Skip to main content

Capture and Concentration of Circulating Cancer-Associated Extracellular Vesicles

  • Chapter
  • First Online:
Circulating Tumor Cells

Part of the book series: Current Cancer Research ((CUCR))

  • 416 Accesses

Abstract

Extracellular vesicles (EVs) are a category of nanoscale membrane-bound bodies secreted by nearly every cell in the body and found in nearly all bodily fluids. EVs have been shown to contain diverse molecular cargos, including proteins, RNA, lipid, and DNA. As EVs are derived from their parental cells and those EV molecular cargos are uniquely protected from the extracellular environment by EV membrane, EVs provides high quality of potential molecular biomarkers for cancer diagnosis. However, the heterogeneity of EV populations and lack of highly specific surface cancer marker on EV membrane pose significant challenges in separating tumor-derived EVs (tdEV) from high background of healthy cell-derived EVs in peripheral blood. Here we discussed the recent technology advancements in the field of enriching subpopulations of EVs from bulk populations, with a focus on tdEV enrichment for cancer liquid biopsy purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chargaff E, West R (1946) The biological significance of the thromboplastic protein of blood. J Biol Chem 166:189–197. https://doi.org/10.1016/s0021-9258(17)34997-9

    Article  CAS  PubMed  Google Scholar 

  2. Wolf P (1967) The nature and significance of platelet products in human plasma. Br J Haematol 13:269–288. https://doi.org/10.1111/j.1365-2141.1967.tb08741.x

    Article  CAS  PubMed  Google Scholar 

  3. Taylor DD, Doellgast GJ (1979) Quantitation of peroxidase-antibody binding to membrane fragments using column chromatography. Anal Biochem 98:53–59. https://doi.org/10.1016/0003-2697(79)90704-8

    Article  CAS  PubMed  Google Scholar 

  4. Harding C, Heuser J, Stahl P (1984) Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes: demonstration of a pathway for receptor shedding. Eur J Cell Biol 35:256–263

    CAS  PubMed  Google Scholar 

  5. Johnstone RM, Adam M, Hammond JR, et al (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262:9412–9420. https://doi.org/10.1016/s0021-9258(18)48095-7

    Article  CAS  PubMed  Google Scholar 

  6. El Andaloussi S, Mäger I, Breakefield XO, Wood MJA (2013) Extracellular vesicles: Biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12:347–357. https://doi.org/10.1038/nrd3978

    Article  CAS  PubMed  Google Scholar 

  7. Raposo G, Nijman HW, Stoorvogel W, et al (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183:1161–1172. https://doi.org/10.1084/jem.183.3.1161

    Article  CAS  PubMed  Google Scholar 

  8. Valadi H, Ekström K, Bossios A, et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659. https://doi.org/10.1038/ncb1596

    Article  CAS  PubMed  Google Scholar 

  9. Balaj L, Lessard R, Dai L, et al (2011) Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2. https://doi.org/10.1038/ncomms1180

  10. Veziroglu EM, Mias GI (2020) Characterizing Extracellular Vesicles and Their Diverse RNA Contents. Front Genet 11:1–30. https://doi.org/10.3389/fgene.2020.00700

    Article  CAS  Google Scholar 

  11. Théry C, Witwer KW, Aikawa E, et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7. https://doi.org/10.1080/20013078.2018.1535750

  12. Peinado H, Zhang H, Matei IR, et al (2017) Pre-metastatic niches: Organ-specific homes for metastases. Nat Rev Cancer 17:302–317. https://doi.org/10.1038/nrc.2017.6

    Article  CAS  PubMed  Google Scholar 

  13. Hart IR, Fidler IJ (1980) Role of organ selectivity in the determination of metastatic patterns of b16 melanoma. Cancer Res 40:2281–2287

    CAS  PubMed  Google Scholar 

  14. Lucero R, Zappulli V, Sammarco A, et al (2020) Glioma-Derived miRNA-Containing Extracellular Vesicles Induce Angiogenesis by Reprogramming Brain Endothelial Cells. Cell Rep 30:2065–2074.e4. https://doi.org/10.1016/j.celrep.2020.01.073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. He M, Crow J, Roth M, et al (2014) Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology. Lab Chip 14:3773–3780. https://doi.org/10.1039/c4lc00662c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kamyabi N, Abbasgholizadeh R, Maitra A, et al (2020) Isolation and mutational assessment of pancreatic cancer extracellular vesicles using a microfluidic platform. Biomed Microdevices 22:1–11. https://doi.org/10.1007/s10544-020-00483-7

    Article  CAS  Google Scholar 

  17. Liu C, Xu X, Li B, et al (2018) Single-Exosome-Counting Immunoassays for Cancer Diagnostics. Nano Lett 18:4226–4232. https://doi.org/10.1021/acs.nanolett.8b01184

    Article  CAS  PubMed  Google Scholar 

  18. Zhang P, He M, Zeng Y (2016) Ultrasensitive microfluidic analysis of circulating exosomes using a nanostructured graphene oxide/polydopamine coating. Lab Chip 16:3033–3042. https://doi.org/10.1039/c6lc00279j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liang K, Liu F, Fan J, et al (2017) Nanoplasmonic quantification of tumour-derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring. Nat Biomed Eng 1:21. https://doi.org/10.1038/s41551-016-0021

    Article  CAS  Google Scholar 

  20. Zhao Z, Yang Y, Zeng Y, He M (2016) A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. Lab Chip 16:489–496. https://doi.org/10.1039/c5lc01117e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kang YT, Kim YJ, Bu J, et al (2017) High-purity capture and release of circulating exosomes using an exosome-specific dual-patterned immunofiltration (ExoDIF) device. Nanoscale 9:13495–13505. https://doi.org/10.1039/c7nr04557c

    Article  CAS  PubMed  Google Scholar 

  22. Jeong S, Park J, Pathania D, et al (2016) Integrated Magneto-Electrochemical Sensor for Exosome Analysis. ACS Nano 10:1802–1809. https://doi.org/10.1021/acsnano.5b07584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kanwar SS, Dunlay CJ, Simeone DM, Nagrath S (2014) Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes. Lab Chip 14:1891–1900. https://doi.org/10.1039/c4lc00136b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen C, Skog J, Hsu CH, et al (2010) Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip 10:505–511. https://doi.org/10.1039/b916199f

    Article  CAS  PubMed  Google Scholar 

  25. Shao H, Chung J, Balaj L, et al (2012) Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat Med 18:1835–1840. https://doi.org/10.1038/nm.2994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dudani JS, Gossett DR, Tse HTK, et al (2015) Rapid inertial solution exchange for enrichment and flow cytometric detection of microvesicles. Biomicrofluidics 9:014112. https://doi.org/10.1063/1.4907807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wan Y, Cheng G, Liu X, et al (2017) Rapid magnetic isolation of extracellular vesicles via lipid-based nanoprobes. Nat Biomed Eng 1. https://doi.org/10.1038/s41551-017-0058

  28. Zhou ZR, Wang XY, Lv J, Qian RC (2020) A polydopamine-based biomimetic multifunctional nanoplatform for multilayer imaging of cancer biomarkers carried by extracellular vesicles. Analyst 145:6061–6070. https://doi.org/10.1039/d0an01428a

    Article  CAS  PubMed  Google Scholar 

  29. Poellmann MJ, Nair A, Bu J, et al (2020) Immunoavidity-Based Capture of Tumor Exosomes Using Poly(amidoamine) Dendrimer Surfaces. Nano Lett 20:5686–5692. https://doi.org/10.1021/acs.nanolett.0c00950

    Article  CAS  PubMed  Google Scholar 

  30. Kang YT, Hadlock T, Jolly S, Nagrath S (2020) Extracellular vesicles on demand (EVOD) chip for screening and quantification of cancer-associated extracellular vesicles. Biosens Bioelectron 168:112535. https://doi.org/10.1016/j.bios.2020.112535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Reátegui E, Van Der Vos KE, Lai CP, et al (2018) Engineered nanointerfaces for microfluidic isolation and molecular profiling of tumor-specific extracellular vesicles. Nat Commun 9:1–11. https://doi.org/10.1038/s41467-017-02261-1

    Article  CAS  Google Scholar 

  32. Shao H, Chung J, Lee K, et al (2015) Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat Commun 6:1–9. https://doi.org/10.1038/ncomms7999

    Article  CAS  Google Scholar 

  33. Sun N, Lee Y Te, Zhang RY, et al (2020) Purification of HCC-specific extracellular vesicles on nanosubstrates for early HCC detection by digital scoring. Nat Commun 11:1–12. https://doi.org/10.1038/s41467-020-18311-0

    Article  CAS  Google Scholar 

  34. Dong J, Zhang RY, Sun N, et al (2019) Bio-Inspired NanoVilli Chips for Enhanced Capture of Tumor-Derived Extracellular Vesicles: Toward Non-Invasive Detection of Gene Alterations in Non-Small Cell Lung Cancer. ACS Appl Mater Interfaces 11:13973–13983. https://doi.org/10.1021/acsami.9b01406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Beekman P, Enciso-Martinez A, Rho HS, et al (2019) Immuno-capture of extracellular vesicles for individual multi-modal characterization using AFM, SEM and Raman spectroscopy. Lab Chip 19:2526–2536. https://doi.org/10.1039/c9lc00081j

    Article  CAS  PubMed  Google Scholar 

  36. Im H, Shao H, Park Y Il, et al (2014) Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat Biotechnol 32:490–495. https://doi.org/10.1038/nbt.2886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kang YT, Purcell E, Palacios-Rolston C, et al (2019) Isolation and Profiling of Circulating Tumor-Associated Exosomes Using Extracellular Vesicular Lipid–Protein Binding Affinity Based Microfluidic Device. Small 15:1903600. https://doi.org/10.1002/smll.201903600

  38. Sharma P, Ludwig S, Muller L, et al (2018) Immunoaffinity-based isolation of melanoma cell-derived exosomes from plasma of patients with melanoma. J Extracell Vesicles 7. https://doi.org/10.1080/20013078.2018.1435138

  39. Li Y, Deng J, Han Z, et al (2021) Molecular Identification of Tumor-Derived Extracellular Vesicles Using Thermophoresis-Mediated DNA Computation. J Am Chem Soc 143:1290–1295. https://doi.org/10.1021/jacs.0c12016

    Article  CAS  PubMed  Google Scholar 

  40. Zhang K, Yue Y, Wu S, et al (2019) Rapid Capture and Nondestructive Release of Extracellular Vesicles Using Aptamer-Based Magnetic Isolation. ACS Sensors 4:1245–1251. https://doi.org/10.1021/acssensors.9b00060

    Article  CAS  PubMed  Google Scholar 

  41. Yamamoto M, Harada Y, Suzuki T, et al (2019) Application of high-mannose-type glycan-specific lectin from Oscillatoria Agardhii for affinity isolation of tumor-derived extracellular vesicles. Anal Biochem 580:21–29. https://doi.org/10.1016/j.ab.2019.06.001

    Article  CAS  PubMed  Google Scholar 

  42. Jørgensen M, Bæk R, Pedersen S, et al (2013) Extracellular Vesicle (EV) array: Microarray capturing of exosomes and other extracellular vesicles for multiplexed phenotyping. J Extracell Vesicles 2:20920. https://doi.org/10.3402/jev.v2i0.20920

    Article  CAS  Google Scholar 

  43. Moon PG, Lee JE, Cho YE, et al (2016) Fibronectin on circulating extracellular vesicles as a liquid biopsy to detect breast cancer. Oncotarget 7:40189–40199. https://doi.org/10.18632/oncotarget.9561

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ji H, Chen M, Greening DW, et al (2014) Deep sequencing of RNA from three different extracellular vesicle (EV) subtypes released from the human LIM1863 colon cancer cell line uncovers distinct mirna-enrichment signatures. PLoS One 9. https://doi.org/10.1371/journal.pone.0110314

  45. Rupp AK, Rupp C, Keller S, et al (2011) Loss of EpCAM expression in breast cancer derived serum exosomes: Role of proteolytic cleavage. Gynecol Oncol 122:437–446. https://doi.org/10.1016/j.ygyno.2011.04.035

    Article  CAS  PubMed  Google Scholar 

  46. Kowal J, Arras G, Colombo M, et al (2016) Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A 113:E968–E977. https://doi.org/10.1073/pnas.1521230113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang W, Ni M, Su Y, et al (2018) MicroRNAs in Serum Exosomes as Potential Biomarkers in Clear-cell Renal Cell Carcinoma. Eur Urol Focus 4:412–419. https://doi.org/10.1016/j.euf.2016.09.007

    Article  PubMed  Google Scholar 

  48. Zabegina L, Nazarova I, Knyazeva M, et al (2020) MiRNA let-7 from TPO(+) Extracellular Vesicles is a Potential Marker for a Differential Diagnosis of Follicular Thyroid Nodules. Cells 9:1–15

    Article  Google Scholar 

  49. Tzaridis T, Reiners KS, Weller J, et al (2020) Analysis of serum mirna in glioblastoma patients: Cd44-based enrichment of extracellular vesicles enhances specificity for the prognostic signature. Int J Mol Sci 21:1–16. https://doi.org/10.3390/ijms21197211

    Article  CAS  Google Scholar 

  50. Balaj L, Atai NA, Chen W, et al (2015) Heparin affinity purification of extracellular vesicles. Sci Rep 5:1–15. https://doi.org/10.1038/srep10266

    Article  CAS  Google Scholar 

  51. Zarovni N, Corrado A, Guazzi P, et al (2015) Integrated isolation and quantitative analysis of exosome shuttled proteins and nucleic acids using immunocapture approaches. Methods 87:46–58. https://doi.org/10.1016/j.ymeth.2015.05.028

    Article  CAS  PubMed  Google Scholar 

  52. Rabinowits G, Gerçel-Taylor C, Day JM, et al (2009) Exosomal microRNA: A diagnostic marker for lung cancer. Clin Lung Cancer 10:42–46. https://doi.org/10.3816/CLC.2009.n.006

    Article  CAS  PubMed  Google Scholar 

  53. Koga K, Matsumoto K, Akiyoshi T, et al (2005) Purification, characterization and biological significance of tumor-derived exosomes. Anticancer Res 25:3703–3707

    CAS  PubMed  Google Scholar 

  54. Dong J, Zhang RY, Sun N, et al (2020) Coupling Nanostructured Microchips with Covalent Chemistry Enables Purification of Sarcoma-Derived Extracellular Vesicles for Downstream Functional Studies. Adv Funct Mater 30:2003237. https://doi.org/10.1002/adfm.202003237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shiddiky MJA, Vaidyanathan R, Naghibosadat M, et al (2014) Detecting exosomes specifically: A microfluidic approach based on alternating current electrohydrodynamic induced nanoshearing. 18th Int Conf Miniaturized Syst Chem Life Sci MicroTAS 2014 674–676

    Google Scholar 

  56. Wild DG (2013) Immunoassay Handbook - Theory and Applications of Ligand Binding, ELISA and Related Techniques (4th Edition) - Knovel. In: Elsevier. https://app-knovel-com.cmu.idm.oclc.org/web/toc.v/cid:kpIHTALBE2/viewerType:toc//root_slug:immunoassay-handbook-theory. Accessed 22 Mar 2021

  57. Tauro BJ, Greening DW, Mathias RA, et al (2012) Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 56:293–304. https://doi.org/10.1016/j.ymeth.2012.01.002

    Article  CAS  PubMed  Google Scholar 

  58. Koliha N, Wiencek Y, Heider U, et al (2016) A novel multiplex bead-based platform highlights the diversity of extracellular vesicles. J Extracell Vesicles 5. https://doi.org/10.3402/jev.v5.29975

  59. Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110:13–21. https://doi.org/10.1016/j.ygyno.2008.04.033

    Article  CAS  PubMed  Google Scholar 

  60. Boriachek K, Masud MK, Palma C, et al (2019) Avoiding pre-isolation step in exosome analysis: Direct isolation and sensitive detection of exosomes using gold-loaded nanoporous ferric oxide nanozymes. Anal Chem 91:3827–3834. https://doi.org/10.1021/acs.analchem.8b03619

    Article  CAS  PubMed  Google Scholar 

  61. Ko J, Bhagwat N, Black T, et al (2018) MiRNA profiling of magnetic nanopore-isolated extracellular vesicles for the diagnosis of pancreatic cancer. Cancer Res 78:3688–3697. https://doi.org/10.1158/0008-5472.CAN-17-3703

    Article  CAS  PubMed  Google Scholar 

  62. Ko J, Bhagwat N, Yee SS, et al (2017) Combining Machine Learning and Nanofluidic Technology to Diagnose Pancreatic Cancer Using Exosomes. ACS Nano 11:11182–11193. https://doi.org/10.1021/acsnano.7b05503

    Article  CAS  PubMed  Google Scholar 

  63. Islam MK, Syed P, Lehtinen L, et al (2019) A Nanoparticle-Based Approach for the Detection of Extracellular Vesicles. Sci Rep 9:1–9. https://doi.org/10.1038/s41598-019-46395-2

    Article  CAS  Google Scholar 

  64. Campos-Silva C, Suárez H, Jara-Acevedo R, et al (2019) High sensitivity detection of extracellular vesicles immune-captured from urine by conventional flow cytometry. Sci Rep 9:1–12. https://doi.org/10.1038/s41598-019-38516-8

    Article  CAS  Google Scholar 

  65. Chen J, Xu Y, Lu Y, Xing W (2018) Isolation and Visible Detection of Tumor-Derived Exosomes from Plasma. Anal Chem 90:14207–14215. https://doi.org/10.1021/acs.analchem.8b03031

    Article  CAS  PubMed  Google Scholar 

  66. Tian Y, Ma L, Gong M, et al (2018) Protein Profiling and Sizing of Extracellular Vesicles from Colorectal Cancer Patients via Flow Cytometry. ACS Nano 12:671–680. https://doi.org/10.1021/acsnano.7b07782

    Article  CAS  PubMed  Google Scholar 

  67. Aldo P, Marusov G, Svancara D, et al (2016) Simple plextmâ„¢: A novel multi-analyte, automated microfluidic immunoassay platform for the detection of human and mouse cytokines and chemokines. Am J Reprod Immunol. https://doi.org/10.1111/aji.12512

  68. Graner MW, Alzate O, Dechkovskaia AM, et al (2009) Proteomic and immunologic analyses of brain tumor exosomes. FASEB J 23:1541–1557. https://doi.org/10.1096/fj.08-122184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Higginbotham JN, Demory Beckler M, Gephart JD, et al (2011) Amphiregulin exosomes increase cancer cell invasion. Curr Biol 21:779–786. https://doi.org/10.1016/j.cub.2011.03.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Morales-Kastresana A, Musich TA, Welsh JA, et al (2019) High-fidelity detection and sorting of nanoscale vesicles in viral disease and cancer. J Extracell Vesicles 8. https://doi.org/10.1080/20013078.2019.1597603

  71. Maia J, Batista S, Couto N, et al (2020) Employing Flow Cytometry to Extracellular Vesicles Sample Microvolume Analysis and Quality Control. Front Cell Dev Biol 8:1–15. https://doi.org/10.3389/fcell.2020.593750

    Article  Google Scholar 

  72. İçöz K, Eken A, Çınar S, et al (2020) Immunomagnetic separation of B type acute lymphoblastic leukemia cells from bone marrow with flow cytometry validation and microfluidic chip measurements. Sep Sci Technol. https://doi.org/10.1080/01496395.2020.1835983

  73. Choi D, Montermini L, Jeong H, et al (2019) Mapping Subpopulations of Cancer Cell-Derived Extracellular Vesicles and Particles by Nano-Flow Cytometry. ACS Nano 13:10499–10511. https://doi.org/10.1021/acsnano.9b04480

    Article  CAS  PubMed  Google Scholar 

  74. van der Vlist EJ, Nolte-’t Hoen ENM, Stoorvogel W, et al (2012) Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat Protoc 7:1311–1326. https://doi.org/10.1038/nprot.2012.065

    Article  CAS  PubMed  Google Scholar 

  75. Higginbotham JN, Zhang Q, Jeppesen DK, et al (2016) Identification and characterization of EGF receptor in individual exosomes by fluorescence-activated vesicle sorting. J Extracell Vesicles 5. https://doi.org/10.3402/jev.v5.29254

  76. Zhang P, Zhou X, He M, et al (2019) Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip. Nat Biomed Eng 3:438–451. https://doi.org/10.1038/s41551-019-0356-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Vaidyanathan R, Naghibosadat M, Rauf S, et al (2014) Detecting exosomes specifically: A multiplexed device based on alternating current electrohydrodynamic induced nanoshearing. Anal Chem 86:11125–11132. https://doi.org/10.1021/ac502082b

    Article  CAS  PubMed  Google Scholar 

  78. Mizutani K, Terazawa R, Kameyama K, et al (2014) Isolation of prostate cancer-related exosomes. Anticancer Res 34:3419–3423

    CAS  PubMed  Google Scholar 

  79. Kalra H, Adda CG, Liem M, et al (2013) Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma. Proteomics 13:3354–3364. https://doi.org/10.1002/pmic.201300282

    Article  CAS  PubMed  Google Scholar 

  80. Yoshioka Y, Kosaka N, Konishi Y, et al (2014) Ultra-sensitive liquid biopsy of circulating extracellular vesicles using ExoScreen. Nat Commun 5:3591. https://doi.org/10.1038/ncomms4591

    Article  CAS  PubMed  Google Scholar 

  81. Pugholm LH, Revenfeld ALS, Søndergaard EKL, Jørgensen MM (2015) Antibody-based assays for phenotyping of extracellular vesicles. Biomed Res Int 2015. https://doi.org/10.1155/2015/524817

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Zhang He or Si-Yang Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, J., Rast, J., He, HZ., Zheng, SY. (2023). Capture and Concentration of Circulating Cancer-Associated Extracellular Vesicles. In: Cote, R.J., Lianidou, E. (eds) Circulating Tumor Cells. Current Cancer Research. Springer, Cham. https://doi.org/10.1007/978-3-031-22903-9_5

Download citation

Publish with us

Policies and ethics