Skip to main content

Exploiting Exosomes for Cancer Diagnosis and Treatment

  • Chapter
  • First Online:
Circulating Tumor Cells

Part of the book series: Current Cancer Research ((CUCR))

Abstract

Exosomes are extracellular vesicles (EVs) of endosomal origin involved in a multitude of intercellular communication mechanisms that regulate a vast repertoire of functional outcomes. In addition to the investigation of aspects pertaining to the basic biology of exosomes, a wealth of literature has pinpointed the translational potential of these nanoparticles in cancer. Exosomes derived from patient biofluids can be exploited as biomarkers for diagnosis and prognosis and to monitor the response to anticancer therapies. Furthermore, exosomes can be engineered and leveraged as therapeutic delivery systems for cancer treatment. In biomedical research, the translational potential of exploiting exosomes for cancer diagnosis and treatment is increasingly appreciated and is the focus of discussion in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANXA2:

Annexin A2

ARF6:

ADP ribosylation factor 6

CAR:

Chimeric antigen receptor

CD147:

Cluster of differentiation 147

CD82:

Cluster of differentiation 82

circRNA:

Circular RNA

CPNE3:

Copine III

CRISPR/Cas9:

Clustered regularly interspaced short palindromic repeats-associated endonuclease 9

EGFR:

Epidermal growth factor receptor

ESCRT:

Endosomal sorting complexes required for transport

EVs:

Extracellular vesicles

hnRNPA2B1:

Heterogeneous nuclear ribonucleoprotein A2B1

ICB:

Immune checkpoint blockade

ILVs:

Intraluminal vesicles

ISEV:

International Society for Extracellular Vesicles

ITGA3:

Integrin alpha-3

KRAS:

Kirsten rat sarcoma

lncRNA:

Long noncoding RNA

miRNA:

microRNA

MVB:

Multivesicular body

MVs:

Microvesicles

PD-L1:

Programmed death-ligand 1

PLD2:

Phospholipase D2

PTMs:

Posttranslational modifications

RNA:

Ribonucleic acid

sFlt-1:

Soluble fms-like tyrosine kinase-1

SIMPLE:

Small integral membrane protein of the lysosome/late endosome

siRNA:

Small interfering RNA

SIRPα:

Signal regulatory protein α

SNARE:

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor

SP1:

Sphingosine 1-phosphate

SPION:

Superparamagnetic iron oxide nanoparticles

STING:

Stimulator of interferon genes

TME:

Tumor microenvironment

TP53:

Tumor protein 53

TRAIL:

TNF-related apoptosis-inducing ligand

tRNA:

Transfer RNA

References

  1. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646–74.

    Article  CAS  PubMed  Google Scholar 

  2. Balkwill, F.R., M. Capasso, and T. Hagemann, The tumor microenvironment at a glance. J Cell Sci, 2012. 125(Pt 23): p. 5591–6.

    Article  CAS  PubMed  Google Scholar 

  3. Kalluri, R., The biology and function of fibroblasts in cancer. Nat Rev Cancer, 2016. 16(9): p. 582–98.

    Article  CAS  PubMed  Google Scholar 

  4. Santi, A., F.G. Kugeratski, and S. Zanivan, Cancer Associated Fibroblasts: The Architects of Stroma Remodeling. Proteomics, 2018. 18(5–6): p. e1700167.

    Google Scholar 

  5. Ribeiro, A.L. and O.K. Okamoto, Combined effects of pericytes in the tumor microenvironment. Stem Cells Int, 2015. 2015: p. 868475.

    Google Scholar 

  6. Ruoslahti, E., Specialization of tumour vasculature. Nat Rev Cancer, 2002. 2(2): p. 83–90.

    Article  PubMed  Google Scholar 

  7. Thommen, D.S. and T.N. Schumacher, T Cell Dysfunction in Cancer. Cancer Cell, 2018. 33(4): p. 547–562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Morvan, M.G. and L.L. Lanier, NK cells and cancer: you can teach innate cells new tricks. Nat Rev Cancer, 2016. 16(1): p. 7–19.

    Article  CAS  PubMed  Google Scholar 

  9. Tsou, P., et al., The Emerging Role of B Cells in Tumor Immunity. Cancer Res, 2016. 76(19): p. 5597–5601.

    Article  CAS  PubMed  Google Scholar 

  10. Kumar, V., et al., The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Trends Immunol, 2016. 37(3): p. 208–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhou, J., et al., Tumor-Associated Macrophages: Recent Insights and Therapies. Front Oncol, 2020. 10: p. 188.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wculek, S.K., et al., Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol, 2020. 20(1): p. 7–24.

    Article  CAS  PubMed  Google Scholar 

  13. Coffelt, S.B., M.D. Wellenstein, and K.E. de Visser, Neutrophils in cancer: neutral no more. Nat Rev Cancer, 2016. 16(7): p. 431–46.

    Article  CAS  PubMed  Google Scholar 

  14. Ruan, K., G. Song, and G. Ouyang, Role of hypoxia in the hallmarks of human cancer. J Cell Biochem, 2009. 107(6): p. 1053–62.

    Article  CAS  PubMed  Google Scholar 

  15. Nia, H.T., L.L. Munn, and R.K. Jain, Physical traits of cancer. Science, 2020. 370(6516).

    Article  Google Scholar 

  16. Baghban, R., et al., Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal, 2020. 18(1): p. 59.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kugeratski, F.G., et al., Hypoxic cancer-associated fibroblasts increase NCBP2-AS2/HIAR to promote endothelial sprouting through enhanced VEGF signaling. Sci Signal, 2019. 12(567).

    Google Scholar 

  18. Chen, Y., et al., Type I collagen deletion in alphaSMA(+) myofibroblasts augments immune suppression and accelerates progression of pancreatic cancer. Cancer Cell, 2021.

    Google Scholar 

  19. Hernandez-Fernaud, J.R., et al., Secreted CLIC3 drives cancer progression through its glutathione-dependent oxidoreductase activity. Nat Commun, 2017. 8: p. 14206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cox, T.R., et al., The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase. Nature, 2015. 522(7554): p. 106–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maacha, S., et al., Extracellular vesicles-mediated intercellular communication: roles in the tumor microenvironment and anti-cancer drug resistance. Mol Cancer, 2019. 18(1): p. 55.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kalluri, R. and V.S. LeBleu, The biology, function, and biomedical applications of exosomes. Science, 2020. 367(6478).

    Google Scholar 

  23. Haraszti, R.A., et al., High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J Extracell Vesicles, 2016. 5: p. 32570.

    Article  PubMed  Google Scholar 

  24. Hurwitz, S.N., et al., Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. Oncotarget, 2016. 7(52): p. 86999–87015.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ludwig, N., et al., Purine Metabolites in Tumor-Derived Exosomes May Facilitate Immune Escape of Head and Neck Squamous Cell Carcinoma. Cancers (Basel), 2020. 12(6).

    Google Scholar 

  26. Kahlert, C., et al., Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem, 2014. 289(7): p. 3869–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Onozato, M., et al., Amino acid analyses of the exosome-eluted fractions from human serum by HPLC with fluorescence detection. Pract Lab Med, 2018. 12: p. e00099.

    Google Scholar 

  28. Zhang, Y., X. Wu, and W. Andy Tao, Characterization and Applications of Extracellular Vesicle Proteome with Post-Translational Modifications. Trends Analyt Chem, 2018. 107: p. 21–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van Niel, G., G. D’Angelo, and G. Raposo, Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol, 2018. 19(4): p. 213–228.

    Article  PubMed  Google Scholar 

  30. Mathieu, M., et al., Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol, 2019. 21(1): p. 9–17.

    Article  CAS  PubMed  Google Scholar 

  31. Tricarico, C., J. Clancy, and C. D’Souza-Schorey, Biology and biogenesis of shed microvesicles. Small GTPases, 2017. 8(4): p. 220–232.

    Article  CAS  PubMed  Google Scholar 

  32. Caruso, S. and I.K.H. Poon, Apoptotic Cell-Derived Extracellular Vesicles: More Than Just Debris. Front Immunol, 2018. 9: p. 1486.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Melentijevic, I., et al., C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress. Nature, 2017. 542(7641): p. 367–371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, H., et al., Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol, 2018. 20(3): p. 332–343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Marki, A., et al., Elongated neutrophil-derived structures are blood-borne microparticles formed by rolling neutrophils during sepsis. J Exp Med, 2021. 218(3).

    Google Scholar 

  36. Balint, S., et al., Supramolecular attack particles are autonomous killing entities released from cytotoxic T cells. Science, 2020. 368(6493): p. 897–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Thery, C., et al., Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles, 2018. 7(1): p. 1535750.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kowal, J., M. Tkach, and C. Thery, Biogenesis and secretion of exosomes. Curr Opin Cell Biol, 2014. 29: p. 116–25.

    Article  CAS  PubMed  Google Scholar 

  39. Hessvik, N.P. and A. Llorente, Current knowledge on exosome biogenesis and release. Cell Mol Life Sci, 2018. 75(2): p. 193–208.

    Article  CAS  PubMed  Google Scholar 

  40. McAndrews, K.M. and R. Kalluri, Mechanisms associated with biogenesis of exosomes in cancer. Mol Cancer, 2019. 18(1): p. 52.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Harding, C., J. Heuser, and P. Stahl, Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol, 1983. 97(2): p. 329–39.

    Article  CAS  PubMed  Google Scholar 

  42. Pan, B.T., et al., Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol, 1985. 101(3): p. 942–8.

    Article  CAS  PubMed  Google Scholar 

  43. Colombo, M., et al., Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci, 2013. 126(Pt 24): p. 5553–65.

    CAS  PubMed  Google Scholar 

  44. Razi, M. and C.E. Futter, Distinct roles for Tsg101 and Hrs in multivesicular body formation and inward vesiculation. Mol Biol Cell, 2006. 17(8): p. 3469–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Baietti, M.F., et al., Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol, 2012. 14(7): p. 677–85.

    Article  CAS  PubMed  Google Scholar 

  46. Roucourt, B., et al., Heparanase activates the syndecan-syntenin-ALIX exosome pathway. Cell Res, 2015. 25(4): p. 412–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stoorvogel, W., Resolving sorting mechanisms into exosomes. Cell Res, 2015. 25(5): p. 531–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ghossoub, R., et al., Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat Commun, 2014. 5: p. 3477.

    Article  PubMed  Google Scholar 

  49. Imjeti, N.S., et al., Syntenin mediates SRC function in exosomal cell-to-cell communication. Proc Natl Acad Sci U S A, 2017. 114(47): p. 12495–12500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hurwitz, S.N., et al., CD63 Regulates Epstein-Barr Virus LMP1 Exosomal Packaging, Enhancement of Vesicle Production, and Noncanonical NF-kappaB Signaling. J Virol, 2017. 91(5).

    Google Scholar 

  51. Zhu, H., et al., Mutation of SIMPLE in Charcot-Marie-Tooth 1C alters production of exosomes. Mol Biol Cell, 2013. 24(11): p. 1619–37, S1-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Trajkovic, K., et al., Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science, 2008. 319(5867): p. 1244–7.

    Article  CAS  PubMed  Google Scholar 

  53. Phuyal, S., et al., Regulation of exosome release by glycosphingolipids and flotillins. FEBS J, 2014. 281(9): p. 2214–27.

    Article  CAS  PubMed  Google Scholar 

  54. de Gassart, A., et al., Lipid raft-associated protein sorting in exosomes. Blood, 2003. 102(13): p. 4336–44.

    Article  PubMed  Google Scholar 

  55. Kajimoto, T., et al., Ongoing activation of sphingosine 1-phosphate receptors mediates maturation of exosomal multivesicular endosomes. Nat Commun, 2013. 4: p. 2712.

    Article  PubMed  Google Scholar 

  56. Nolte-’t Hoen, E.N., et al., Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res, 2012. 40(18): p. 9272–85.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Villarroya-Beltri, C., et al., Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun, 2013. 4: p. 2980.

    Article  PubMed  Google Scholar 

  58. Cha, D.J., et al., KRAS-dependent sorting of miRNA to exosomes. Elife, 2015. 4: p. e07197.

    Google Scholar 

  59. McKenzie, A.J., et al., KRAS-MEK Signaling Controls Ago2 Sorting into Exosomes. Cell Rep, 2016. 15(5): p. 978–987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sinha, S., et al., Cortactin promotes exosome secretion by controlling branched actin dynamics. J Cell Biol, 2016. 214(2): p. 197–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stenmark, H., Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol, 2009. 10(8): p. 513–25.

    Article  CAS  PubMed  Google Scholar 

  62. Hsu, C., et al., Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J Cell Biol, 2010. 189(2): p. 223–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ostrowski, M., et al., Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol, 2010. 12(1): p. 19–30; sup pp 1–13.

    Google Scholar 

  64. Bobrie, A., et al., Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression. Cancer Res, 2012. 72(19): p. 4920–30.

    Article  CAS  PubMed  Google Scholar 

  65. Fader, C.M., et al., TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochim Biophys Acta, 2009. 1793(12): p. 1901–16.

    Article  CAS  PubMed  Google Scholar 

  66. Wei, Y., et al., Pyruvate kinase type M2 promotes tumour cell exosome release via phosphorylating synaptosome-associated protein 23. Nat Commun, 2017. 8: p. 14041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Phuyal, S., et al., The ether lipid precursor hexadecylglycerol stimulates the release and changes the composition of exosomes derived from PC-3 cells. J Biol Chem, 2015. 290(7): p. 4225–37.

    Article  CAS  PubMed  Google Scholar 

  68. Savina, A., et al., Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J Biol Chem, 2003. 278(22): p. 20083–90.

    Article  CAS  PubMed  Google Scholar 

  69. Villarroya-Beltri, C., et al., ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat Commun, 2016. 7: p. 13588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gao, F., et al., A novel strategy for facile serum exosome isolation based on specific interactions between phospholipid bilayers and TiO2. Chem Sci, 2019. 10(6): p. 1579–1588.

    Article  CAS  PubMed  Google Scholar 

  71. Thery, C., et al., Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol, 2006. Chapter 3: p. Unit 3 22.

    Google Scholar 

  72. Coumans, F.A.W., et al., Methodological Guidelines to Study Extracellular Vesicles. Circ Res, 2017. 120(10): p. 1632–1648.

    Article  CAS  PubMed  Google Scholar 

  73. Konoshenko, M.Y., et al., Isolation of Extracellular Vesicles: General Methodologies and Latest Trends. Biomed Res Int, 2018. 2018: p. 8545347.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sidhom, K., P.O. Obi, and A. Saleem, A Review of Exosomal Isolation Methods: Is Size Exclusion Chromatography the Best Option? Int J Mol Sci, 2020. 21(18).

    Google Scholar 

  75. Contreras-Naranjo, J.C., H.J. Wu, and V.M. Ugaz, Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. Lab Chip, 2017. 17(21): p. 3558–3577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Midekessa, G., et al., Zeta Potential of Extracellular Vesicles: Toward Understanding the Attributes that Determine Colloidal Stability. ACS Omega, 2020. 5(27): p. 16701–16710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gurunathan, S., et al., Review of the Isolation, Characterization, Biological Function, and Multifarious Therapeutic Approaches of Exosomes. Cells, 2019. 8(4).

    Google Scholar 

  78. Kim, D.K., et al., EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles. J Extracell Vesicles, 2013. 2.

    Google Scholar 

  79. Kalra, H., et al., Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol, 2012. 10(12): p. e1001450.

    Google Scholar 

  80. Pathan, M., et al., Vesiclepedia 2019: a compendium of RNA, proteins, lipids and metabolites in extracellular vesicles. Nucleic Acids Res, 2019. 47(D1): p. D516–D519.

    Article  CAS  PubMed  Google Scholar 

  81. Mathivanan, S. and R.J. Simpson, ExoCarta: A compendium of exosomal proteins and RNA. Proteomics, 2009. 9(21): p. 4997–5000.

    Article  CAS  PubMed  Google Scholar 

  82. Keerthikumar, S., et al., ExoCarta: A Web-Based Compendium of Exosomal Cargo. J Mol Biol, 2016. 428(4): p. 688–692.

    Article  CAS  PubMed  Google Scholar 

  83. Kanada, M., M.H. Bachmann, and C.H. Contag, Signaling by Extracellular Vesicles Advances Cancer Hallmarks. Trends Cancer, 2016. 2(2): p. 84–94.

    Article  PubMed  Google Scholar 

  84. Azmi, A.S., B. Bao, and F.H. Sarkar, Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev, 2013. 32(3–4): p. 623–42.

    Article  CAS  PubMed  Google Scholar 

  85. Hoshino, A., et al., Tumour exosome integrins determine organotropic metastasis. Nature, 2015. 527(7578): p. 329–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kuriyama, N., et al., Extracellular Vesicles Are Key Regulators of Tumor Neovasculature. Front Cell Dev Biol, 2020. 8: p. 611039.

    Google Scholar 

  87. Kugeratski, F.G. and R. Kalluri, Exosomes as mediators of immune regulation and immunotherapy in cancer. FEBS J, 2021. 288(1): p. 10–35.

    Article  PubMed  Google Scholar 

  88. Robbins, P.D. and A.E. Morelli, Regulation of immune responses by extracellular vesicles. Nat Rev Immunol, 2014. 14(3): p. 195–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Caby, M.P., et al., Exosomal-like vesicles are present in human blood plasma. Int Immunol, 2005. 17(7): p. 879–87.

    Article  CAS  PubMed  Google Scholar 

  90. Helwa, I., et al., A Comparative Study of Serum Exosome Isolation Using Differential Ultracentrifugation and Three Commercial Reagents. PLoS One, 2017. 12(1): p. e0170628.

    Google Scholar 

  91. Iwai, K., et al., Isolation of human salivary extracellular vesicles by iodixanol density gradient ultracentrifugation and their characterizations. J Extracell Vesicles, 2016. 5: p. 30829.

    Article  PubMed  Google Scholar 

  92. Inubushi, S., et al., Oncogenic miRNAs Identified in Tear Exosomes From Metastatic Breast Cancer Patients. Anticancer Res, 2020. 40(6): p. 3091–3096.

    Article  PubMed  Google Scholar 

  93. Guha, D., et al., Proteomic analysis of cerebrospinal fluid extracellular vesicles reveals synaptic injury, inflammation, and stress response markers in HIV patients with cognitive impairment. J Neuroinflammation, 2019. 16(1): p. 254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Admyre, C., et al., Exosomes with immune modulatory features are present in human breast milk. J Immunol, 2007. 179(3): p. 1969–78.

    Article  CAS  PubMed  Google Scholar 

  95. Dixon, C.L., et al., Amniotic Fluid Exosome Proteomic Profile Exhibits Unique Pathways of Term and Preterm Labor. Endocrinology, 2018. 159(5): p. 2229–2240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Vojtech, L., et al., Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Res, 2014. 42(11): p. 7290–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Smith, J.A. and R. Daniel, Human vaginal fluid contains exosomes that have an inhibitory effect on an early step of the HIV-1 life cycle. AIDS, 2016. 30(17): p. 2611–2616.

    Article  CAS  PubMed  Google Scholar 

  98. Dai, S., et al., Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol Ther, 2008. 16(4): p. 782–90.

    Article  CAS  PubMed  Google Scholar 

  99. Pisitkun, T., R.F. Shen, and M.A. Knepper, Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A, 2004. 101(36): p. 13368–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Domenis, R., et al., Characterization of the Proinflammatory Profile of Synovial Fluid-Derived Exosomes of Patients with Osteoarthritis. Mediators Inflamm, 2017. 2017: p. 4814987.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kalluri, R., The biology and function of exosomes in cancer. J Clin Invest, 2016. 126(4): p. 1208–15.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wang, S., et al., Proteomic analysis of urinary extracellular vesicles reveal biomarkers for neurologic disease. EBioMedicine, 2019. 45: p. 351–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Melo, S.A., et al., Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature, 2015. 523(7559): p. 177–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chen, G., et al., Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature, 2018. 560(7718): p. 382–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhou, B., et al., Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduct Target Ther, 2020. 5(1): p. 144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Allenson, K., et al., High prevalence of mutant KRAS in circulating exosome-derived DNA from early-stage pancreatic cancer patients. Ann Oncol, 2017. 28(4): p. 741–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yang, S., et al., Detection of mutant KRAS and TP53 DNA in circulating exosomes from healthy individuals and patients with pancreatic cancer. Cancer Biol Ther, 2017. 18(3): p. 158–165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Castellanos-Rizaldos, E., et al., Exosome-Based Detection of EGFR T790M in Plasma from Non-Small Cell Lung Cancer Patients. Clin Cancer Res, 2018. 24(12): p. 2944–2950.

    Article  CAS  PubMed  Google Scholar 

  109. Thind, A. and C. Wilson, Exosomal miRNAs as cancer biomarkers and therapeutic targets. J Extracell Vesicles, 2016. 5: p. 31292.

    Article  PubMed  Google Scholar 

  110. Alhasan, A.H., et al., Circulating microRNA signature for the diagnosis of very high-risk prostate cancer. Proc Natl Acad Sci U S A, 2016. 113(38): p. 10655–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bhagirath, D., et al., microRNA-1246 Is an Exosomal Biomarker for Aggressive Prostate Cancer. Cancer Res, 2018. 78(7): p. 1833–1844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ebrahimkhani, S., et al., Deep sequencing of circulating exosomal microRNA allows non-invasive glioblastoma diagnosis. NPJ Precis Oncol, 2018. 2: p. 28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dong, L., et al., Circulating Long RNAs in Serum Extracellular Vesicles: Their Characterization and Potential Application as Biomarkers for Diagnosis of Colorectal Cancer. Cancer Epidemiol Biomarkers Prev, 2016. 25(7): p. 1158–66.

    Article  CAS  PubMed  Google Scholar 

  114. Li, Y., et al., Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res, 2015. 25(8): p. 981–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Theodoraki, M.N., et al., Clinical Significance of PD-L1(+) Exosomes in Plasma of Head and Neck Cancer Patients. Clin Cancer Res, 2018. 24(4): p. 896–905.

    Article  CAS  PubMed  Google Scholar 

  116. Li, C., et al., Clinical significance of PD-L1 expression in serum-derived exosomes in NSCLC patients. J Transl Med, 2019. 17(1): p. 355.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Cordonnier, M., et al., Tracking the evolution of circulating exosomal-PD-L1 to monitor melanoma patients. J Extracell Vesicles, 2020. 9(1): p. 1710899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Li, J., et al., GPC1 exosome and its regulatory miRNAs are specific markers for the detection and target therapy of colorectal cancer. J Cell Mol Med, 2017. 21(5): p. 838–847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Qian, J.Y., et al., Prognostic value of glypican-1 for patients with advanced pancreatic cancer following regional intra-arterial chemotherapy. Oncol Lett, 2018. 16(1): p. 1253–1258.

    PubMed  PubMed Central  Google Scholar 

  120. Frampton, A.E., et al., Glypican-1 is enriched in circulating-exosomes in pancreatic cancer and correlates with tumor burden. Oncotarget, 2018. 9(27): p. 19006–19013.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Helmink, B.A., et al., B cells and tertiary lymphoid structures promote immunotherapy response. Nature, 2020. 577(7791): p. 549–555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Cabrita, R., et al., Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature, 2020. 577(7791): p. 561–565.

    Article  CAS  PubMed  Google Scholar 

  123. Petitprez, F., et al., B cells are associated with survival and immunotherapy response in sarcoma. Nature, 2020. 577(7791): p. 556–560.

    Article  CAS  PubMed  Google Scholar 

  124. Bijnsdorp, I.V., et al., Exosomal ITGA3 interferes with non-cancerous prostate cell functions and is increased in urine exosomes of metastatic prostate cancer patients. J Extracell Vesicles, 2013. 2.

    Google Scholar 

  125. Sun, B., et al., Circulating exosomal CPNE3 as a diagnostic and prognostic biomarker for colorectal cancer. J Cell Physiol, 2019. 234(2): p. 1416–1425.

    Article  CAS  PubMed  Google Scholar 

  126. Wang, X., et al., Exosomal protein CD82 as a diagnostic biomarker for precision medicine for breast cancer. Mol Carcinog, 2019. 58(5): p. 674–685.

    Article  CAS  PubMed  Google Scholar 

  127. Yoshioka, Y., et al., Ultra-sensitive liquid biopsy of circulating extracellular vesicles using ExoScreen. Nat Commun, 2014. 5: p. 3591.

    Article  PubMed  Google Scholar 

  128. Chaudhary, P., et al., Serum exosomal-annexin A2 is associated with African-American triple-negative breast cancer and promotes angiogenesis. Breast Cancer Res, 2020. 22(1): p. 11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Rontogianni, S., et al., Proteomic profiling of extracellular vesicles allows for human breast cancer subtyping. Commun Biol, 2019. 2: p. 325.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Chen, I.H., et al., Phosphoproteins in extracellular vesicles as candidate markers for breast cancer. Proc Natl Acad Sci U S A, 2017. 114(12): p. 3175–3180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chen, I.H., et al., Analytical Pipeline for Discovery and Verification of Glycoproteins from Plasma-Derived Extracellular Vesicles as Breast Cancer Biomarkers. Anal Chem, 2018. 90(10): p. 6307–6313.

    Article  CAS  PubMed  Google Scholar 

  132. Jia, Y., et al., Exosome: emerging biomarker in breast cancer. Oncotarget, 2017. 8(25): p. 41717–41733.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Cheng, L., et al., A comprehensive overview of exosomes in ovarian cancer: emerging biomarkers and therapeutic strategies. J Ovarian Res, 2017. 10(1): p. 73.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Nahand, J.S., et al., Exosomal microRNAs: novel players in cervical cancer. Epigenomics, 2020. 12(18): p. 1651–1660.

    Article  CAS  PubMed  Google Scholar 

  135. Fu, M., et al., Exosomes in gastric cancer: roles, mechanisms, and applications. Mol Cancer, 2019. 18(1): p. 41.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Xiao, Y., et al., Exosomes as potential sources of biomarkers in colorectal cancer. Cancer Lett, 2020. 476: p. 13–22.

    Article  CAS  PubMed  Google Scholar 

  137. Ariston Gabriel, A.N., et al., The involvement of exosomes in the diagnosis and treatment of pancreatic cancer. Mol Cancer, 2020. 19(1): p. 132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Chen, R., et al., Exosomes in hepatocellular carcinoma: a new horizon. Cell Commun Signal, 2019. 17(1): p. 1.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Masaoutis, C., et al., Exosomes in lung cancer diagnosis and treatment. From the translating research into future clinical practice. Biochimie, 2018. 151: p. 27–36.

    Article  CAS  PubMed  Google Scholar 

  140. Lorenc, T., et al., Exosomes in Prostate Cancer Diagnosis, Prognosis and Therapy. Int J Mol Sci, 2020. 21(6).

    Google Scholar 

  141. Ciregia, F., A. Urbani, and G. Palmisano, Extracellular Vesicles in Brain Tumors and Neurodegenerative Diseases. Front Mol Neurosci, 2017. 10: p. 276.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Hofmann, L., et al., The Emerging Role of Exosomes in Diagnosis, Prognosis, and Therapy in Head and Neck Cancer. Int J Mol Sci, 2020. 21(11).

    Google Scholar 

  143. McBride, J.D., L. Rodriguez-Menocal, and E.V. Badiavas, Extracellular Vesicles as Biomarkers and Therapeutics in Dermatology: A Focus on Exosomes. J Invest Dermatol, 2017. 137(8): p. 1622–1629.

    Article  CAS  PubMed  Google Scholar 

  144. Linxweiler, J. and K. Junker, Extracellular vesicles in urological malignancies: an update. Nat Rev Urol, 2020. 17(1): p. 11–27.

    Article  PubMed  Google Scholar 

  145. Liu, Y.R., C.J. Ortiz-Bonilla, and Y.F. Lee, Extracellular Vesicles in Bladder Cancer: Biomarkers and Beyond. Int J Mol Sci, 2018. 19(9).

    Google Scholar 

  146. Trino, S., et al., Clinical relevance of extracellular vesicles in hematological neoplasms: from liquid biopsy to cell biopsy. Leukemia, 2020.

    Google Scholar 

  147. Galardi, A., et al., Exosomal MiRNAs in Pediatric Cancers. Int J Mol Sci, 2019. 20(18).

    Google Scholar 

  148. LeBleu, V.S. and R. Kalluri, Exosomes as a Multicomponent Biomarker Platform in Cancer. Trends Cancer, 2020. 6(9): p. 767–774.

    Article  CAS  PubMed  Google Scholar 

  149. Shah, R., T. Patel, and J.E. Freedman, Circulating Extracellular Vesicles in Human Disease. N Engl J Med, 2018. 379(10): p. 958–966.

    Article  CAS  PubMed  Google Scholar 

  150. Kugeratski, F.G., K.M. McAndrews, and R. Kalluri, Multifunctional Applications of Engineered Extracellular Vesicles in the Treatment of Cancer. Endocrinology, 2021. 162(3).

    Google Scholar 

  151. Susa, F., et al., Engineered Extracellular Vesicles as a Reliable Tool in Cancer Nanomedicine. Cancers (Basel), 2019. 11(12).

    Google Scholar 

  152. Kamerkar, S., et al., Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature, 2017. 546(7659): p. 498–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhu, X., et al., Comprehensive toxicity and immunogenicity studies reveal minimal effects in mice following sustained dosing of extracellular vesicles derived from HEK293T cells. J Extracell Vesicles, 2017. 6(1): p. 1324730.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Saleh, A.F., et al., Extracellular vesicles induce minimal hepatotoxicity and immunogenicity. Nanoscale, 2019. 11(14): p. 6990–7001.

    Article  CAS  PubMed  Google Scholar 

  155. Escudier, B., et al., Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J Transl Med, 2005. 3(1): p. 10.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Mendt, M., et al., Generation and testing of clinical-grade exosomes for pancreatic cancer. JCI Insight, 2018. 3(8).

    Google Scholar 

  157. Pi, F., et al., Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression. Nat Nanotechnol, 2018. 13(1): p. 82–89.

    Article  CAS  PubMed  Google Scholar 

  158. Li, Y., et al., A33 antibody-functionalized exosomes for targeted delivery of doxorubicin against colorectal cancer. Nanomedicine, 2018. 14(7): p. 1973–1985.

    Article  CAS  PubMed  Google Scholar 

  159. Bellavia, D., et al., Interleukin 3- receptor targeted exosomes inhibit in vitro and in vivo Chronic Myelogenous Leukemia cell growth. Theranostics, 2017. 7(5): p. 1333–1345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kim, M.S., et al., Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: in vitro and in vivo evaluations. Nanomedicine, 2018. 14(1): p. 195–204.

    Article  CAS  PubMed  Google Scholar 

  161. Gong, C., et al., Functional exosome-mediated co-delivery of doxorubicin and hydrophobically modified microRNA 159 for triple-negative breast cancer therapy. J Nanobiotechnology, 2019. 17(1): p. 93.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Yu, M., et al., Targeted exosome-encapsulated erastin induced ferroptosis in triple negative breast cancer cells. Cancer Sci, 2019. 110(10): p. 3173–3182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Liu, M., Y. Hu, and G. Chen, The Antitumor Effect of Gene-Engineered Exosomes in the Treatment of Brain Metastasis of Breast Cancer. Front Oncol, 2020. 10: p. 1453.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Liang, G., et al., Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer. J Nanobiotechnology, 2020. 18(1): p. 10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Saari, H., et al., Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. J Control Release, 2015. 220(Pt B): p. 727–37.

    Article  CAS  PubMed  Google Scholar 

  166. Li, Y.J., et al., Gemcitabine loaded autologous exosomes for effective and safe chemotherapy of pancreatic cancer. Acta Biomater, 2020. 101: p. 519–530.

    Article  CAS  PubMed  Google Scholar 

  167. Zhang, X., et al., The effects of umbilical cord-derived macrophage exosomes loaded with cisplatin on the growth and drug resistance of ovarian cancer cells. Drug Dev Ind Pharm, 2020. 46(7): p. 1150–1162.

    Article  CAS  PubMed  Google Scholar 

  168. Tran, P.H.L., et al., Aspirin-loaded nanoexosomes as cancer therapeutics. Int J Pharm, 2019. 572: p. 118786.

    Google Scholar 

  169. Aqil, F., et al., Exosomal formulation enhances therapeutic response of celastrol against lung cancer. Exp Mol Pathol, 2016. 101(1): p. 12–21.

    Article  CAS  PubMed  Google Scholar 

  170. Aqil, F., et al., Exosomes for the Enhanced Tissue Bioavailability and Efficacy of Curcumin. AAPS J, 2017. 19(6): p. 1691–1702.

    Article  CAS  PubMed  Google Scholar 

  171. Yang, T., et al., Delivery of Small Interfering RNA to Inhibit Vascular Endothelial Growth Factor in Zebrafish Using Natural Brain Endothelia Cell-Secreted Exosome Nanovesicles for the Treatment of Brain Cancer. AAPS J, 2017. 19(2): p. 475–486.

    Article  CAS  PubMed  Google Scholar 

  172. Zhang, H., et al., Exosomes serve as nanoparticles to suppress tumor growth and angiogenesis in gastric cancer by delivering hepatocyte growth factor siRNA. Cancer Sci, 2018. 109(3): p. 629–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ohno, S., et al., Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther, 2013. 21(1): p. 185–91.

    Article  CAS  PubMed  Google Scholar 

  174. Wang, X., et al., Exosomes Serve as Nanoparticles to Deliver Anti-miR-214 to Reverse Chemoresistance to Cisplatin in Gastric Cancer. Mol Ther, 2018. 26(3): p. 774–783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Kim, S.M., et al., Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. J Control Release, 2017. 266: p. 8–16.

    Article  CAS  PubMed  Google Scholar 

  176. Usman, W.M., et al., Efficient RNA drug delivery using red blood cell extracellular vesicles. Nat Commun, 2018. 9(1): p. 2359.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Koh, E., et al., Exosome-SIRPalpha, a CD47 blockade increases cancer cell phagocytosis. Biomaterials, 2017. 121: p. 121–129.

    Article  CAS  PubMed  Google Scholar 

  178. Rivoltini, L., et al., TNF-Related Apoptosis-Inducing Ligand (TRAIL)-Armed Exosomes Deliver Proapoptotic Signals to Tumor Site. Clin Cancer Res, 2016. 22(14): p. 3499–512.

    Article  CAS  PubMed  Google Scholar 

  179. Yuan, Z., et al., TRAIL delivery by MSC-derived extracellular vesicles is an effective anticancer therapy. J Extracell Vesicles, 2017. 6(1): p. 1265291.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Aspe, J.R., et al., Enhancement of Gemcitabine sensitivity in pancreatic adenocarcinoma by novel exosome-mediated delivery of the Survivin-T34A mutant. J Extracell Vesicles, 2014. 3.

    Google Scholar 

  181. Wang, J., et al., More efficient induction of antitumor T cell immunity by exosomes from CD40L gene-modified lung tumor cells. Mol Med Rep, 2014. 9(1): p. 125–31.

    Article  CAS  PubMed  Google Scholar 

  182. Hu, W., et al., Enhanced immunogenicity of leukemia-derived exosomes via transfection with lentiviral vectors encoding costimulatory molecules. Cell Oncol (Dordr), 2020.

    Google Scholar 

  183. Zuo, B., et al., Alarmin-painted exosomes elicit persistent antitumor immunity in large established tumors in mice. Nat Commun, 2020. 11(1): p. 1790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Fu, W., et al., CAR exosomes derived from effector CAR-T cells have potent antitumour effects and low toxicity. Nat Commun, 2019. 10(1): p. 4355.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Zhang, Y., et al., Exosomes derived from IL-12-anchored renal cancer cells increase induction of specific antitumor response in vitro: a novel vaccine for renal cell carcinoma. Int J Oncol, 2010. 36(1): p. 133–40.

    Article  PubMed  Google Scholar 

  186. Lewis, N.D., et al., Exosome Surface Display of IL12 Results in Tumor-Retained Pharmacology with Superior Potency and Limited Systemic Exposure Compared with Recombinant IL12. Mol Cancer Ther, 2021. 20(3): p. 523–534.

    Article  CAS  PubMed  Google Scholar 

  187. Shi, X., et al., Antitumor efficacy of interferon-gamma-modified exosomal vaccine in prostate cancer. Prostate, 2020. 80(11): p. 811–823.

    Article  CAS  PubMed  Google Scholar 

  188. McAndrews, K.M., et al., Effective delivery of STING agonist using exosomes suppresses tumor growth and enhances anti-tumor immunity. Journal of Biological Chemistry, 2021.

    Google Scholar 

  189. Zitvogel, L., et al., Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med, 1998. 4(5): p. 594–600.

    Article  CAS  PubMed  Google Scholar 

  190. Hartman, Z.C., et al., Increasing vaccine potency through exosome antigen targeting. Vaccine, 2011. 29(50): p. 9361–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Hao, D., et al., Soluble fms-like tyrosine kinase-1-enriched exosomes suppress the growth of small cell lung cancer by inhibiting endothelial cell migration. Thorac Cancer, 2019. 10(10): p. 1962–1972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Wang, J.H., et al., Anti-HER2 scFv-Directed Extracellular Vesicle-Mediated mRNA-Based Gene Delivery Inhibits Growth of HER2-Positive Human Breast Tumor Xenografts by Prodrug Activation. Mol Cancer Ther, 2018. 17(5): p. 1133–1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Sancho-Albero, M., et al., Cancer-derived exosomes loaded with ultrathin palladium nanosheets for targeted bioorthogonal catalysis. Nat Catal, 2019. 2(10): p. 864–872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Garofalo, M., et al., Antitumor effect of oncolytic virus and paclitaxel encapsulated in extracellular vesicles for lung cancer treatment. J Control Release, 2018. 283: p. 223–234.

    Article  CAS  PubMed  Google Scholar 

  195. Cheng, Q., et al., Reprogramming Exosomes as Nanoscale Controllers of Cellular Immunity. J Am Chem Soc, 2018. 140(48): p. 16413–16417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Shi, X., et al., Genetically Engineered Cell-Derived Nanoparticles for Targeted Breast Cancer Immunotherapy. Mol Ther, 2020. 28(2): p. 536–547.

    Article  CAS  PubMed  Google Scholar 

  197. Kooijmans, S.A., et al., Display of GPI-anchored anti-EGFR nanobodies on extracellular vesicles promotes tumour cell targeting. J Extracell Vesicles, 2016. 5: p. 31053.

    Article  PubMed  Google Scholar 

  198. Zhuang, M., et al., SPION decorated exosome delivery of TNF-alpha to cancer cell membranes through magnetism. Nanoscale, 2020. 12(1): p. 173–188.

    Article  CAS  PubMed  Google Scholar 

  199. Wang, J., et al., Designer Exosomes for Active Targeted Chemo-Photothermal Synergistic Tumor Therapy. Advanced Functional Materials, 2018. 28(18).

    Google Scholar 

  200. Zhang, D., et al., Extracellular vesicles based self-grown gold nanopopcorn for combinatorial chemo-photothermal therapy. Biomaterials, 2019. 197: p. 220–228.

    Article  CAS  PubMed  Google Scholar 

  201. Morse, M.A., et al., A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med, 2005. 3(1): p. 9.

    Article  PubMed  PubMed Central  Google Scholar 

  202. Besse, B., et al., Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology, 2016. 5(4): p. e1071008.

    Google Scholar 

  203. Pitt, J.M., et al., Dendritic cell-derived exosomes for cancer therapy. J Clin Invest, 2016. 126(4): p. 1224–32.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

F.G.K. funding is supported by the Odyssey Program and Theodore N. Law for Scientific Achievement at the University of Texas MD Anderson Cancer Center. R.K. Laboratory is supported by research funds from the University of Texas MD Anderson Cancer Center.

Conflict of Interest

F.G.K. has no conflict of interest to disclose. MDACC and R.K. hold patents in the area of exosome biology that are licensed to Codiak Biosciences, Inc. MDACC and R.K. are stock equity holders in Codiak Biosciences, Inc. R.K. is a consultant and scientific adviser for Codiak Biosciences, Inc. R.K. is a scientific advisor and a stock equity holder in Transcode Therapeutics, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghu Kalluri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kugeratski, F.G., Kalluri, R. (2023). Exploiting Exosomes for Cancer Diagnosis and Treatment. In: Cote, R.J., Lianidou, E. (eds) Circulating Tumor Cells. Current Cancer Research. Springer, Cham. https://doi.org/10.1007/978-3-031-22903-9_3

Download citation

Publish with us

Policies and ethics