. Al-Qahtani et al., Development of photoluminescent translucent wood toward photochromic smart window applications. Ind. Eng. Chem. Res. 60(23), 8340–8350 (2021). https://doi.org/10.1021/acs.iecr.1c01603

  25. J. Sun et al., Enhanced mechanical energy conversion with selectively decayed wood. Sci. Adv. 7(11), eabd9138 (2022). https://doi.org/10.1126/sciadv.abd9138

  26. X. Wang et al., Large-size transparent wood for energy-saving building applications. Chemsuschem 11(23), 4086–4093 (2018). https://doi.org/10.1002/cssc.201801826

    Article  CAS  Google Scholar 

  27. H. Li, X. Guo, Y. He, R. Zheng, A green steam-modified delignification method to prepare low-lignin delignified wood for thick, large highly transparent wood composites. J. Mater. Res. 34(6), 932–940 (2019). https://doi.org/10.1557/jmr.2018.466

    Article  CAS  Google Scholar 

  28. C. Montanari, P. Olsén, L.A. Berglund, Sustainable wood nanotechnologies for wood composites processed by in-situ polymerization. Front. Chem. 9, 682883 (2021). https://doi.org/10.3389/fchem.2021.682883

    Article  CAS  Google Scholar 

  29. J. Li, C. Chen, J.Y. Zhu, A.J. Ragauskas, L. Hu, In situ wood delignification toward sustainable applications. Accounts Mater. Res. 2(8), 606–620 (2021). https://doi.org/10.1021/accountsmr.1c00075

    Article  CAS  Google Scholar 

  30. Z. Fang et al., Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett. 14(2), 765–773 (2014). https://doi.org/10.1021/nl404101p

    Article  CAS  Google Scholar 

  31. C. Jia et al., Scalable, anisotropic transparent paper directly from wood for light management in solar cells. Nano Energy 36, 366–373 (2017). https://doi.org/10.1016/j.nanoen.2017.04.059

    Article  CAS  Google Scholar 

  32. Y. Jiang et al., Highly efficient and selective modification of lignin towards optically designable and multifunctional lignocellulose nanopaper for green light-management applications. Int. J. Biol. Macromol. 206, 264–276 (2022). https://doi.org/10.1016/j.ijbiomac.2022.02.147

    Article  CAS  Google Scholar 

  33. S. Gamage et al., Reflective and transparent cellulose-based passive radiative coolers. Cellulose 28(14), 9383–9393 (2021). https://doi.org/10.1007/s10570-021-04112-1

    Article  CAS  Google Scholar 

  34. F.B. Kadumudi et al., Flexible and green electronics manufactured by origami folding of nanosilicate-reinforced cellulose paper. ACS Appl. Mater. Interfaces 12(42), 48027–48039 (2020). https://doi.org/10.1021/acsami.0c15326

    Article  CAS  Google Scholar 

  35. T. Li et al., A radiative cooling structural material. Science (80-. ). 364(6442), 760 LP−763 (2019). https://doi.org/10.1126/science.aau9101

  36. X. Dong et al., Low-value wood for sustainable high-performance structural materials. Nat. Sustain. 5(7), 628–635 (2022). https://doi.org/10.1038/s41893-022-00887-8

    Article  Google Scholar 

  37. M. Jakob, J. Gaugeler, W. Gindl-Altmutter, Effects of fiber angle on the tensile properties of partially delignified and densified wood. Mater. (Basel, Switzerland) 13(23) (2020). https://doi.org/10.3390/ma13235405

  38. K. Li, L. Zhao, J. Ren, B. He, Interpretation of strengthening mechanism of densified wood from supramolecular structures. Molecules 27(13) (2022). https://doi.org/10.3390/molecules27134167

  39. Q. Fu et al., Luminescent and hydrophobic wood films as optical lighting materials. ACS Nano 14(10), 13775–13783 (2020). https://doi.org/10.1021/acsnano.0c06110

    Article  CAS  Google Scholar 

  40. M. Frey et al., Densified Cellulose Materials and Delignified Wood Reinforced Composites—ICCM22. (2019)

    Google Scholar 

  41. Y. Jiang, A.L. Yarin, Y. Pan, Printable highly transparent natural fiber composites. Mater. Lett. 277, 128290 (2020). https://doi.org/10.1016/j.matlet.2020.128290

    Article  CAS  Google Scholar 

  42. L. Yang, Y. Wu, F. Yang, X. Wu, Y. Cai, J. Zhang, A wood textile fiber made from natural wood. J. Mater. Sci. 56(27), 15122–15133 (2021). https://doi.org/10.1007/s10853-021-06240-2

    Article  CAS  Google Scholar 

  43. S.A. Miller, Sustainable polymers: opportunities for the next decade. ACS Macro Lett. 2(6), 550–554 (2013). https://doi.org/10.1021/mz400207g

    Article  CAS  Google Scholar 

  44. E. Chiellini, P. Cinelli, F. Chiellini, S.H. Imam, Environmentally degradable bio-based polymeric blends and composites. Macromol. Biosci. 4(3), 218–231 (2004). https://doi.org/10.1002/mabi.200300126

    Article  CAS  Google Scholar 

  45. C. Haweel, S. Ammar, Preparation of poly (Vinyl) alcohol from local raw material. Iraqui J Chem Pet Eng. 9, 15–21 (2008)

    Google Scholar 

  46. R. Mariscal, P. Maireles-Torres, M. Ojeda, I. Sádaba, M. López Granados, Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ. Sci. 9(4), 1144–1189 (2016). https://doi.org/10.1039/C5EE02666K

  47. S. Wang, K. Li, Q. Zhou, High strength and low swelling composite hydrogels from gelatin and delignified wood. Sci. Rep. 10(1), 17842 (2020). https://doi.org/10.1038/s41598-020-74860-w

    Article  CAS  Google Scholar 

  48. P.A. Wilbon, F. Chu, C. Tang, Progress in renewable polymers from natural terpenes, terpenoids, and rosin. Macromol. Rapid Commun. 34(1), 8–37 (2013). https://doi.org/10.1002/marc.201200513

    Article  CAS  Google Scholar 

  49. C.M. Byrne, S.D. Allen, E.B. Lobkovsky, G.W. Coates, Alternating copolymerization of limonene oxide and carbon dioxide. J. Am. Chem. Soc. 126(37), 11404–11405 (2004). https://doi.org/10.1021/ja0472580

    Article  CAS  Google Scholar 

  50. A. Stamm et al., Chemo-enzymatic pathways toward pinene-based renewable materials. Green Chem. 21(10), 2720–2731 (2019). https://doi.org/10.1039/C9GC00718K

    Article  CAS  Google Scholar 

  51. L. Peña Carrodeguas, C. Martín, A.W. Kleij, Semiaromatic polyesters derived from renewable terpene oxides with high glass transitions. Macromolecules 50(14), 5337–5345 (2017). https://doi.org/10.1021/acs.macromol.7b00862.

  52. P. Maćczak, H. Kaczmarek, M. Ziegler-Borowska, Recent achievements in polymer bio-based flocculants for water treatment. Mater. (Basel, Switzerland) 13(18) (2020). https://doi.org/10.3390/ma13183951

  53. W. Wu, H. Tian, A. Xiang, Influence of polyol plasticizers on the properties of polyvinyl alcohol films fabricated by melt processing. J. Polym. Environ. 20(1), 63–69 (2012). https://doi.org/10.1007/s10924-011-0364-7

    Article  CAS  Google Scholar 

  54. D. Yue, G. Fu, Z. Jin, Transparent wood prepared by polymer impregnation of rubber wood (Hevea brasiliensis Muell. Arg). BioResources 16, 2491–2502 (2021). https://doi.org/10.15376/biores.16.2.2491-2502

    Article  CAS  Google Scholar 

  55. Y. Liu et al., Luminescent transparent wood based on lignin-derived carbon dots as a building material for dual-channel, real-time, and visual detection of formaldehyde gas. ACS Appl. Mater. Interfaces 12(32), 36628–36638 (2020). https://doi.org/10.1021/acsami.0c10240

    Article  CAS  Google Scholar 

  56. A. O’Donnell, M.A. Dweib, R.P. Wool, Natural fiber composites with plant oil-based resin. Compos. Sci. Technol. 64(9), 1135–1145 (2004). https://doi.org/10.1016/j.compscitech.2003.09.024

    Article  CAS  Google Scholar 

  57. N.A. Muhammad, B. Armynah, D. Tahir, High transparent wood composite for effective X-ray shielding applications. Mater. Res. Bull. 154, 111930 (2022). https://doi.org/10.1016/j.materresbull.2022.111930

    Article  CAS  Google Scholar 

  58. S. Lande, M. Westin, M. Schneider, Development of modified wood products based on furan chemistry. Mol. Cryst. Liq. Cryst. 484(1), 1/[367]−12/[378] (2008). https://doi.org/10.1080/15421400801901456

  59. C. Montanari, Y. Ogawa, P. Olsén, L.A. Berglund, High performance, fully bio-based, and optically transparent wood biocomposites. Adv. Sci. 8(12), 2100559 (2021). https://doi.org/10.1002/advs.202100559

    Article  CAS  Google Scholar 

  60. T. Keplinger, F.K. Wittel, M. Rüggeberg, I. Burgert, Wood derived cellulose scaffolds—processing and mechanics. Adv. Mater. 33(28), 2001375 (2021). https://doi.org/10.1002/adma.202001375

    Article  CAS  Google Scholar 

  61. Y. Jiang et al., Hemicellulose-rich transparent wood: Microstructure and macroscopic properties. Carbohydr. Polym. 296, 119925 (2022). https://doi.org/10.1016/j.carbpol.2022.119925

    Article  CAS  Google Scholar 

  62. L. Van Hai, R.M. Muthoka, P.S. Panicker, D.O. Agumba, H.D. Pham, J. Kim, All-biobased transparent-wood: a new approach and its environmental-friendly packaging application. Carbohydr. Polym. 264, 118012 (2021). https://doi.org/10.1016/j.carbpol.2021.118012

    Article  CAS  Google Scholar 

  63. M. Mujtaba et al., Current advancements in chitosan-based film production for food technology; a review. Int. J. Biol. Macromol. 121, 889–904 (2019). https://doi.org/10.1016/j.ijbiomac.2018.10.109

    Article  CAS  Google Scholar 

  64. K. V. Harish Prashanth, R.N. Tharanathan, Chitin/chitosan: modifications and their unlimited application potential—an overview. Trends Food Sci. Technol. 18(3), 117–131 (2007). https://doi.org/10.1016/j.tifs.2006.10.022

  65. A. Khakalo, A. Tanaka, A. Korpela, L.K.J. Hauru, H. Orelma, All-wood composite material by partial fiber surface dissolution with an ionic liquid. ACS Sustain. Chem. Eng. 7(3), 3195–3202 (2019). https://doi.org/10.1021/acssuschemeng.8b05059

    Article  CAS  Google Scholar 

  66. R. Rai, R. Ranjan, P. Dhar, Life cycle assessment of transparent wood production using emerging technologies and strategic scale-up framework. Sci. Total Environ. 846, 157301 (2022). https://doi.org/10.1016/j.scitotenv.2022.157301

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Wachter .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wachter, I., Rantuch, P., Štefko, T. (2023). Fully Bio-based Transparent Wood. In: Transparent Wood Materials. Springer Series in Materials Science, vol 330. Springer, Cham. https://doi.org/10.1007/978-3-031-23405-7_3

Download citation

Publish with us

Policies and ethics