Skip to main content

Cerebellar Developmental Disorders and Cerebellar Nuclei

  • Chapter
  • First Online:
Development of the Cerebellum from Molecular Aspects to Diseases

Abstract

While significant progress has been made in the last 10 years in understanding the development of cerebellar nuclei, they remain a relatively less well-studied cell group in the brain. In this chapter, we review the anatomical organisation of the cerebellar nuclei and their connections to highlight outstanding developmental questions. We then describe recent progress in dissecting the lineages of cerebellar neurons that may point to new understanding of their involvement in congenital clinical disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saccozzi A. Sul nucleo dentato del cervelletto. Riv Sper Fren Med Legale. 1887;13:93–9.

    Google Scholar 

  2. Lugaro E. Sulla struttura del nucleo dentato del cervelletto nell’uomo. Monit Zool Ital. 1895;6:5–12.

    Google Scholar 

  3. Chan-Palay V. Cerebellar dentate nucleus : organization, cytology and transmitters. Berlin: Springer; 1977. p. 548.

    Book  Google Scholar 

  4. Chan-Palay V. A light microscope study of the cytology and organization of neurons in the simple mammalian nucleus lateralis: columns and swirls. Zeitschrift fur Anatomie und Entwicklungsgeschichte. 1973;141(2):125–50.

    Article  CAS  PubMed  Google Scholar 

  5. Chan-Palay V. Cytology and organization in the nucleus lateralis of the cerebellum: the projections of neurons and their processes into afferent axon bundles. Zeitschrift fur Anatomie und Entwicklungsgeschichte. 1973;141(2):151–9.

    Article  CAS  PubMed  Google Scholar 

  6. De Zeeuw C, Van Alphen A, Hawkins R, Ruigrok T. Climbing fibre collaterals contact neurons in the cerebellar nuclei that provide a GABAergic feedback to the inferior olive. Neuroscience. 1997;80(4):981–6.

    PubMed  Google Scholar 

  7. Fredette BJ, Mugnaini E. The GABAergic cerebello-olivary projection in the rat. Anat Embryol. 1991;184(3):225–43.

    Article  CAS  Google Scholar 

  8. Teune TM, van der Burg J, de Zeeuw CI, Voogd J, Ruigrok TJH. Single Purkinje cell can innervate multiple classes of projection neurons in the cerebellar nuclei of the rat: a light microscopic and ultrastructural triple-tracer study in the rat. J Comp Neurol. 1998;392(2):164–78.

    Article  CAS  PubMed  Google Scholar 

  9. Uusisaari MY, Knöpfel T. Diversity of neuronal elements and circuitry in the cerebellar nuclei. Cerebellum. 2012;11(2):420–1.

    Article  PubMed  Google Scholar 

  10. Houck BD, Person AL. Cerebellar loops: a review of the nucleocortical pathway. Cerebellum. 2014;13(3):378–85.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Uusisaari M, Knöpfel T. GlyT2 neurons in the lateral cerebellar nucleus. Cerebellum. 2010;9(1):42–55.

    Article  PubMed  Google Scholar 

  12. Uusisaari M, Obata K, Knöpfel T. Morphological and electrophysiological properties of GABAergic and non-GABAergic cells in the deep cerebellar nuclei. J Neurophysiol. 2007;97(1):901–11.

    Article  CAS  PubMed  Google Scholar 

  13. Uusisaari M, Knöpfel T. Functional classification of neurons in the mouse lateral cerebellar nuclei. Cerebellum. 2011;10(4):637–46.

    Article  CAS  PubMed  Google Scholar 

  14. Chen S, Hillman DE. Colocalization of neurotransmitters in the deep cerebellar nuclei. J Neurocytol. 1993;22(2):81–91.

    Article  CAS  PubMed  Google Scholar 

  15. Bagnall MW, Zingg B, Sakatos A, Moghadam SH, Zeilhofer HU, du Lac S. Glycinergic projection neurons of the cerebellum. J Neurosci. 2009;29(32):10104–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. De Zeeuw CI, Berrebi AS. Postsynaptic targets of Purkinje cell terminals in the cerebellar and vestibular nuclei of the rat. Eur J Neurosci. 1995;7(11):2322–33.

    Article  PubMed  Google Scholar 

  17. Giaquinta G, Casabona A, Smecca G, Bosco G, Perciavalle V. Cortical control of cerebellar dentato-rubral and dentato-olivary neurons. Neuroreport. 1999;10(14):3009–13.

    Article  CAS  PubMed  Google Scholar 

  18. Cerminara NL, Lang EJ, Sillitoe RV, Apps R. Redefining the cerebellar cortex as an assembly of non-uniform Purkinje cell microcircuits. Nat Rev Neurosci. 2015;16(2):79–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sugihara I, Fujita H, Na J, Quy PN, Li BY, Ikeda D. Projection of reconstructed single Purkinje cell axons in relation to the cortical and nuclear aldolase C compartments of the rat cerebellum. J Comp Neurol. 2009;512(2):282–304.

    Article  CAS  PubMed  Google Scholar 

  20. Kebschull JM, Richman EB, Ringach N, Friedmann D, Albarran E, Kolluru SS, et al. Cerebellar nuclei evolved by repeatedly duplicating a conserved cell-type set. Science. 2020;370(6523)

    Google Scholar 

  21. Prekop HT, Kroiss A, Rook V, Zagoraiou L, Jessell TM, Fernandes C, et al. Sox14 is required for a specific subset of cerebello-olivary projections. J Neurosci. 2018;38(44):9539–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. D’Angelo E, Casali S. Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition. Frontiers in neural circuits. 2013;6:116.

    PubMed  PubMed Central  Google Scholar 

  23. Teune TM, van der Burg J, van der Moer J, Voogd J, Ruigrok TJ. Topography of cerebellar nuclear projections to the brain stem in the rat. Prog Brain Res. 2000;124:141–72.

    Article  CAS  PubMed  Google Scholar 

  24. Uusisaari M, De Schutter E. The mysterious microcircuitry of the cerebellar nuclei. J Physiol. 2011;589(Pt 14):3441–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ruigrok TJH. Ins and outs of cerebellar modules. Cerebellum. 2011;10(3):464–74.

    Article  PubMed  Google Scholar 

  26. Person AL, Raman IM. Purkinje neuron synchrony elicits time-locked spiking in the cerebellar nuclei. Nature. 2011;481(7382):502–5.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Heck DH, De Zeeuw CI, Jaeger D, Khodakhah K, Person AL. The neuronal code(s) of the cerebellum. J Neurosci. 2013;33(45):17603–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Voogd J, Glickstein M. The anatomy of the cerebellum. Trends Cogn Sci. 1998;2(9):307–13.

    Article  CAS  PubMed  Google Scholar 

  29. Sugihara I, Shinoda Y. Molecular, topographic, and functional organization of the cerebellar nuclei: analysis by three-dimensional mapping of the olivonuclear projection and aldolase C labeling. J Neurosci. 2007;27(36):9696–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Raman IM, Gustafson AE, Padgett D. Ionic currents and spontaneous firing in neurons isolated from the cerebellar nuclei. J Neurosci. 2000;20(24):9004–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thach W. Discharge of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey. J Neurophysiol. 1968;31(5):785–97.

    Article  CAS  PubMed  Google Scholar 

  32. Morishita W, Sastry BR. Postsynaptic mechanisms underlying long-term depression of GABAergic transmission in neurons of the deep cerebellar nuclei. J Neurophysiol. 1996;76(1):59–68.

    Article  CAS  PubMed  Google Scholar 

  33. Ohyama T, Nores WL, Medina JF, Riusech FA, Mauk MD. Learning-induced plasticity in deep cerebellar nucleus. J Neurosci. 2006;26(49):12656–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zheng N, Raman IM. Synaptic inhibition, excitation, and plasticity in neurons of the cerebellar nuclei. Cerebellum. 2010;9(1):56–66.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Armstrong D, Edgley S. Discharges of nucleus interpositus neurones during locomotion in the cat. J Physiol. 1984;351:411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Armstrong D, Edgley S. Discharges of Purkinje cells in the paravermal part of the cerebellar anterior lobe during locomotion in the cat. J Physiol. 1984;352:403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McDevitt CJ, Ebner TJ, Bloedel JR. Changes in the responses of cerebellar nuclear neurons associated with the climbing fiber response of Purkinje cells. Brain Res. 1987;425(1):14–24.

    Article  CAS  PubMed  Google Scholar 

  38. McDevitt CJ, Ebner TJ, Bloedel JR. Relationships between simultaneously recorded Purkinje cells and nuclear neurons. Brain Res. 1987;425(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  39. Person AL, Raman IM. Purkinje neuron synchrony elicits time-locked spiking in the cerebellar nuclei. Nature. 2012;481(7382):502–5.

    Article  CAS  Google Scholar 

  40. Apps R, Hawkes R. Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci. 2009;10(9):670–81.

    Article  CAS  PubMed  Google Scholar 

  41. Shinoda Y, Sugihara I, Wu H, Sugiuchi Y. The entire trajectory of single climbing and mossy fibers in the cerebellar nuclei and cortex. Prog Brain Res. 1999;124:173–86.

    Article  Google Scholar 

  42. Wu H, Sugihara I, Shinoda Y. Projection patterns of single mossy fibers originating from the lateral reticular nucleus in the rat cerebellar cortex and nuclei. J Comp Neurol. 1999;411(1):97–118.

    Article  CAS  PubMed  Google Scholar 

  43. Blenkinsop TA, Lang EJ. Synaptic action of the olivocerebellar system on cerebellar nuclear spike activity. J Neurosci. 2011;31(41):14708–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sugihara I, Wu H, Shinoda Y. Morphology of single olivocerebellar axons labeled with biotinylated dextran amine in the rat. J Comp Neurol. 1999;414(2):131–48.

    Article  CAS  PubMed  Google Scholar 

  45. Person AL, Raman IM. Synchrony and neural coding in cerebellar circuits. Frontiers in neural circuits. 2012;6:97.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sultan F, König T, Möck M, Thier P. Quantitative organization of neurotransmitters in the deep cerebellar nuclei of the Lurcher mutant. J Comp Neurol. 2002;452(4):311–23.

    Article  CAS  PubMed  Google Scholar 

  47. Aizenman CD, Huang EJ, Linden DJ. Morphological correlates of intrinsic electrical excitability in neurons of the deep cerebellar nuclei. J Neurophysiol. 2003;89(4):1738–47.

    Article  PubMed  Google Scholar 

  48. Matsuno H, Kudoh M, Watakabe A, Yamamori T, Shigemoto R, Nagao S. Distribution and structure of synapses on medial vestibular nuclear neurons targeted by cerebellar flocculus Purkinje cells and vestibular nerve in mice: light and electron microscopy studies. PLoS One. 2016;11(10):e0164037.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chan-Palay V. Afferent axons and their relations with neurons in the nucleus lateralis of the cerebellum: a light microscopic study. Zeitschrift fur Anatomie und Entwicklungsgeschichte. 1973;142(1):1–21.

    Article  CAS  PubMed  Google Scholar 

  50. Chan-Palay V. On the identification of the afferent axon terminals in the nucleus lateralis of the cerebellum. An electron microscope study. Zeitschrift fur Anatomie und Entwicklungsgeschichte. 1973;142(2):149–86.

    Article  CAS  PubMed  Google Scholar 

  51. Wingate RJ, Hatten ME. The role of the rhombic lip in avian cerebellum development. Development. 1999;126(20):4395–404.

    Article  CAS  PubMed  Google Scholar 

  52. Millet S, Bloch-Gallego E, Simeone A, Alvarado-Mallart RM. The caudal limit of Otx2 gene expression as a marker of the midbrain/hindbrain boundary: a study using in situ hybridisation and chick/quail homotopic grafts. Development. 1996;122(12):3785–97.

    Article  CAS  PubMed  Google Scholar 

  53. Zervas M, Millet S, Ahn S, Joyner AL. Cell behaviors and genetic lineages of the mesencephalon and rhombomere 1. Neuron. 2004;43(3):345–57.

    Article  CAS  PubMed  Google Scholar 

  54. Wingate R. Math-map(ic)s. Neuron. 2005;48(1):1–4.

    Article  CAS  PubMed  Google Scholar 

  55. Hoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, Nishimura YV, et al. Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron. 2005;47(2):201–13.

    Article  CAS  PubMed  Google Scholar 

  56. His W. Die entwickelung des menschlichen rautenhirns vom ende des ersten bis zum beginn des dritten monats. I. Verlängertes Mark. Abh Kön Sächs Ges d Wiss. Mat Phys Kl. 1890;29:1–74.

    Google Scholar 

  57. Ben-Arie N, Bellen HJ, Armstrong DL, McCall AE, Gordadze PR, Guo Q, et al. Math1 is essential for genesis of cerebellar granule neurons. Nature. 1997;390(6656):169–72.

    Article  CAS  PubMed  Google Scholar 

  58. Machold R, Fishell G. Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron. 2005;48(1):17–24.

    Article  CAS  PubMed  Google Scholar 

  59. Wang VY, Rose MF, Zoghbi HY. Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron. 2005;48(1):31–43.

    Article  CAS  PubMed  Google Scholar 

  60. Altman J, Bayer SA. Prenatal development of the cerebellar system in the rat. I. Cytogenesis and histogenesis of the deep nuclei and the cortex of the cerebellum. J Comp Neurol. 1978;179(1):23–48.

    Article  CAS  PubMed  Google Scholar 

  61. Hashimoto M, Mikoshiba K. Mediolateral compartmentalization of the cerebellum is determined on the “birth date” of Purkinje cells. J Neurosci. 2003;23(36):11342–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Elsen G, Juric-Sekhar G, Daza R, Hevner RF. Development of cerebellar nuclei. In: Manto M, Gruol D, Schmahmann J, Koibuchi N, Rossi F, editors. Handbook of cerebellum and cerebellum disorders. Heidelberg: Springer; 2013. p. 179–205.

    Chapter  Google Scholar 

  63. Yamada M, Seto Y, Taya S, Owa T, Inoue YU, Inoue T, et al. Specification of spatial identities of cerebellar neuron progenitors by ptf1a and atoh1 for proper production of GABAergic and glutamatergic neurons. J Neurosci. 2014;34(14):4786–800.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Pascual M, Abasolo I, Mingorance-Le Meur A, Martinez A, Del Rio JA, Wright CV, et al. Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression. Proc Natl Acad Sci U S A. 2007;104(12):5193–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Altman J, Bayer SA. Embryonic development of the rat cerebellum. II. Translocation and regional distribution of the deep neurons. J Comp Neurol. 1985;231(1):27–41.

    Article  CAS  PubMed  Google Scholar 

  66. Morales D, Hatten ME. Molecular markers of neuronal progenitors in the embryonic cerebellar anlage. J Neurosci. 2006;26(47):12226–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yeung J, Ha TJ, Swanson DJ, Goldowitz D. A novel and multivalent role of Pax6 in cerebellar development. J Neurosci. 2016;36(35):9057–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Green MJ, Myat AM, Emmenegger BA, Wechsler-Reya RJ, Wilson LJ, Wingate RJ. Independently specified Atoh1 domains define novel developmental compartments in rhombomere 1. Development. 2014;141(2):389–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Green MJ, Wingate RJ. Developmental origins of diversity in cerebellar output nuclei. Neural Dev. 2014;9(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wilson LJ, Wingate RJ. Temporal identity transition in the avian cerebellar rhombic lip. Dev Biol. 2006;297(2):508–21.

    Article  CAS  PubMed  Google Scholar 

  71. Gilthorpe JD, Papantoniou EK, Chedotal A, Lumsden A, Wingate RJ. The migration of cerebellar rhombic lip derivatives. Development. 2002;129(20):4719–28.

    Article  CAS  PubMed  Google Scholar 

  72. Alcantara S, Ruiz M, De Castro F, Soriano E, Sotelo C. Netrin 1 acts as an attractive or as a repulsive cue for distinct migrating neurons during the development of the cerebellar system. Development. 2000;127(7):1359–72.

    Article  CAS  PubMed  Google Scholar 

  73. Fink AJ, Englund C, Daza RA, Pham D, Lau C, Nivison M, et al. Development of the deep cerebellar nuclei: transcription factors and cell migration from the rhombic lip. J Neurosci. 2006;26(11):3066–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sudarov A, Turnbull RK, Kim EJ, Lebel-Potter M, Guillemot F, Joyner AL. Ascl1 genetics reveals insights into cerebellum local circuit assembly. J Neurosci. 2011;31(30):11055–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chizhikov VV, Lindgren AG, Currle DS, Rose MF, Monuki ES, Millen KJ. The roof plate regulates cerebellar cell-type specification and proliferation. Development. 2006;133(15):2793–804.

    Article  CAS  PubMed  Google Scholar 

  76. Mizuhara E, Minaki Y, Nakatani T, Kumai M, Inoue T, Muguruma K, et al. Purkinje cells originate from cerebellar ventricular zone progenitors positive for Neph3 and E-cadherin. Dev Biol. 2010;338(2):202–14.

    Article  CAS  PubMed  Google Scholar 

  77. Zordan P, Croci L, Hawkes R, Consalez GG. Comparative analysis of proneural gene expression in the embryonic cerebellum. Dev Dyn. 2008;237(6):1726–35.

    Article  CAS  PubMed  Google Scholar 

  78. Leto K, Rolando C, Rossi F. The genesis of cerebellar GABAergic neurons: fate potential and specification mechanisms. 2012.

    Google Scholar 

  79. Lundell T, Zhou Q, Doughty M. Neurogenin1 expression in cell lineages of the cerebellar cortex in embryonic and postnatal mice. Dev Dyn. 2009;238(12):3310–25.

    Article  CAS  PubMed  Google Scholar 

  80. Sillitoe RV, Joyner AL. Morphology, molecular codes, and circuitry produce the three-dimensional complexity of the cerebellum. Annu Rev Cell Dev Biol. 2007;23:549–77.

    Article  CAS  PubMed  Google Scholar 

  81. Maricich SM, Herrup K. Pax-2 expression defines a subset of GABAergic interneurons and their precursors in the developing murine cerebellum. J Neurobiol. 1999;41(2):281–94.

    Article  CAS  PubMed  Google Scholar 

  82. Leto K, Carletti B, Williams IM, Magrassi L, Rossi F. Different types of cerebellar GABAergic interneurons originate from a common pool of multipotent progenitor cells. J Neurosci. 2006;26(45):11682–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Obana EA, Lundell TG, Kevin JY, Radomski KL, Zhou Q, Doughty ML. Neurog1 genetic inducible fate mapping (GIFM) reveals the existence of complex spatiotemporal cyto-architectures in the developing cerebellum. Cerebellum. 2015;14(3):247–63.

    Article  CAS  PubMed  Google Scholar 

  84. Seto Y, Nakatani T, Masuyama N, Taya S, Kumai M, Minaki Y, et al. Temporal identity transition from Purkinje cell progenitors to GABAergic interneuron progenitors in the cerebellum. Nat Commun. 2014;5:3337.

    Article  PubMed  Google Scholar 

  85. Butts T, Chaplin N, Wingate RJ. Can clues from evolution unlock the molecular development of the cerebellum? Mol Neurobiol. 2011;43(1):67–76.

    Article  CAS  PubMed  Google Scholar 

  86. Marzban H, Del Bigio MR, Alizadeh J, Ghavami S, Zachariah RM, Rastegar M. Cellular commitment in the developing cerebellum. Front Cell Neurosci. 2015;8:450.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Hashimoto M, Hibi M. Development and evolution of cerebellar neural circuits. Develop Growth Differ. 2012;54(3):373–89.

    Article  CAS  Google Scholar 

  88. Murakami T, Morita Y. Morphology and distribution of the projection neurons in the cerebellum in a teleost, Sebastiscus marmoratus. J Comp Neurol. 1987;256(4):607–23.

    Article  CAS  PubMed  Google Scholar 

  89. Ebbesson SO, Campbell CB. On the organization of cerebellar efferent pathways in the nurse shark (Ginglymostoma cirratum). J Comp Neurol. 1973;152(3):233–54.

    Article  CAS  PubMed  Google Scholar 

  90. Nieuwenhuys R, ten Donkelaar HJ, Nicholson C, editors. The Central Nervous System of Vertebrates. Berlin: Springer-Verlag; 1998.

    Google Scholar 

  91. Lamanna F, Hervas-Sotomayor F, Oel AP, Jandzik D, Sobrido-Cameán D, Martik ML, et al. Reconstructing the ancestral vertebrate brain using a lamprey neural cell type atlas. bioRxiv. 2022:2022.02.28.482278.

    Google Scholar 

  92. Butler A, Hodos W. Comparative Vertebrate Neuroanatomy: Evolution and Adaptation. New York: Wiley-Liss; 1996. p. 514.

    Google Scholar 

  93. Arends JJ, Zeigler HP. Organization of the cerebellum in the pigeon (Columba livia): II. Projections of the cerebellar nuclei. J Comp Neurol. 1991;306(2):245–72.

    Article  CAS  PubMed  Google Scholar 

  94. Goodman DC, Hallett RE, Welch RB. Patterns of localization in the cerebellar Corticonuclear projections of albino rat. J Comp Neurol. 1963;121:51–67.

    Article  CAS  PubMed  Google Scholar 

  95. Korneliussen HK. On the morphology and subdivision of the cerebellar nuclei of the rat. J Hirnforsch. 1968;10(2):109–22.

    CAS  PubMed  Google Scholar 

  96. Wingate RJT. The rhombic lip and early cerebellar development. Curr Opin Neurobiol. 2001;11(1):82–8.

    Article  CAS  PubMed  Google Scholar 

  97. JA G, Harding B. Developmental neuropathology. Wiley; 2006.

    Google Scholar 

  98. Lu H, Yang B, Jaeger D. Cerebellar nuclei neurons show only small excitatory responses to optogenetic olivary stimulation in transgenic mice: in vivo and in vitro studies. Frontiers in neural circuits. 2016:10.

    Google Scholar 

  99. Müller CC, Nguyen TH, Ahlemeyer B, Meshram M, Santrampurwala N, Cao S, et al. PEX13 deficiency in mouse brain as a model of Zellweger syndrome: abnormal cerebellum formation, reactive gliosis and oxidative stress. Disease Models and Mechanisms. 2011;4(1):104–19.

    Article  PubMed  Google Scholar 

  100. Powers JM, Moser HW, Moser AB, Upshur JK, Bradford BF, Pai SG, et al. Fetal cerebrohepatorenal (Zellweger) syndrome: dysmorphic, radiologic, biochemical, and pathologic findings in four affected fetuses. Hum Pathol. 1985;16(6):610–20.

    Article  CAS  PubMed  Google Scholar 

  101. Volpe JJ, Adams RD. Cerebro-hepato-renal syndrome of Zellweger: an inherited disorder of neuronal migration. Acta Neuropathol. 1972;20(3):175–98.

    Article  CAS  PubMed  Google Scholar 

  102. Harding B, Boyd S. Intractable seizures from infancy can be associated with dentato-olivary dysplasia. J Neurol Sci. 1991;104(2):157–65.

    Article  CAS  PubMed  Google Scholar 

  103. Martland T, Harding BN, Morton RE, Young I. Dentato-olivary dysplasia in sibs: an autosomal recessive disorder? J Med Genet. 1997;34(12):1021–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Joubert M, Eisenring J-J, Robb JP, Andermann F. Familial agenesis of the cerebellar vermis: a syndrome of episodic hyperpnea, abnormal eye movements, ataxia and retardation. American Academy of Neurology meeting, 1968, Chicago, US; Read in part at the aforementioned conference; 1968 1999: BC Decker.

    Google Scholar 

  105. Millen KJ, Gleeson JG. Cerebellar development and disease. Curr Opin Neurobiol. 2008;18(1):12–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yachnis AT, Rorke LB. Cerebellar and brainstem development: an overview in relation to Joubert syndrome. J Child Neurol. 1999;14(9):570–3.

    Article  CAS  PubMed  Google Scholar 

  107. Pasquier L, Marcorelles P, Loget P, Pelluard F, Carles D, Perez M-J, et al. Rhombencephalosynapsis and related anomalies: a neuropathological study of 40 fetal cases. Acta Neuropathol. 2009;117(2):185–200.

    Article  PubMed  Google Scholar 

  108. Utsunomiya H, Takano K, Ogasawara T, Hashimoto T, Fukushima T, Okazaki M. Rhombencephalosynapsis: cerebellar embryogenesis. Am J Neuroradiol. 1998;19(3):547–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Yachnis AT. Rhombencephalosynapsis with massive hydrocephalus: case report and pathogenetic considerations. Acta Neuropathol. 2002;103(3):301–4.

    Article  PubMed  Google Scholar 

  110. Coulter CL, Leech RW, Brumback RA, Schaefer GB. Cerebral abnormalities in thanatophoric dysplasia. Childs Nerv Syst. 1991;7(1):21–6.

    Article  CAS  PubMed  Google Scholar 

  111. Hevner RF. The cerebral cortex malformation in thanatophoric dysplasia: neuropathology and pathogenesis. Acta Neuropathol. 2005;110(3):208–21.

    Article  PubMed  Google Scholar 

  112. Miller E, Blaser S, Shannon P, Widjaja E. Brain and bone abnormalities of thanatophoric dwarfism. Am J Roentgenol. 2009;192(1):48–51.

    Article  Google Scholar 

  113. Namavar Y, Barth PG, Baas F. Classification, diagnosis and potential mechanisms in pontocerebellar hypoplasia. Orphanet J Rare Dis. 2011;6(1):1.

    Article  Google Scholar 

  114. Rudnik-Schöneborn S, Barth PG, Zerres K. Pontocerebellar hypoplasia. Am J Med Genet C: Semin Med Genet; 2014.: Wiley Online Library.

    Google Scholar 

  115. Jeong J-W, Chugani DC, Behen ME, Tiwari VN, Chugani HT. Altered white matter structure of the dentatorubrothalamic pathway in children with autistic spectrum disorders. Cerebellum. 2012;11(4):957–71.

    Article  PubMed  Google Scholar 

  116. Olivito G, Clausi S, Laghi F, Tedesco AM, Baiocco R, Mastropasqua C, et al. Resting-state functional connectivity changes between dentate nucleus and cortical social brain regions in autism spectrum disorders. Cerebellum. 2016:1–10.

    Google Scholar 

  117. Yip J, Soghomonian JJ, Blatt GJ. Decreased GAD65 mRNA levels in select subpopulations of neurons in the cerebellar dentate nuclei in autism: an in situ hybridization study. Autism Res. 2009;2(1):50–9.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Pugh JR, Raman IM. Mechanisms of potentiation of mossy fiber EPSCs in the cerebellar nuclei by coincident synaptic excitation and inhibition. J Neurosci. 2008;28(42):10549–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. T. Wingate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prekop, HT., Delogu, A., Wingate, R.J.T. (2023). Cerebellar Developmental Disorders and Cerebellar Nuclei. In: Marzban, H. (eds) Development of the Cerebellum from Molecular Aspects to Diseases. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-031-23104-9_5

Download citation

Publish with us

Policies and ethics