Skip to main content

Temporary and Durable Mechanical Circulatory Support in the ICU

  • Chapter
  • First Online:
Annual Update in Intensive Care and Emergency Medicine 2023

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

  • 1315 Accesses

Abstract

Mechanical circulatory support has evolved dramatically in the last 30 years and has become a mainstay in the treatment of cardiogenic shock and advanced heart failure. As a result of the increased use of mechanical circulatory support, critical care physicians with different degrees of training and experience in the modern cardiac intensive care unit (ICU) are increasingly likely to participate in the care of patients on advanced hemodynamic support. In this chapter, we review the current options for mechanical circulatory support with a focus on the available devices and on the complications associated with their use, and we highlight the most recent contributions to the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Champsaur G, Ninet J, Vigneron M, Cochet P, Neidecker J, Boissonnat P. Use of the Abiomed BVS System 5000 as a bridge to cardiac transplantation. J Thorac Cardiovasc Surg. 1990;100:122–8.

    Article  CAS  PubMed  Google Scholar 

  2. Rose EA, Gelijns AC, Moskowitz AJ, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345:1435–43.

    Article  CAS  PubMed  Google Scholar 

  3. Mehra MR, Uriel N, Naka Y, et al. A fully magnetically levitated left ventricular assist device—final report. N Engl J Med. 2019;380:1618–27.

    Article  PubMed  Google Scholar 

  4. Combes A, Price S, Slutsky AS, Brodie D. Temporary circulatory support for cardiogenic shock. Lancet. 2020;396:199–212.

    Article  PubMed  Google Scholar 

  5. Fried JA, Nair A, Takeda K, et al. Clinical and hemodynamic effects of intra-aortic balloon pump therapy in chronic heart failure patients with cardiogenic shock. J Heart Lung Transplant. 2018;37:1313–21.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bhimaraj A, Agrawal T, Duran A, et al. Percutaneous left axillary artery placement of intra-aortic balloon pump in advanced heart failure patients. JACC Heart Fail. 2020;8:313–23.

    Article  PubMed  Google Scholar 

  7. Thiele H, Zeymer U, Neumann FJ, et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med. 2012;367:1287–96.

    Article  CAS  PubMed  Google Scholar 

  8. Nishi T, Ishii M, Tsujita K, et al. Outcomes of venoarterial extracorporeal membrane oxygenation plus intra-aortic balloon pumping for treatment of acute myocardial infarction complicated by cardiogenic shock. J Am Heart Assoc. 2022;11:e023713.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pieri M, Pappalardo F. Impella RP in the treatment of right ventricular failure: what we know and where we go. J Cardiothorac Vasc Anesth. 2018;32:2339–43.

    Article  PubMed  Google Scholar 

  10. Ramzy D, Soltesz E, Anderson M. New surgical circulatory support system outcomes. ASAIO J. 2020;66:746–52.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhou AL, Etchill EW, Giuliano KA, et al. Bridge to transplantation from mechanical circulatory support: a narrative review. J Thorac Dis. 2021;13:6911–23.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Baran DA, Jaiswal A, Hennig F, Potapov E. Temporary mechanical circulatory support: devices, outcomes, and future directions. J Heart Lung Transplant. 2022;41:678–91.

    Article  PubMed  Google Scholar 

  13. Miller PE, Bromfield SG, Ma Q, et al. Clinical outcomes and cost associated with an intravascular microaxial left ventricular assist device vs intra-aortic balloon pump in patients presenting with acute myocardial infarction complicated by cardiogenic shock. JAMA Intern Med. 2022;182:926–33.

    Article  PubMed  Google Scholar 

  14. Dhruva SS, Ross JS, Mortazavi BJ, et al. Association of use of an intravascular microaxial left ventricular assist device vs intra-aortic balloon pump with in-hospital mortality and major bleeding among patients with acute myocardial infarction complicated by cardiogenic shock. JAMA. 2020;323:734–45.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Udesen NJ, Møller JE, Lindholm MG, et al. Rationale and design of DanGer shock: Danish-German cardiogenic shock trial. Am Heart J. 2019;214:60–8.

    Article  PubMed  Google Scholar 

  16. Salna M, Garan AR, Kirtane AJ, et al. Novel percutaneous dual-lumen cannula-based right ventricular assist device provides effective support for refractory right ventricular failure after left ventricular assist device implantation. Interact Cardiovasc Thorac Surg. 2020;30:499–506.

    Article  PubMed  Google Scholar 

  17. Atiemo AD, Conte JV, Heldman AW. Resuscitation and recovery from acute right ventricular failure using a percutaneous right ventricular assist device. Catheter Cardiovasc Interv. 2006;68:78–82.

    Article  PubMed  Google Scholar 

  18. Eckman PM, Katz JN, El Banayosy A, Bohula EA, Sun B, van Diepen S. Veno-arterial extracorporeal membrane oxygenation for cardiogenic shock: an introduction for the busy clinician. Circulation. 2019;140:2019–37.

    Article  PubMed  Google Scholar 

  19. Keebler ME, Haddad EV, Choi CW, et al. Venoarterial extracorporeal membrane oxygenation in cardiogenic shock. JACC Heart Fail. 2018;6:503–16.

    Article  PubMed  Google Scholar 

  20. Yannopoulos D, Bartos J, Raveendran G, et al. Advanced reperfusion strategies for patients with out-of-hospital cardiac arrest and refractory ventricular fibrillation (ARREST): a phase 2, single centre, open-label, randomised controlled trial. Lancet. 2020;396:1807–16.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Grandin EW, Nunez JI, Willar B, et al. Mechanical left ventricular unloading in patients undergoing venoarterial extracorporeal membrane oxygenation. J Am Coll Cardiol. 2022;79:1239–50.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Takeda K, Garan AR, Ando M, et al. Minimally invasive CentriMag ventricular assist device support integrated with extracorporeal membrane oxygenation in cardiogenic shock patients: a comparison with conventional CentriMag biventricular support configuration. Eur J Cardiothorac Surg. 2017;52:1055–61.

    Article  PubMed  Google Scholar 

  23. Geller BJ, Sinha SS, Kapur NK, et al. Escalating and de-escalating temporary mechanical circulatory support in cardiogenic shock: a scientific statement from the American Heart Association. Circulation. 2022;146:e50–68.

    Article  PubMed  Google Scholar 

  24. Randhawa VK, Al-Fares A, Tong MZY, et al. A pragmatic approach to weaning temporary mechanical circulatory support: a state-of-the-art review. JACC Heart Fail. 2021;9:664–73.

    Article  PubMed  Google Scholar 

  25. Kennel PJ, Lumish H, Kaku Y, et al. A case series analysis on the clinical experience of Impella 5.5® at a large tertiary care centre. ESC Heart Fail. 2021;8:3720–5.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Slaughter MS, Rogers JG, Milano CA, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361:2241–51.

    Article  CAS  PubMed  Google Scholar 

  27. Milano CA, Rogers JG, Tatooles AJ, et al. HVAD: The ENDURANCE Supplemental Trial. JACC Heart Fail. 2018;6:792–802.

    Article  PubMed  Google Scholar 

  28. Mehra MR, Cleveland JC, Uriel N, et al. Primary results of long-term outcomes in the MOMENTUM 3 pivotal trial and continued access protocol study phase: a study of 2200 HeartMate 3 left ventricular assist device implants. Eur J Heart Fail. 2021;23:1392–400.

    Article  PubMed  Google Scholar 

  29. Kapelios CJ, Lund LH, Wever-Pinzon O, et al. Right heart failure following left ventricular device implantation: natural history, risk factors, and outcomes: An analysis of the STS INTERMACS Database. Circ Heart Fail. 2022;15:e008706.

    Article  CAS  PubMed  Google Scholar 

  30. Mehra MR. The burden of haemocompatibility with left ventricular assist systems: a complex weave. Eur Heart J. 2019;40:673–7.

    Article  PubMed  Google Scholar 

  31. Willey JZ, Demmer RT, Takayama H, Colombo PC, Lazar RM. Cerebrovascular disease in the era of left ventricular assist devices with continuous flow: risk factors, diagnosis, and treatment. J Heart Lung Transplant. 2014;33:878–87.

    Article  PubMed  Google Scholar 

  32. Han JJ, Acker MA, Atluri P. Left ventricular assist devices. Circulation. 2018;138:2841–51.

    Article  PubMed  Google Scholar 

  33. Pinsino A, Castagna F, Zuver AM, et al. Prognostic implications of serial outpatient blood pressure measurements in patients with an axial continuous-flow left ventricular assist device. J Heart Lung Transplant. 2019;38:396–405.

    Article  PubMed  Google Scholar 

  34. Colombo PC, Mehra MR, Goldstein DJ, et al. Comprehensive analysis of stroke in the long-term cohort of the MOMENTUM 3 study. Circulation. 2019;139:155–68.

    Article  PubMed  Google Scholar 

  35. Cho SM, Mehaffey JH, Meyers SL, et al. Cerebrovascular events in patients with centrifugal-flow left ventricular assist devices: propensity score-matched analysis from the Intermacs Registry. Circulation. 2021;144:763–72.

    Article  CAS  PubMed  Google Scholar 

  36. Mehra MR, Crandall DL, Gustafsson F, et al. Aspirin and left ventricular assist devices: rationale and design for the international randomized, placebo-controlled, non-inferiority ARIES HM3 trial. Eur J Heart Fail. 2021;23:1226–37.

    Article  CAS  PubMed  Google Scholar 

  37. Schlöglhofer T, Michalovics P, Riebandt J, et al. Left ventricular assist device driveline infections in three contemporary devices. Artif Organs. 2021;45:464–72.

    Article  PubMed  Google Scholar 

  38. Lumish HS, Cagliostro B, Braghieri L, et al. Driveline infection in left ventricular assist device patients: effect of standardized protocols, pathogen type, and treatment strategy. ASAIO J. 2022;68:1450–8.

    Article  CAS  PubMed  Google Scholar 

  39. Zaidi SH, Minhas AMK, Sagheer S, et al. Clinical outcomes of transcatheter aortic valve replacement (TAVR) vs. surgical aortic valve replacement (SAVR) in patients with durable left ventricular assist device (LVAD). Curr Probl Cardiol. 2022;47:101313.

    Article  PubMed  Google Scholar 

  40. Jimenez Contreras F, Mendiola Pla M, Schroder J, et al. Progression of aortic valve insufficiency during centrifugal versus axial flow left ventricular assist device support. Eur J Cardiothorac Surg. 2022;61:1188–96.

    Article  PubMed  Google Scholar 

  41. Burrell AJC, Pellegrino VA, Sheldrake J, Pilcher DV. Percutaneous cannulation in predominantly venoarterial extracorporeal membrane oxygenation by intensivists. Crit Care Med. 2015;43:e595.

    Article  PubMed  Google Scholar 

  42. Condello I. Percutaneous right ventricular assist device, rapid employment in right ventricular failure during septic shock. Crit Care. 2020;24:674.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chang HH, Chen YC, Huang CJ, Kuo CC, Wang YM, Sun CW. Optimization of extracorporeal membrane oxygenation therapy using near-infrared spectroscopy to assess changes in peripheral circulation: a pilot study. J Biophotonics. 2020;13:e202000116.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rahmanian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pinsino, A., Gong, M.N., Rahmanian, M. (2023). Temporary and Durable Mechanical Circulatory Support in the ICU. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2023. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-031-23005-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23005-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23004-2

  • Online ISBN: 978-3-031-23005-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics