Skip to main content

The Role of Liquid Biopsy in Brain Tumors

  • Chapter
  • First Online:
Circulating Tumor Cells

Abstract

Current methods of diagnosis and longitudinal monitoring of brain tumors stand to be supplemented and improved by liquid biopsy. Liquid biopsy is the testing of molecular biomarkers found in biofluids that give insight into a pathological state. This chapter gives a brief overview of glioma diagnosis and management in the context of the 2021 WHO classification of central nervous system (CNS) tumors and the role of liquid biopsy in that process. Although an overview of cell-free DNA and circulating tumor cells with respect to liquid biopsy is provided, this chapter focuses on extracellular vesicles (EVs) and their cargo in the context of liquid biopsy. Different EV-derived analytes including proteins, lipids, metabolites, DNA, mRNA, miRNA, lncRNA, and circRNA are described, and a comprehensive literature review of currently characterized metabolites and their potential implications as biomarkers for gliomas is evaluated. Several of the EV analyte assays reviewed here may be ready for clinical trials and adoption into clinical workflow. Additionally, this chapter explores challenges to EV-based liquid biopsy including EV isolation and characterization. Future directions are also highlighted, such as the characterization of EV subpopulations, the utilization of EVs for drug delivery, clinical trial endpoint determination, and diagnostic and therapeutic marker discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer Statistics, 2021. CA Cancer J Clin 71:7–33. https://doi.org/10.3322/caac.21654

    Article  PubMed  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, et al (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  3. Miller KD, Ostrom QT, Kruchko C, et al (2021) Brain and other central nervous system tumor statistics, 2021. CA Cancer J Clin 71:381–406. https://doi.org/10.3322/caac.21693

    Article  PubMed  Google Scholar 

  4. McCutcheon IE, Preul MC (2021) Historical Perspective on Surgery and Survival with Glioblastoma: How Far Have We Come? World Neurosurg 149:148–168. https://doi.org/10.1016/j.wneu.2021.02.047

    Article  PubMed  Google Scholar 

  5. Mesfin FB, Al-Dhahir MA (2022) Gliomas. In: StatPearls. StatPearls Publishing, Treasure Island (FL)

    Google Scholar 

  6. Wirsching H-G, Galanis E, Weller M (2016) Glioblastoma. Handb Clin Neurol 134:381–397. https://doi.org/10.1016/B978-0-12-802997-8.00023-2

    Article  PubMed  Google Scholar 

  7. Kan LK, Drummond K, Hunn M, et al (2020) Potential biomarkers and challenges in glioma diagnosis, therapy and prognosis. BMJ Neurol Open 2:e000069. https://doi.org/10.1136/bmjno-2020-000069

    Article  PubMed  PubMed Central  Google Scholar 

  8. Greenberg MS, Abel N, Agazzi S (2020) Handbook of Neurosurgery

    Google Scholar 

  9. McFaline-Figueroa JR, Lee EQ (2018) Brain Tumors. Am J Med 131:874–882. https://doi.org/10.1016/j.amjmed.2017.12.039

    Article  PubMed  Google Scholar 

  10. Villanueva-Meyer JE, Mabray MC, Cha S (2017) Current Clinical Brain Tumor Imaging. Neurosurgery 81:397–415. https://doi.org/10.1093/neuros/nyx103

    Article  PubMed  PubMed Central  Google Scholar 

  11. Louis DN, Perry A, Reifenberger G, et al (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 131:803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  12. Gonzalez Castro LN, Wesseling P (2021) The cIMPACT-NOW updates and their significance to current neuro-oncology practice. Neurooncol Pract 8:4–10. https://doi.org/10.1093/nop/npaa055

    PubMed  Google Scholar 

  13. Louis DN, Perry A, Wesseling P, et al (2021) The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol 23:1231–1251. https://doi.org/10.1093/neuonc/noab106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. van Dijken BRJ, van Laar PJ, Holtman GA, van der Hoorn A (2017) Diagnostic accuracy of magnetic resonance imaging techniques for treatment response evaluation in patients with high-grade glioma, a systematic review and meta-analysis. Eur Radiol 27:4129–4144. https://doi.org/10.1007/s00330-017-4789-9

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yekula A, Muralidharan K, Rosh ZS, et al (2020) Liquid Biopsy Strategies to Distinguish Progression from Pseudoprogression and Radiation Necrosis in Glioblastomas. Adv Biosyst 4:e2000029. https://doi.org/10.1002/adbi.202000029

    Article  PubMed  PubMed Central  Google Scholar 

  16. Giordano C, Sabatino G, Romano S, et al (2021) Combining Magnetic Resonance Imaging with Systemic Monocyte Evaluation for the Implementation of GBM Management. Int J Mol Sci 22.: https://doi.org/10.3390/ijms22073797

  17. Morokoff A, Jones J, Nguyen H, et al (2020) Serum microRNA is a biomarker for post-operative monitoring in glioma. J Neurooncol 149:391–400. https://doi.org/10.1007/s11060-020-03566-w

    Article  CAS  PubMed  Google Scholar 

  18. Chen WW, Balaj L, Liau LM, et al (2013) BEAMing and Droplet Digital PCR Analysis of Mutant IDH1 mRNA in Glioma Patient Serum and Cerebrospinal Fluid Extracellular Vesicles. Mol Ther Nucleic Acids 2:e109. https://doi.org/10.1038/mtna.2013.28

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kustanovich A, Schwartz R, Peretz T, Grinshpun A (2019) Life and death of circulating cell-free DNA. Cancer Biol Ther 20:1057–1067. https://doi.org/10.1080/15384047.2019.1598759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cheng F, Su L, Qian C (2016) Circulating tumor DNA: a promising biomarker in the liquid biopsy of cancer. Oncotarget 7:48832–48841. https://doi.org/10.18632/oncotarget.9453

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bronkhorst AJ, Wentzel JF, Aucamp J, et al (2016) Characterization of the cell-free DNA released by cultured cancer cells. Biochim Biophys Acta 1863:157–165. https://doi.org/10.1016/j.bbamcr.2015.10.022

    Article  CAS  PubMed  Google Scholar 

  22. Jones J, Nguyen H, Drummond K, Morokoff A (2021) Circulating Biomarkers for Glioma: A Review. Neurosurgery 88:E221–E230. https://doi.org/10.1093/neuros/nyaa540

    Article  PubMed  Google Scholar 

  23. Boisselier B, Gállego Pérez-Larraya J, Rossetto M, et al (2012) Detection of IDH1 mutation in the plasma of patients with glioma. Neurology 79:1693–1698. https://doi.org/10.1212/WNL.0b013e31826e9b0a

    Article  CAS  PubMed  Google Scholar 

  24. Muhanna N, Di Grappa MA, Chan HHL, et al (2017) Cell-Free DNA Kinetics in a Pre-Clinical Model of Head and Neck Cancer. Sci Rep 7:16723. https://doi.org/10.1038/s41598-017-17079-6

    Article  PubMed  PubMed Central  Google Scholar 

  25. Muralidharan K, Yekula A, Small JL, et al (2021) TERT Promoter Mutation Analysis for Blood-Based Diagnosis and Monitoring of Gliomas. Clin Cancer Res 27:169–178. https://doi.org/10.1158/1078-0432.CCR-20-3083

    Article  CAS  PubMed  Google Scholar 

  26. Salkeni MA, Zarzour A, Ansay TY, et al (2013) Detection of EGFRvIII mutant DNA in the peripheral blood of brain tumor patients. Journal of Neuro-Oncology 115:27–35

    Article  CAS  PubMed  Google Scholar 

  27. Liang J, Zhao W, Lu C, et al (2020) Next-Generation Sequencing Analysis of ctDNA for the Detection of Glioma and Metastatic Brain Tumors in Adults. Front Neurol 11:544. https://doi.org/10.3389/fneur.2020.00544

    Article  PubMed  PubMed Central  Google Scholar 

  28. Miller AM, Shah RH, Pentsova EI, et al (2019) Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid. Nature 565:654–658. https://doi.org/10.1038/s41586-019-0882-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Juratli TA, Stasik S, Zolal A, et al (2018) TERT Promoter Mutation Detection in Cell-Free Tumor-Derived DNA in Patients with IDH Wild-Type Glioblastomas: A Pilot Prospective Study. Clin Cancer Res 24:5282–5291. https://doi.org/10.1158/1078-0432.CCR-17-3717

    Article  CAS  PubMed  Google Scholar 

  30. Sharma S, Zhuang R, Long M, et al (2018) Circulating tumor cell isolation, culture, and downstream molecular analysis. Biotechnol Adv 36:1063–1078. https://doi.org/10.1016/j.biotechadv.2018.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang H, Yuan F, Qi Y, et al (2021) Circulating Tumor Cells for Glioma. Front Oncol 11:607150. https://doi.org/10.3389/fonc.2021.607150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu T, Xu H, Huang M, et al (2018) Circulating Glioma Cells Exhibit Stem Cell-like Properties. Cancer Res 78:6632–6642. https://doi.org/10.1158/0008-5472.CAN-18-0650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Beauchesne P (2011) Extra-neural metastases of malignant gliomas: myth or reality? Cancers 3:461–477. https://doi.org/10.3390/cancers3010461

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mourad PD, Farrell L, Stamps LD, et al (2005) Why are systemic glioblastoma metastases rare? Systemic and cerebral growth of mouse glioblastoma. Surg Neurol 63:511–9; discussion 519. https://doi.org/10.1016/j.surneu.2004.08.062

  35. Sullivan JP, Nahed BV, Madden MW, et al (2014) Brain tumor cells in circulation are enriched for mesenchymal gene expression. Cancer Discov 4:1299–1309. https://doi.org/10.1158/2159-8290.CD-14-0471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Müller C, Holtschmidt J, Auer M, et al (2014) Hematogenous dissemination of glioblastoma multiforme. Sci Transl Med 6:247ra101. https://doi.org/10.1126/scitranslmed.3009095

    Article  PubMed  Google Scholar 

  37. Kalluri R, LeBleu VS (2020) The biology, function, and biomedical applications of exosomes. Science 367:eaau6977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. EL Andaloussi S, Mäger I, Breakefield XO, Wood MJA (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12:347–357. https://doi.org/10.1038/nrd3978

  39. Cocucci E, Meldolesi J (2015) Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol 25:364–372. https://doi.org/10.1016/j.tcb.2015.01.004

    Article  CAS  PubMed  Google Scholar 

  40. Ståhl A-L, Johansson K, Mossberg M, et al (2019) Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatr Nephrol 34:11–30. https://doi.org/10.1007/s00467-017-3816-z

    Article  PubMed  Google Scholar 

  41. Minciacchi VR, You S, Spinelli C, et al (2015) Large oncosomes contain distinct protein cargo and represent a separate functional class of tumor-derived extracellular vesicles. Oncotarget 6:11327–11341. https://doi.org/10.18632/oncotarget.3598

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tricarico C, Clancy J, D’Souza-Schorey C (2017) Biology and biogenesis of shed microvesicles. Small GTPases 8:220–232. https://doi.org/10.1080/21541248.2016.1215283

    Article  CAS  PubMed  Google Scholar 

  43. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516. https://doi.org/10.1080/01926230701320337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Deatherage BL, Cookson BT (2012) Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect Immun 80:1948–1957. https://doi.org/10.1128/IAI.06014-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ghaemmaghami AB, Mahjoubin-Tehran M, Movahedpour A, et al (2020) Role of exosomes in malignant glioma: microRNAs and proteins in pathogenesis and diagnosis. Cell Commun Signal 18:120. https://doi.org/10.1186/s12964-020-00623-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kang T, Atukorala I, Mathivanan S (2021) Biogenesis of Extracellular Vesicles. Subcell Biochem 97:19–43. https://doi.org/10.1007/978-3-030-67171-6_2

    Article  CAS  PubMed  Google Scholar 

  47. Zaborowski MP, Balaj L, Breakefield XO, Lai CP (2015) Extracellular Vesicles: Composition, Biological Relevance, and Methods of Study. Bioscience 65:783–797. https://doi.org/10.1093/biosci/biv084

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kahlert C, Kalluri R (2013) Exosomes in tumor microenvironment influence cancer progression and metastasis. J Mol Med 91:431–437. https://doi.org/10.1007/s00109-013-1020-6

    Article  CAS  PubMed  Google Scholar 

  49. Skog J, Würdinger T, van Rijn S, et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476. https://doi.org/10.1038/ncb1800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Von Schulze A, Deng F (2020) A review on exosome-based cancer therapy. J Cancer Metastasis Treat 2020.: https://doi.org/10.20517/2394-4722.2020.79

  51. Tai Y-L, Chen K-C, Hsieh J-T, Shen T-L (2018) Exosomes in cancer development and clinical applications. Cancer Sci 109:2364–2374. https://doi.org/10.1111/cas.13697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brennan K, Martin K, FitzGerald SP, et al (2020) A comparison of methods for the isolation and separation of extracellular vesicles from protein and lipid particles in human serum. Sci Rep 10:1039. https://doi.org/10.1038/s41598-020-57497-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ricklefs F, Mineo M, Rooj AK, et al (2016) Extracellular Vesicles from High-Grade Glioma Exchange Diverse Pro-oncogenic Signals That Maintain Intratumoral Heterogeneity. Cancer Res 76:2876–2881. https://doi.org/10.1158/0008-5472.CAN-15-3432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wiklander OPB, Bostancioglu RB, Welsh JA, et al (2018) Systematic Methodological Evaluation of a Multiplex Bead-Based Flow Cytometry Assay for Detection of Extracellular Vesicle Surface Signatures. Front Immunol 9:1326. https://doi.org/10.3389/fimmu.2018.01326

    Article  PubMed  PubMed Central  Google Scholar 

  55. Jones PS, Yekula A, Lansbury E, et al (2019) Characterization of plasma-derived protoporphyrin-IX-positive extracellular vesicles following 5-ALA use in patients with malignant glioma. EBioMedicine 48:23–35. https://doi.org/10.1016/j.ebiom.2019.09.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dai J, Su Y, Zhong S, et al (2020) Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther 5:145. https://doi.org/10.1038/s41392-020-00261-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mashouri L, Yousefi H, Aref AR, et al (2019) Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer 18:75. https://doi.org/10.1186/s12943-019-0991-5

    Article  PubMed  PubMed Central  Google Scholar 

  58. Simon T, Jackson E, Giamas G (2020) Breaking through the glioblastoma micro-environment via extracellular vesicles. Oncogene 39:4477–4490. https://doi.org/10.1038/s41388-020-1308-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gourlay J, Morokoff AP, Luwor RB, et al (2017) The emergent role of exosomes in glioma. J Clin Neurosci 35:13–23. https://doi.org/10.1016/j.jocn.2016.09.021

    Article  CAS  PubMed  Google Scholar 

  60. D’Asti E, Chennakrishnaiah S, Lee TH, Rak J (2016) Extracellular Vesicles in Brain Tumor Progression. Cell Mol Neurobiol 36:383–407. https://doi.org/10.1007/s10571-015-0296-1

    Article  PubMed  Google Scholar 

  61. Ge R, Tan E, Sharghi-Namini S, Asada HH (2012) Exosomes in Cancer Microenvironment and Beyond: have we Overlooked these Extracellular Messengers? Cancer Microenviron 5:323–332. https://doi.org/10.1007/s12307-012-0110-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jeong S, Park J, Pathania D, et al (2016) Integrated Magneto-Electrochemical Sensor for Exosome Analysis. ACS Nano 10:1802–1809. https://doi.org/10.1021/acsnano.5b07584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Balaj L, Lessard R, Dai L, et al (2011) Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2:180. https://doi.org/10.1038/ncomms1180

    Article  PubMed  Google Scholar 

  64. Kahlert C, Melo SA, Protopopov A, et al (2014) Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem 289:3869–3875. https://doi.org/10.1074/jbc.C113.532267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Thakur BK, Zhang H, Becker A, et al (2014) Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res 24:766–769. https://doi.org/10.1038/cr.2014.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kalluri R, LeBleu VS (2016) Discovery of Double-Stranded Genomic DNA in Circulating Exosomes. Cold Spring Harb Symp Quant Biol 81:275–280. https://doi.org/10.1101/sqb.2016.81.030932

    Article  PubMed  Google Scholar 

  67. Yerneni SS, Solomon T, Smith J, Campbell PG (2022) Radioiodination of extravesicular surface constituents to study the biocorona, cell trafficking and storage stability of extracellular vesicles. Biochim Biophys Acta Gen Subj 1866:130069. https://doi.org/10.1016/j.bbagen.2021.130069

    Article  CAS  PubMed  Google Scholar 

  68. Kawamura Y, Yamamoto Y, Sato T-A, Ochiya T (2017) Extracellular vesicles as trans-genomic agents: Emerging roles in disease and evolution. Cancer Sci 108:824–830. https://doi.org/10.1111/cas.13222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. García-Romero N, Carrión-Navarro J, Esteban-Rubio S, et al (2017) DNA sequences within glioma-derived extracellular vesicles can cross the intact blood-brain barrier and be detected in peripheral blood of patients. Oncotarget 8:1416–1428. https://doi.org/10.18632/oncotarget.13635

    Article  PubMed  Google Scholar 

  70. Marcatti M, Saada J, Okereke I, et al (2021) Quantification of Circulating Cell Free Mitochondrial DNA in Extracellular Vesicles with PicoGreenâ„¢ in Liquid Biopsies: Fast Assessment of Disease/Trauma Severity. Cells 10.: https://doi.org/10.3390/cells10040819

  71. Maire CL, Fuh MM, Kaulich K, et al (2021) Genome-wide methylation profiling of glioblastoma cell-derived extracellular vesicle DNA allows tumor classification. Neuro Oncol 23:1087–1099. https://doi.org/10.1093/neuonc/noab012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Vagner T, Spinelli C, Minciacchi VR, et al (2018) Large extracellular vesicles carry most of the tumour DNA circulating in prostate cancer patient plasma. J Extracell Vesicles 7:1505403. https://doi.org/10.1080/20013078.2018.1505403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Naryzhny S, Volnitskiy A, Kopylov A, et al (2020) Proteome of Glioblastoma-Derived Exosomes as a Source of Biomarkers. Biomedicines 8.: https://doi.org/10.3390/biomedicines8070216

  74. (2011) Hallmarks of Cancer: The Next Generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

  75. Figueroa-Magalhães MC, Jelovac D, Connolly R, Wolff AC (2014) Treatment of HER2-positive breast cancer. Breast 23:128–136. https://doi.org/10.1016/j.breast.2013.11.011

    Article  PubMed  Google Scholar 

  76. Liang Y, Eng WS, Colquhoun DR, et al (2014) Complex N-linked glycans serve as a determinant for exosome/microvesicle cargo recruitment. J Biol Chem 289:32526–32537. https://doi.org/10.1074/jbc.M114.606269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang P, Zhou X, He M, et al (2019) Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip. Nat Biomed Eng 3:438–451. https://doi.org/10.1038/s41551-019-0356-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hoshino A, Costa-Silva B, Shen T-L, et al (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527:329–335. https://doi.org/10.1038/nature15756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zaborowski MP, Lee K, Na YJ, et al (2019) Methods for Systematic Identification of Membrane Proteins for Specific Capture of Cancer-Derived Extracellular Vesicles. Cell Rep 27:255–268.e6. https://doi.org/10.1016/j.celrep.2019.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shao H, Chung J, Balaj L, et al (2012) Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nature Medicine 18:1835–1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Treps L, Edmond S, Harford-Wright E, et al (2016) Extracellular vesicle-transported Semaphorin3A promotes vascular permeability in glioblastoma. Oncogene 35:2615–2623. https://doi.org/10.1038/onc.2015.317

    Article  CAS  PubMed  Google Scholar 

  82. Colangelo NW, Azzam EI (2020) Extracellular vesicles originating from glioblastoma cells increase metalloproteinase release by astrocytes: the role of CD147 (EMMPRIN) and ionizing radiation. Cell Commun Signal 18:21. https://doi.org/10.1186/s12964-019-0494-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhou K, Guo S, Li F, et al (2020) Exosomal PD-L1: New Insights Into Tumor Immune Escape Mechanisms and Therapeutic Strategies. Front Cell Dev Biol 8:569219. https://doi.org/10.3389/fcell.2020.569219

    Article  PubMed  PubMed Central  Google Scholar 

  84. Azambuja JH, Ludwig N, Yerneni SS, et al (2020) Arginase-1+ Exosomes from Reprogrammed Macrophages Promote Glioblastoma Progression. Int J Mol Sci 21.: https://doi.org/10.3390/ijms21113990

  85. Ricklefs FL, Alayo Q, Krenzlin H, et al (2018) Immune evasion mediated by PD-L1 on glioblastoma-derived extracellular vesicles. Sci Adv 4:eaar2766. https://doi.org/10.1126/sciadv.aar2766

    Article  PubMed  PubMed Central  Google Scholar 

  86. Harshyne LA, Nasca BJ, Kenyon LC, et al (2016) Serum exosomes and cytokines promote a T-helper cell type 2 environment in the peripheral blood of glioblastoma patients. Neuro Oncol 18:206–215. https://doi.org/10.1093/neuonc/nov107

    Article  CAS  PubMed  Google Scholar 

  87. Madhankumar AB, Mrowczynski OD, Patel SR, et al (2017) Interleukin-13 conjugated quantum dots for identification of glioma initiating cells and their extracellular vesicles. Acta Biomater 58:205–213. https://doi.org/10.1016/j.actbio.2017.06.002

    Article  CAS  PubMed  Google Scholar 

  88. Gabrusiewicz K, Li X, Wei J, et al (2018) Glioblastoma stem cell-derived exosomes induce M2 macrophages and PD-L1 expression on human monocytes. Oncoimmunology 7:e1412909. https://doi.org/10.1080/2162402X.2017.1412909

    Article  PubMed  PubMed Central  Google Scholar 

  89. Liu Z-M, Wang Y-B, Yuan X-H (2013) Exosomes from murine-derived GL26 cells promote glioblastoma tumor growth by reducing number and function of CD8+T cells. Asian Pac J Cancer Prev 14:309–314. https://doi.org/10.7314/apjcp.2013.14.1.309

    Article  PubMed  Google Scholar 

  90. Muller L, Muller-Haegele S, Mitsuhashi M, et al (2015) Exosomes isolated from plasma of glioma patients enrolled in a vaccination trial reflect antitumor immune activity and might predict survival. Oncoimmunology 4:e1008347. https://doi.org/10.1080/2162402X.2015.1008347

    Article  PubMed  PubMed Central  Google Scholar 

  91. Huang K, Fang C, Yi K, et al (2018) The role of PTRF/Cavin1 as a biomarker in both glioma and serum exosomes. Theranostics 8:1540–1557. https://doi.org/10.7150/thno.22952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang L, Yang C, Wang Q, et al (2020) Homotrimer cavin1 interacts with caveolin1 to facilitate tumor growth and activate microglia through extracellular vesicles in glioma. Theranostics 10:6674–6694. https://doi.org/10.7150/thno.45688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kucharzewska P, Christianson HC, Welch JE, et al (2013) Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci U S A 110:7312–7317. https://doi.org/10.1073/pnas.1220998110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Manda SV, Kataria Y, Tatireddy BR, et al (2018) Exosomes as a biomarker platform for detecting epidermal growth factor receptor–positive high-grade gliomas. J Neurosurg 128:1091–1101. https://doi.org/10.3171/2016.11.JNS161187

    Article  CAS  PubMed  Google Scholar 

  95. Choi D, Montermini L, Kim D-K, et al (2018) The Impact of Oncogenic EGFRvIII on the Proteome of Extracellular Vesicles Released from Glioblastoma Cells. Mol Cell Proteomics 17:1948–1964. https://doi.org/10.1074/mcp.RA118.000644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang H, Jiang D, Li W, et al (2019) Evaluation of serum extracellular vesicles as noninvasive diagnostic markers of glioma. Theranostics 9:5347–5358. https://doi.org/10.7150/thno.33114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Indira Chandran V, Welinder C, Månsson A-S, et al (2019) Ultrasensitive Immunoprofiling of Plasma Extracellular Vesicles Identifies Syndecan-1 as a Potential Tool for Minimally Invasive Diagnosis of Glioma. Clin Cancer Res 25:3115–3127. https://doi.org/10.1158/1078-0432.CCR-18-2946

    Article  PubMed  Google Scholar 

  98. Zhao C, Wang H, Xiong C, Liu Y (2018) Hypoxic glioblastoma release exosomal VEGF-A induce the permeability of blood-brain barrier. Biochem Biophys Res Commun 502:324–331. https://doi.org/10.1016/j.bbrc.2018.05.140

    Article  CAS  PubMed  Google Scholar 

  99. Kore RA, Edmondson JL, Jenkins SV, et al (2018) Hypoxia-derived exosomes induce putative altered pathways in biosynthesis and ion regulatory channels in glioblastoma cells. Biochemistry and Biophysics Reports 14:104–113

    Article  PubMed  PubMed Central  Google Scholar 

  100. Vásquez X, Sánchez-Gómez P, Palma V (2021) Netrin-1 in Glioblastoma Neovascularization: The New Partner in Crime? Int J Mol Sci 22.: https://doi.org/10.3390/ijms22158248

  101. Grimaldi A, Serpe C, Chece G, et al (2019) Microglia-Derived Microvesicles Affect Microglia Phenotype in Glioma. Front Cell Neurosci 13:41. https://doi.org/10.3389/fncel.2019.00041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Scholl JN, de Fraga Dias A, Pizzato PR, et al (2020) Characterization and antiproliferative activity of glioma-derived extracellular vesicles. Nanomedicine 15:1001–1018. https://doi.org/10.2217/nnm-2019-0431

    Article  CAS  PubMed  Google Scholar 

  103. Azambuja JH, Ludwig N, Yerneni S, et al (2020) Molecular profiles and immunomodulatory activities of glioblastoma-derived exosomes. Neurooncol Adv 2:vdaa056. https://doi.org/10.1093/noajnl/vdaa056

    PubMed  PubMed Central  Google Scholar 

  104. Wei QT, Liu BY, Ji HY, et al (2021) Exosome-mediated transfer of MIF confers temozolomide resistance by regulating TIMP3/PI3K/AKT axis in gliomas. Mol Ther Oncolytics 22:114–128. https://doi.org/10.1016/j.omto.2021.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Svensson KJ, Christianson HC, Wittrup A, et al (2013) Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1. J Biol Chem 288:17713–17724. https://doi.org/10.1074/jbc.M112.445403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ma C, Chen H, Zhang S, et al (2019) Exosomal and extracellular HMGB1 have opposite effects on SASH1 expression in rat astrocytes and glioma C6 cells. Biochem Biophys Res Commun 518:325–330. https://doi.org/10.1016/j.bbrc.2019.08.057

    Article  CAS  PubMed  Google Scholar 

  107. Sun Z, Wang L, Zhou Y, et al (2020) Glioblastoma Stem Cell-Derived Exosomes Enhance Stemness and Tumorigenicity of Glioma Cells by Transferring Notch1 Protein. Cell Mol Neurobiol 40:767–784. https://doi.org/10.1007/s10571-019-00771-8

    Article  CAS  PubMed  Google Scholar 

  108. Volak A, LeRoy SG, Natasan JS, et al (2018) Virus vector-mediated genetic modification of brain tumor stromal cells after intravenous delivery. J Neurooncol 139:293–305. https://doi.org/10.1007/s11060-018-2889-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pace KR, Dutt R, Galileo DS (2019) Exosomal L1CAM Stimulates Glioblastoma Cell Motility, Proliferation, and Invasiveness. Int J Mol Sci 20.: https://doi.org/10.3390/ijms20163982

  110. Ricklefs FL, Maire CL, Matschke J, et al (2020) FASN Is a Biomarker Enriched in Malignant Glioma-Derived Extracellular Vesicles. Int J Mol Sci 21.: https://doi.org/10.3390/ijms21061931

  111. Yoon JH, Kim J, Kim KL, et al (2014) Proteomic analysis of hypoxia-induced U373MG glioma secretome reveals novel hypoxia-dependent migration factors. Proteomics 14:1494–1502. https://doi.org/10.1002/pmic.201300554

    Article  CAS  PubMed  Google Scholar 

  112. Luhtala N, Hunter T (2018) Failure to detect functional transfer of active K-Ras protein from extracellular vesicles into recipient cells in culture. PLoS One 13:e0203290. https://doi.org/10.1371/journal.pone.0203290

    Article  PubMed  PubMed Central  Google Scholar 

  113. McCready J, Sims JD, Chan D, Jay DG (2010) Secretion of extracellular hsp90alpha via exosomes increases cancer cell motility: a role for plasminogen activation. BMC Cancer 10:294. https://doi.org/10.1186/1471-2407-10-294

    Article  PubMed  PubMed Central  Google Scholar 

  114. Hallal S, Russell BP, Wei H, et al (2019) Extracellular Vesicles from Neurosurgical Aspirates Identifies Chaperonin Containing TCP1 Subunit 6A as a Potential Glioblastoma Biomarker with Prognostic Significance. Proteomics 19:e1800157. https://doi.org/10.1002/pmic.201800157

    Article  PubMed  Google Scholar 

  115. Bai H, Pan Y, Qi L, et al (2018) Development a hydrazide-functionalized thermosensitive polymer based homogeneous system for highly efficient N-glycoprotein/glycopeptide enrichment from human plasma exosome. Talanta 186:513–520. https://doi.org/10.1016/j.talanta.2018.04.098

    Article  CAS  PubMed  Google Scholar 

  116. Pinet S, Bessette B, Vedrenne N, et al (2016) TrkB-containing exosomes promote the transfer of glioblastoma aggressiveness to YKL-40-inactivated glioblastoma cells. Oncotarget 7:50349–50364. https://doi.org/10.18632/oncotarget.10387

    Article  PubMed  PubMed Central  Google Scholar 

  117. Setti M, Osti D, Richichi C, et al (2015) Extracellular vesicle-mediated transfer of CLIC1 protein is a novel mechanism for the regulation of glioblastoma growth. Oncotarget 6:31413–31427. https://doi.org/10.18632/oncotarget.5105

    Article  PubMed  PubMed Central  Google Scholar 

  118. Kore RA, Abraham EC (2014) Inflammatory cytokines, interleukin-1 beta and tumor necrosis factor-alpha, upregulated in glioblastoma multiforme, raise the levels of CRYAB in exosomes secreted by U373 glioma cells. Biochem Biophys Res Commun 453:326–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bronisz A, Wang Y, Nowicki MO, et al (2014) Extracellular vesicles modulate the glioblastoma microenvironment via a tumor suppression signaling network directed by miR-1. Cancer Res 74:738–750. https://doi.org/10.1158/0008-5472.CAN-13-2650

    Article  CAS  PubMed  Google Scholar 

  120. Haraszti RA, Didiot M-C, Sapp E, et al (2016) High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J Extracell Vesicles 5:32570. https://doi.org/10.3402/jev.v5.32570

    Article  PubMed  Google Scholar 

  121. Skotland T, Sagini K, Sandvig K, Llorente A (2020) An emerging focus on lipids in extracellular vesicles. Adv Drug Deliv Rev 159:308–321. https://doi.org/10.1016/j.addr.2020.03.002

    Article  CAS  PubMed  Google Scholar 

  122. Redzic JS, Ung TH, Graner MW (2014) Glioblastoma extracellular vesicles: reservoirs of potential biomarkers. PGPM 7:65–77. https://doi.org/10.2147/PGPM.S39768

    PubMed  PubMed Central  Google Scholar 

  123. Yang L, Cui X, Zhang N, et al (2015) Comprehensive lipid profiling of plasma in patients with benign breast tumor and breast cancer reveals novel biomarkers. Anal Bioanal Chem 407:5065–5077. https://doi.org/10.1007/s00216-015-8484-x

    Article  CAS  PubMed  Google Scholar 

  124. Skotland T, Ekroos K, Kauhanen D, et al (2017) Molecular lipid species in urinary exosomes as potential prostate cancer biomarkers. Eur J Cancer 70:122–132. https://doi.org/10.1016/j.ejca.2016.10.011

    Article  CAS  PubMed  Google Scholar 

  125. Geng F, Guo D (2017) Lipid droplets, potential biomarker and metabolic target in glioblastoma. Intern Med Rev (Wash D C) 3.: https://doi.org/10.18103/imr.v3i5.443

  126. Zhai X-H, Xiao J, Yu J-K, et al (2019) Novel sphingomyelin biomarkers for brain glioma and associated regulation research on the PI3K/Akt signaling pathway. Oncol Lett 18:6207–6213. https://doi.org/10.3892/ol.2019.10946

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Barceló-Coblijn G, Martin ML, de Almeida RFM, et al (2011) Sphingomyelin and sphingomyelin synthase (SMS) in the malignant transformation of glioma cells and in 2-hydroxyoleic acid therapy. Proc Natl Acad Sci U S A 108:19569–19574. https://doi.org/10.1073/pnas.1115484108

    Article  PubMed  PubMed Central  Google Scholar 

  128. Liang Y, Lehrich BM, Zheng S, Lu M (2021) Emerging methods in biomarker identification for extracellular vesicle-based liquid biopsy. J Extracell Vesicles 10:e12090. https://doi.org/10.1002/jev2.12090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Visnovitz T, Osteikoetxea X, Sódar BW, et al (2019) An improved 96 well plate format lipid quantification assay for standardisation of experiments with extracellular vesicles. J Extracell Vesicles 8:1565263. https://doi.org/10.1080/20013078.2019.1565263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Fahy E, Cotter D, Sud M, Subramaniam S (2011) Lipid classification, structures and tools. Biochim Biophys Acta 1811:637–647. https://doi.org/10.1016/j.bbalip.2011.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hadacek F, Bachmann G (2015) Low-molecular-weight metabolite systems chemistry. Front Environ Sci Eng China 3:12. https://doi.org/10.3389/fenvs.2015.00012

    Google Scholar 

  132. Liberti MV, Locasale JW (2016) The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem Sci 41:211–218. https://doi.org/10.1016/j.tibs.2015.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Strickland M, Stoll EA (2017) Metabolic Reprogramming in Glioma. Front Cell Dev Biol 5:43. https://doi.org/10.3389/fcell.2017.00043

    Article  PubMed  PubMed Central  Google Scholar 

  134. Björkblom B, Wibom C, Jonsson P, et al (2016) Metabolomic screening of pre-diagnostic serum samples identifies association between α- and γ-tocopherols and glioblastoma risk. Oncotarget 7:37043–37053. https://doi.org/10.18632/oncotarget.9242

    Article  PubMed  PubMed Central  Google Scholar 

  135. Huang J, Weinstein SJ, Kitahara CM, et al (2017) A prospective study of serum metabolites and glioma risk. Oncotarget 8:70366–70377. https://doi.org/10.18632/oncotarget.19705

    Article  PubMed  PubMed Central  Google Scholar 

  136. Shao W, Gu J, Huang C, et al (2014) Malignancy-associated metabolic profiling of human glioma cell lines using 1H NMR spectroscopy. Mol Cancer 13:197. https://doi.org/10.1186/1476-4598-13-197

    Article  PubMed  PubMed Central  Google Scholar 

  137. Nakamizo S, Sasayama T, Shinohara M, et al (2013) GC/MS-based metabolomic analysis of cerebrospinal fluid (CSF) from glioma patients. J Neurooncol 113:65–74. https://doi.org/10.1007/s11060-013-1090-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Clos-Garcia M, Loizaga-Iriarte A, Zuñiga-Garcia P, et al (2018) Metabolic alterations in urine extracellular vesicles are associated to prostate cancer pathogenesis and progression. J Extracell Vesicles 7:1470442. https://doi.org/10.1080/20013078.2018.1470442

    Article  PubMed  PubMed Central  Google Scholar 

  139. Luo X, An M, Cuneo KC, et al (2018) High-Performance Chemical Isotope Labeling Liquid Chromatography Mass Spectrometry for Exosome Metabolomics. Anal Chem 90:8314–8319. https://doi.org/10.1021/acs.analchem.8b01726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Čuperlović-Culf M, Khieu NH, Surendra A, et al (2020) Analysis and Simulation of Glioblastoma Cell Lines-Derived Extracellular Vesicles Metabolome. Metabolites 10.: https://doi.org/10.3390/metabo10030088

  141. Zebrowska A, Skowronek A, Wojakowska A, et al (2019) Metabolome of Exosomes: Focus on Vesicles Released by Cancer Cells and Present in Human Body Fluids. Int J Mol Sci 20.: https://doi.org/10.3390/ijms20143461

  142. Wei Z, Batagov AO, Schinelli S, et al (2017) Coding and noncoding landscape of extracellular RNA released by human glioma stem cells. Nat Commun 8:1145. https://doi.org/10.1038/s41467-017-01196-x

    Article  PubMed  PubMed Central  Google Scholar 

  143. Yekula A, Minciacchi VR, Morello M, et al (2020) Large and small extracellular vesicles released by glioma cells and. J Extracell Vesicles 9:1689784. https://doi.org/10.1080/20013078.2019.1689784

    Article  CAS  PubMed  Google Scholar 

  144. Patnam S, Samal R, Koyyada R, et al (2022) Exosomal PTEN as a Predictive Marker of Aggressive Gliomas. Neurol India 70:215–222. https://doi.org/10.4103/0028-3886.338731

    PubMed  Google Scholar 

  145. Lai CP, Kim EY, Badr CE, et al (2015) Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat Commun 6:7029. https://doi.org/10.1038/ncomms8029

    Article  CAS  PubMed  Google Scholar 

  146. Rao AM, Quddusi A, Shamim MS (2018) The significance of MGMT methylation in Glioblastoma Multiforme prognosis. J Pak Med Assoc 68:1137–1139

    PubMed  Google Scholar 

  147. Yu T, Wang X, Zhi T, et al (2018) Delivery of MGMT mRNA to glioma cells by reactive astrocyte-derived exosomes confers a temozolomide resistance phenotype. Cancer Lett 433:210–220. https://doi.org/10.1016/j.canlet.2018.06.041

    Article  CAS  PubMed  Google Scholar 

  148. Shao H, Chung J, Lee K, et al (2015) Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat Commun 6:6999. https://doi.org/10.1038/ncomms7999

    Article  CAS  PubMed  Google Scholar 

  149. Zhu L, Cheng G, Ye D, et al (2018) Focused Ultrasound-enabled Brain Tumor Liquid Biopsy. Sci Rep 8:6553. https://doi.org/10.1038/s41598-018-24516-7

    Article  PubMed  PubMed Central  Google Scholar 

  150. O’Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol 9:402. https://doi.org/10.3389/fendo.2018.00402

    Article  Google Scholar 

  151. Lopez-Camarillo C, Marchat LA (2013) MicroRNAs in Cancer. CRC Press

    Book  Google Scholar 

  152. Brodie C, Buchris E, Lee HK (2014) miRNA Expression and Functions in Glioma and Glioma Stem Cells. MicroRNA Targeted Cancer Therapy 29–49

    Google Scholar 

  153. Saadatpour L, Fadaee E, Fadaei S, et al (2016) Glioblastoma: exosome and microRNA as novel diagnosis biomarkers. Cancer Gene Ther 23:415–418. https://doi.org/10.1038/cgt.2016.48

    Article  CAS  PubMed  Google Scholar 

  154. Landgraf P, Rusu M, Sheridan R, et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414. https://doi.org/10.1016/j.cell.2007.04.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ivo D’Urso P, Fernando D’Urso O, Damiano Gianfreda C, et al (2015) MiR-15b and miR-21 as circulating biomarkers for diagnosis of glioma. Curr Genomics 16:304–311. https://doi.org/10.2174/1389202916666150707155610

    Article  PubMed  PubMed Central  Google Scholar 

  156. Zhou X, Zhang J, Jia Q, et al (2010) Reduction of miR-21 induces glioma cell apoptosis via activating caspase 9 and 3. Oncol Rep 24:195–201. https://doi.org/10.3892/or_00000846

    CAS  PubMed  Google Scholar 

  157. Shi R, Wang P-Y, Li X-Y, et al (2015) Exosomal levels of miRNA-21 from cerebrospinal fluids associated with poor prognosis and tumor recurrence of glioma patients. Oncotarget 6:26971–26981. https://doi.org/10.18632/oncotarget.4699

    Article  PubMed  PubMed Central  Google Scholar 

  158. Guo X, Qiu W, Liu Q, et al (2018) Immunosuppressive effects of hypoxia-induced glioma exosomes through myeloid-derived suppressor cells via the miR-10a/Rora and miR-21/Pten Pathways. Oncogene 37:4239–4259. https://doi.org/10.1038/s41388-018-0261-9

    Article  CAS  PubMed  Google Scholar 

  159. Sun X, Ma X, Wang J, et al (2017) Glioma stem cells-derived exosomes promote the angiogenic ability of endothelial cells through miR-21/VEGF signal. Oncotarget 8:36137–36148. https://doi.org/10.18632/oncotarget.16661

    Article  PubMed  PubMed Central  Google Scholar 

  160. Olioso D, Caccese M, Santangelo A, et al (2021) Serum Exosomal microRNA-21, 222 and 124-3p as Noninvasive Predictive Biomarkers in Newly Diagnosed High-Grade Gliomas: A Prospective Study. Cancers 13.: https://doi.org/10.3390/cancers13123006

  161. Monfared H, Jahangard Y, Nikkhah M, et al (2019) Potential Therapeutic Effects of Exosomes Packed With a miR-21-Sponge Construct in a Rat Model of Glioblastoma. Front Oncol 9:782. https://doi.org/10.3389/fonc.2019.00782

    Article  PubMed  PubMed Central  Google Scholar 

  162. Chuang H-Y, Su Y-K, Liu H-W, et al (2019) Preclinical evidence of STAT3 inhibitor pacritinib overcoming temozolomide resistance via downregulating miR-21-enriched exosomes from M2 glioblastoma-associated macrophages. J Clin Med Res 8:959

    CAS  Google Scholar 

  163. Qian M, Wang S, Guo X, et al (2020) Hypoxic glioma-derived exosomes deliver microRNA-1246 to induce M2 macrophage polarization by targeting TERF2IP via the STAT3 and NF-κB pathways. Oncogene 39:428–442. https://doi.org/10.1038/s41388-019-0996-y

    Article  CAS  PubMed  Google Scholar 

  164. Thuringer D, Chanteloup G, Boucher J, et al (2017) Modulation of the inwardly rectifying potassium channel Kir4.1 by the pro-invasive miR-5096 in glioblastoma cells. Oncotarget 8:37681–37693. https://doi.org/10.18632/oncotarget.16949

    Article  PubMed  PubMed Central  Google Scholar 

  165. Yang J-K, Yang J-P, Tong J, et al (2017) Exosomal miR-221 targets DNM3 to induce tumor progression and temozolomide resistance in glioma. J Neurooncol 131:255–265. https://doi.org/10.1007/s11060-016-2308-5

    Article  CAS  PubMed  Google Scholar 

  166. Guo X, Qiu W, Wang J, et al (2019) Glioma exosomes mediate the expansion and function of myeloid-derived suppressor cells through microRNA-29a/ Hbp1 and microRNA-92a/ Prkar1a pathways. International Journal of Cancer 144:3111–3126

    Article  CAS  PubMed  Google Scholar 

  167. Lan F, Qing Q, Pan Q, et al (2018) Serum exosomal miR-301a as a potential diagnostic and prognostic biomarker for human glioma. Cell Oncol 41:25–33. https://doi.org/10.1007/s13402-017-0355-3

    Article  CAS  Google Scholar 

  168. Yue X, Lan F, Xia T (2019) Hypoxic Glioma Cell-Secreted Exosomal miR-301a Activates Wnt/β-catenin Signaling and Promotes Radiation Resistance by Targeting TCEAL7. Mol Ther 27:1939–1949. https://doi.org/10.1016/j.ymthe.2019.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Munoz JL, Walker ND, Mareedu S, et al (2019) Cycling Quiescence in Temozolomide Resistant Glioblastoma Cells Is Partly Explained by microRNA-93 and -193-Mediated Decrease of Cyclin D. Front Pharmacol 10:134. https://doi.org/10.3389/fphar.2019.00134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Wang J, Li T, Wang B (2021) Exosomal transfer of miR-25-3p promotes the proliferation and temozolomide resistance of glioblastoma cells by targeting FBXW7. Int J Oncol 59.: https://doi.org/10.3892/ijo.2021.5244

  171. Zeng A, Wei Z, Yan W, et al (2018) Exosomal transfer of miR-151a enhances chemosensitivity to temozolomide in drug-resistant glioblastoma. Cancer Lett 436:10–21. https://doi.org/10.1016/j.canlet.2018.08.004

    Article  CAS  PubMed  Google Scholar 

  172. (2019) MiR-181b-5p modulates chemosensitivity of glioma cells to temozolomide by targeting Bcl-2. Biomed Pharmacother 109:2192–2202. https://doi.org/10.1016/j.biopha.2018.11.074

  173. Weeraratne SD, Amani V, Neiss A, et al (2011) miR-34a confers chemosensitivity through modulation of MAGE-A and p53 in medulloblastoma. Neuro Oncol 13:165–175. https://doi.org/10.1093/neuonc/noq179

    Article  CAS  PubMed  Google Scholar 

  174. Lages E, Guttin A, El Atifi M, et al (2011) MicroRNA and target protein patterns reveal physiopathological features of glioma subtypes. PLoS One 6:e20600. https://doi.org/10.1371/journal.pone.0020600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Hayes J, Thygesen H, Tumilson C, et al (2015) Prediction of clinical outcome in glioblastoma using a biologically relevant nine-microRNA signature. Mol Oncol 9:704–714. https://doi.org/10.1016/j.molonc.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  176. Barbano R, Palumbo O, Pasculli B, et al (2014) A miRNA signature for defining aggressive phenotype and prognosis in gliomas. PLoS One 9:e108950. https://doi.org/10.1371/journal.pone.0108950

    Article  PubMed  PubMed Central  Google Scholar 

  177. Yan W, Li R, Liu Y, et al (2014) MicroRNA expression patterns in the malignant progression of gliomas and a 5-microRNA signature for prognosis. Oncotarget 5:12908–12915. https://doi.org/10.18632/oncotarget.2679

    Article  PubMed  PubMed Central  Google Scholar 

  178. Hermansen SK, Sørensen MD, Hansen A, et al (2017) A 4-miRNA signature to predict survival in glioblastomas. PLoS One 12:e0188090. https://doi.org/10.1371/journal.pone.0188090

    Article  PubMed  PubMed Central  Google Scholar 

  179. Rolle K (2015) miRNA Multiplayers in glioma. From bench to bedside. Acta Biochim Pol 62:353–365. https://doi.org/10.18388/abp.2015_1072

    Article  CAS  PubMed  Google Scholar 

  180. Marziali G, Buccarelli M, Giuliani A, et al (2017) A three-microRNA signature identifies two subtypes of glioblastoma patients with different clinical outcomes. Mol Oncol 11:1115–1129. https://doi.org/10.1002/1878-0261.12047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Hallal S, Ebrahim Khani S, Wei H, et al (2020) Deep Sequencing of Small RNAs from Neurosurgical Extracellular Vesicles Substantiates miR-486-3p as a Circulating Biomarker that Distinguishes Glioblastoma from Lower-Grade Astrocytoma Patients. Int J Mol Sci 21.: https://doi.org/10.3390/ijms21144954

  182. Guan Y, Mizoguchi M, Yoshimoto K, et al (2010) MiRNA-196 is upregulated in glioblastoma but not in anaplastic astrocytoma and has prognostic significance. Clin Cancer Res 16:4289–4297. https://doi.org/10.1158/1078-0432.CCR-10-0207

    Article  CAS  PubMed  Google Scholar 

  183. Kopp F, Mendell JT (2018) Functional Classification and Experimental Dissection of Long Noncoding RNAs. Cell 172:393–407. https://doi.org/10.1016/j.cell.2018.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Chi Y, Wang D, Wang J, et al (2019) Long Non-Coding RNA in the Pathogenesis of Cancers. Cells 8.: https://doi.org/10.3390/cells8091015

  185. Li J, Zhu Y, Wang H, Ji X (2018) Targeting Long Noncoding RNA in Glioma: A Pathway Perspective. Mol Ther Nucleic Acids 13:431–441. https://doi.org/10.1016/j.omtn.2018.09.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Lemos AEG, Matos A da R, Ferreira LB, Gimba ERP (2019) The long non-coding RNA PCA3: an update of its functions and clinical applications as a biomarker in prostate cancer. Oncotarget 10:6589–6603. https://doi.org/10.18632/oncotarget.27284

  187. Momtazmanesh S, Rezaei N (2021) Long Non-Coding RNAs in Diagnosis, Treatment, Prognosis, and Progression of Glioma: A State-of-the-Art Review. Front Oncol 11:712786. https://doi.org/10.3389/fonc.2021.712786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Bian E-B, Chen E-F, Xu Y-D, et al (2019) Exosomal lncRNA-ATB activates astrocytes that promote glioma cell invasion. Int J Oncol 54:713–721. https://doi.org/10.3892/ijo.2018.4644

    CAS  PubMed  Google Scholar 

  189. Dai X, Liao K, Zhuang Z, et al (2019) AHIF promotes glioblastoma progression and radioresistance via exosomes. Int J Oncol 54:261–270. https://doi.org/10.3892/ijo.2018.4621

    CAS  PubMed  Google Scholar 

  190. Ma X, Li Z, Li T, et al (2017) Long non-coding RNA HOTAIR enhances angiogenesis by induction of VEGFA expression in glioma cells and transmission to endothelial cells via glioma cell derived-extracellular vesicles. Am J Transl Res 9:5012–5021

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Tan SK, Pastori C, Penas C, et al (2018) Serum long noncoding RNA HOTAIR as a novel diagnostic and prognostic biomarker in glioblastoma multiforme. Mol Cancer 17:74. https://doi.org/10.1186/s12943-018-0822-0

    Article  PubMed  PubMed Central  Google Scholar 

  192. Lang H-L, Hu G-W, Zhang B, et al (2017) Glioma cells enhance angiogenesis and inhibit endothelial cell apoptosis through the release of exosomes that contain long non-coding RNA CCAT2. Oncol Rep 38:785–798. https://doi.org/10.3892/or.2017.5742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Lang H-L, Hu G-W, Chen Y, et al (2017) Glioma cells promote angiogenesis through the release of exosomes containing long non-coding RNA POU3F3. Eur Rev Med Pharmacol Sci 21:959–972

    PubMed  Google Scholar 

  194. Zhang R, Li P, Lv H, et al (2021) Exosomal SNHG16 secreted by CSCs promotes glioma development via TLR7. Stem Cell Res Ther 12:349. https://doi.org/10.1186/s13287-021-02393-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Zhang Z, Yin J, Lu C, et al (2019) Exosomal transfer of long non-coding RNA SBF2-AS1 enhances chemoresistance to temozolomide in glioblastoma. J Exp Clin Cancer Res 38:166. https://doi.org/10.1186/s13046-019-1139-6

    Article  PubMed  PubMed Central  Google Scholar 

  196. Wang M, Zhou L, Yu F, et al (2019) The functional roles of exosomal long non-coding RNAs in cancer. Cell Mol Life Sci 76:2059–2076. https://doi.org/10.1007/s00018-019-03018-3

    Article  CAS  PubMed  Google Scholar 

  197. Arun G, Diermeier SD, Spector DL (2018) Therapeutic Targeting of Long Non-Coding RNAs in Cancer. Trends Mol Med 24:257–277. https://doi.org/10.1016/j.molmed.2018.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Goyal B, Yadav SRM, Awasthee N, et al (2021) Diagnostic, prognostic, and therapeutic significance of long non-coding RNA MALAT1 in cancer. Biochim Biophys Acta Rev Cancer 1875:188502. https://doi.org/10.1016/j.bbcan.2021.188502

    Article  CAS  PubMed  Google Scholar 

  199. Bach D-H, Lee SK, Sood AK (2019) Circular RNAs in Cancer. Mol Ther Nucleic Acids 16:118–129. https://doi.org/10.1016/j.omtn.2019.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Lei B, Tian Z, Fan W, Ni B (2019) Circular RNA: a novel biomarker and therapeutic target for human cancers. Int J Med Sci 16:292–301. https://doi.org/10.7150/ijms.28047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32:453–461. https://doi.org/10.1038/nbt.2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Wang S, Zhang K, Tan S, et al (2021) Circular RNAs in body fluids as cancer biomarkers: the new frontier of liquid biopsies. Mol Cancer 20:13. https://doi.org/10.1186/s12943-020-01298-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Sun J, Li B, Shu C, et al (2020) Functions and clinical significance of circular RNAs in glioma. Mol Cancer 19:34. https://doi.org/10.1186/s12943-019-1121-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Chao F, Wang S, Zhang C, et al (2021) Circular RNA circSMARCA5 is a prognostic biomarker in patients with malignant tumor: a meta-analysis. BMC Cancer 21:600. https://doi.org/10.1186/s12885-021-08316-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Li Y, Feng W, Kong M, et al (2021) Exosomal circRNAs: A new star in cancer. Life Sci 269:119039. https://doi.org/10.1016/j.lfs.2021.119039

    Article  CAS  PubMed  Google Scholar 

  206. Figueroa JM, Skog J, Akers J, et al (2017) Detection of wild-type EGFR amplification and EGFRvIII mutation in CSF-derived extracellular vesicles of glioblastoma patients. Neuro Oncol 19:1494–1502. https://doi.org/10.1093/neuonc/nox085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Garnier D, Meehan B, Kislinger T, et al (2018) Divergent evolution of temozolomide resistance in glioblastoma stem cells is reflected in extracellular vesicles and coupled with radiosensitization. Neuro Oncol 20:236–248. https://doi.org/10.1093/neuonc/nox142

    Article  CAS  PubMed  Google Scholar 

  208. Reátegui E, van der Vos KE, Lai CP, et al (2018) Engineered nanointerfaces for microfluidic isolation and molecular profiling of tumor-specific extracellular vesicles. Nat Commun 9:175. https://doi.org/10.1038/s41467-017-02261-1

    Article  PubMed  PubMed Central  Google Scholar 

  209. Lan F, Yue X, Xia T (2020) Exosomal microRNA-210 is a potentially non-invasive biomarker for the diagnosis and prognosis of glioma. Oncol Lett 19:1967–1974. https://doi.org/10.3892/ol.2020.11249

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Tabibkhooei A, Izadpanahi M, Arab A, et al (2020) Profiling of novel circulating microRNAs as a non-invasive biomarker in diagnosis and follow-up of high and low-grade gliomas. Clin Neurol Neurosurg 190:105652. https://doi.org/10.1016/j.clineuro.2019.105652

    Article  PubMed  Google Scholar 

  211. Zhong F, Huang T, Leng J (2019) Serum miR-29b as a novel biomarker for glioblastoma diagnosis and prognosis. Int J Clin Exp Pathol 12:4106–4112

    PubMed  PubMed Central  Google Scholar 

  212. Shao N, Xue L, Wang R, et al (2019) miR-454-3p Is an Exosomal Biomarker and Functions as a Tumor Suppressor in Glioma. Mol Cancer Ther 18:459–469. https://doi.org/10.1158/1535-7163.MCT-18-0725

    Article  CAS  PubMed  Google Scholar 

  213. Santangelo A, Imbrucè P, Gardenghi B, et al (2018) A microRNA signature from serum exosomes of patients with glioma as complementary diagnostic biomarker. J Neurooncol 136:51–62. https://doi.org/10.1007/s11060-017-2639-x

    Article  CAS  PubMed  Google Scholar 

  214. Akers JC, Ramakrishnan V, Kim R, et al (2013) MiR-21 in the extracellular vesicles (EVs) of cerebrospinal fluid (CSF): a platform for glioblastoma biomarker development. PLoS One 8:e78115. https://doi.org/10.1371/journal.pone.0078115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Tzaridis T, Reiners KS, Weller J, et al (2020) Analysis of Serum miRNA in Glioblastoma Patients: CD44-Based Enrichment of Extracellular Vesicles Enhances Specificity for the Prognostic Signature. Int J Mol Sci 21.: https://doi.org/10.3390/ijms21197211

  216. Li J, Yuan H, Xu H, et al Hypoxic Cancer-Secreted Exosomal miR-182-5p Promotes Glioblastoma Angiogenesis by Targeting Kruppel-Like Factor 2 and 4. SSRN Electronic Journal

    Google Scholar 

  217. Ebrahimkhani S, Vafaee F, Hallal S, et al (2018) Deep sequencing of circulating exosomal microRNA allows non-invasive glioblastoma diagnosis. NPJ Precis Oncol 2:28. https://doi.org/10.1038/s41698-018-0071-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Yang Q, Wei B, Peng C, et al (2022) Identification of serum exosomal miR-98-5p, miR-183-5p, miR-323-3p and miR-19b-3p as potential biomarkers for glioblastoma patients and investigation of their mechanisms. Curr Res Transl Med 70:103315. https://doi.org/10.1016/j.retram.2021.103315

    CAS  PubMed  Google Scholar 

  219. Drusco A, Fadda P, Nigita G, et al (2018) Circulating Micrornas Predict Survival of Patients with Tumors of Glial Origin. EBioMedicine 30:105–112. https://doi.org/10.1016/j.ebiom.2018.03.022

    Article  PubMed  Google Scholar 

  220. Sun J, Sun Z, Gareev I, et al (2021) Exosomal miR-2276-5p in Plasma Is a Potential Diagnostic and Prognostic Biomarker in Glioma. Front Cell Dev Biol 9:671202. https://doi.org/10.3389/fcell.2021.671202

    Article  PubMed  PubMed Central  Google Scholar 

  221. Li Z, Ye L, Wang L, et al (2020) Identification of miRNA signatures in serum exosomes as a potential biomarker after radiotherapy treatment in glioma patients. Ann Diagn Pathol 44:151436. https://doi.org/10.1016/j.anndiagpath.2019.151436

    Article  PubMed  Google Scholar 

  222. Cai Q, Zhu A, Gong L (2018) Exosomes of glioma cells deliver miR-148a to promote proliferation and metastasis of glioblastoma via targeting CADM1. Bull Cancer 105:643–651. https://doi.org/10.1016/j.bulcan.2018.05.003

    Article  PubMed  Google Scholar 

  223. Wang S, Xu Z, Zhang C, et al (2020) High-Throughput Sequencing-Based Identification of Serum Exosomal Differential miRNAs in High-Grade Glioma and Intracranial Lymphoma. Biomed Res Int 2020:2102645. https://doi.org/10.1155/2020/2102645

    PubMed  PubMed Central  Google Scholar 

  224. Yin J, Zeng A, Zhang Z, et al (2019) Exosomal transfer of miR-1238 contributes to temozolomide-resistance in glioblastoma. EBioMedicine 42:238–251. https://doi.org/10.1016/j.ebiom.2019.03.016

    Article  PubMed  PubMed Central  Google Scholar 

  225. Ma W, Zhou Y, Liu M, et al (2021) Long non-coding RNA LINC00470 in serum derived exosome: a critical regulator for proliferation and autophagy in glioma cells. Cancer Cell Int 21:149. https://doi.org/10.1186/s12935-021-01825-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Chai Y, Wu H-T, Liang C-D, et al (2020) Exosomal lncRNA ROR1-AS1 Derived from Tumor Cells Promotes Glioma Progression via Regulating miR-4686. Int J Nanomedicine 15:8863–8872. https://doi.org/10.2147/IJN.S271795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Li Z, Meng X, Wu P, et al (2021) Glioblastoma Cell-Derived lncRNA-Containing Exosomes Induce Microglia to Produce Complement C5, Promoting Chemotherapy Resistance. Cancer Immunol Res 9:1383–1399. https://doi.org/10.1158/2326-6066.CIR-21-0258

    Article  CAS  PubMed  Google Scholar 

  228. Yin K, Liu X (2020) CircMMP1 promotes the progression of glioma through miR-433/HMGB3 axis in vitro and in vivo. IUBMB Life 72:2508–2524. https://doi.org/10.1002/iub.2383

    Article  CAS  PubMed  Google Scholar 

  229. Han Y, Liu Y, Zhang B, Yin G (2021) Exosomal circRNA 0001445 promotes glioma progression through miRNA-127-5p/SNX5 pathway. Aging 13:13287–13299. https://doi.org/10.18632/aging.203013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Stella M, Falzone L, Caponnetto A, et al (2021) Serum Extracellular Vesicle-Derived circHIPK3 and circSMARCA5 Are Two Novel Diagnostic Biomarkers for Glioblastoma Multiforme. Pharmaceuticals 14.: https://doi.org/10.3390/ph14070618

  231. Wang X, Cao Q, Shi Y, et al (2021) Identification of low-dose radiation-induced exosomal circ-METRN and miR-4709-3p/GRB14/PDGFRα pathway as a key regulatory mechanism in Glioblastoma progression and radioresistance: Functional validation and clinical theranostic significance. Int J Biol Sci 17:1061–1078. https://doi.org/10.7150/ijbs.57168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Zhao M, Xu J, Zhong S, et al (2019) Expression profiles and potential functions of circular RNAs in extracellular vesicles isolated from radioresistant glioma cells. Oncol Rep 41:1893–1900. https://doi.org/10.3892/or.2019.6972

    CAS  PubMed  Google Scholar 

  233. Ding C, Yi X, Chen X, et al (2021) Warburg effect-promoted exosomal circ_0072083 releasing up-regulates NANGO expression through multiple pathways and enhances temozolomide resistance in glioma. J Exp Clin Cancer Res 40:164. https://doi.org/10.1186/s13046-021-01942-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Xia D, Gu X (2021) Plasmatic exosome-derived circRNAs panel act as fingerprint for glioblastoma. Aging 13:19575–19586. https://doi.org/10.18632/aging.203368

    Article  PubMed  PubMed Central  Google Scholar 

  235. Li G, Lan Q (2021) Bioinformatics analysis reveals a stem cell-expressed circ-Serpine2-mediated miRNA-mRNA regulatory subnetwork in the malignant progression of glioma. J Transl Med 19:444. https://doi.org/10.1186/s12967-021-03118-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Grassi S, Guerrini F, Ciabatti E, et al (2020) Digital Droplet PCR is a Specific and Sensitive Tool for Detecting IDH2 Mutations in Acute Myeloid LeuKemia Patients. Cancers 12.: https://doi.org/10.3390/cancers12071738

  237. Marcucci G, Maharry K, Wu Y-Z, et al (2010) IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 28:2348–2355. https://doi.org/10.1200/JCO.2009.27.3730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Du M, Thompson J, Fisher H, et al (2018) Genomic alterations of plasma cell-free DNAs in small cell lung cancer and their clinical relevance. Lung Cancer 120:113–121. https://doi.org/10.1016/j.lungcan.2018.04.008

    Article  PubMed  Google Scholar 

  239. Van Roy N, Van Der Linden M, Menten B, et al (2017) Shallow Whole Genome Sequencing on Circulating Cell-Free DNA Allows Reliable Noninvasive Copy-Number Profiling in Neuroblastoma Patients. Clin Cancer Res 23:6305–6314. https://doi.org/10.1158/1078-0432.CCR-17-0675

    Article  PubMed  Google Scholar 

  240. Lavon I, Refael M, Zelikovitch B, et al (2010) Serum DNA can define tumor-specific genetic and epigenetic markers in gliomas of various grades. Neuro Oncol 12:173–180. https://doi.org/10.1093/neuonc/nop041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Kang KM, Muralidharan K, Yekula A, et al (2021) Blood-Based Detection of BRAF V600E in Gliomas and Brain Tumor Metastasis. Cancers 13.: https://doi.org/10.3390/cancers13061227

  242. Lane RE, Korbie D, Hill MM, Trau M (2018) Extracellular vesicles as circulating cancer biomarkers: opportunities and challenges. Clinical and Translational Medicine 7

    Google Scholar 

  243. Ignatiadis M, Sledge GW, Jeffrey SS (2021) Liquid biopsy enters the clinic — implementation issues and future challenges. Nature Reviews Clinical Oncology 18:297–312

    Article  PubMed  Google Scholar 

  244. Gerber T, Taschner-Mandl S, Saloberger-Sindhöringer L, et al (2020) Assessment of Pre-Analytical Sample Handling Conditions for Comprehensive Liquid Biopsy Analysis. The Journal of Molecular Diagnostics 22:1070–1086

    Article  CAS  PubMed  Google Scholar 

  245. Zhao Z, Wijerathne H, Godwin AK, Soper SA (2021) Isolation and analysis methods of extracellular vesicles (EVs). Extracell Vesicles Circ Nucl Acids 2:80–103. https://doi.org/10.20517/evcna.2021.07

    PubMed  Google Scholar 

  246. Kim H, Shin S (2021) ExoCAS-2: Rapid and Pure Isolation of Exosomes by Anionic Exchange Using Magnetic Beads. Biomedicines 9.: https://doi.org/10.3390/biomedicines9010028

  247. Zhang Y, Bi J, Huang J, et al (2020) Exosome: A Review of Its Classification, Isolation Techniques, Storage, Diagnostic and Targeted Therapy Applications. Int J Nanomedicine 15:6917–6934. https://doi.org/10.2147/IJN.S264498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Konoshenko MY, Lekchnov EA, Vlassov AV, Laktionov PP (2018) Isolation of Extracellular Vesicles: General Methodologies and Latest Trends. Biomed Res Int 2018:8545347. https://doi.org/10.1155/2018/8545347

    Article  PubMed  PubMed Central  Google Scholar 

  249. Bellotti C, Lang K, Kuplennik N, et al (2021) High-grade extracellular vesicles preparation by combined size-exclusion and affinity chromatography. Sci Rep 11:10550. https://doi.org/10.1038/s41598-021-90022-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Veerman RE, Teeuwen L, Czarnewski P, et al (2021) Molecular evaluation of five different isolation methods for extracellular vesicles reveals different clinical applicability and subcellular origin. J Extracell Vesicles 10:e12128. https://doi.org/10.1002/jev2.12128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Stam J, Bartel S, Bischoff R, Wolters JC (2021) Isolation of extracellular vesicles with combined enrichment methods. J Chromatogr B Analyt Technol Biomed Life Sci 1169:122604. https://doi.org/10.1016/j.jchromb.2021.122604

    Article  CAS  PubMed  Google Scholar 

  252. Yang HC, Ham YM, Kim JA, Rhee WJ (2021) Single-step equipment-free extracellular vesicle concentration using super absorbent polymer beads. J Extracell Vesicles 10:e12074. https://doi.org/10.1002/jev2.12074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Liangsupree T, Multia E, Riekkola M-L (2021) Modern isolation and separation techniques for extracellular vesicles. J Chromatogr A 1636:461773. https://doi.org/10.1016/j.chroma.2020.461773

    Article  CAS  PubMed  Google Scholar 

  254. Lou D, Wang Y, Yang Q, et al (2021) Ultrafiltration combing with phospholipid affinity-based isolation for metabolomic profiling of urinary extracellular vesicles. J Chromatogr A 1640:461942. https://doi.org/10.1016/j.chroma.2021.461942

    Article  CAS  PubMed  Google Scholar 

  255. Li M, Rai AJ, DeCastro GJ, et al (2015) An optimized procedure for exosome isolation and analysis using serum samples: Application to cancer biomarker discovery. Methods 87:26–30. https://doi.org/10.1016/j.ymeth.2015.03.009

    Article  CAS  PubMed  Google Scholar 

  256. Alvarez-Erviti L, Seow Y, Yin H, et al (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345. https://doi.org/10.1038/nbt.1807

    Article  CAS  PubMed  Google Scholar 

  257. Munoz JL, Bliss SA, Greco SJ, et al (2013) Delivery of Functional Anti-miR-9 by Mesenchymal Stem Cell–derived Exosomes to Glioblastoma Multiforme Cells Conferred Chemosensitivity. Molecular Therapy - Nucleic Acids 2:e126. https://doi.org/10.1038/mtna.2013.60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Zhan Q, Yi K, Cui X, et al (2022) Blood exosomes-based targeted delivery of cPLA2 siRNA and metformin to modulate glioblastoma energy metabolism for tailoring personalized therapy. Neuro Oncol. https://doi.org/10.1093/neuonc/noac071

  259. Kim MS, Haney MJ, Zhao Y, et al (2016) Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine 12:655–664. https://doi.org/10.1016/j.nano.2015.10.012

    Article  CAS  PubMed  Google Scholar 

  260. Tian Y, Li S, Song J, et al (2014) A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 35:2383–2390. https://doi.org/10.1016/j.biomaterials.2013.11.083

    Article  CAS  PubMed  Google Scholar 

  261. Rahman R (2021) Toward the Next Generation of High-Grade Glioma Clinical Trials in the Era of Precision Medicine. Cancer J 27:410–415. https://doi.org/10.1097/PPO.0000000000000549

    Article  CAS  PubMed  Google Scholar 

Download references

Funding Sources

This work is supported by grants P01 CA069246 (BSC), R01 CA239078 (BSC), R01 CA237500 (BSC, LB), and U01 CA230697 (BSC, LB). The funding sources had no role in either the writing of the manuscript or the decision to submit the manuscript for publication. The author has not been paid to write this article. The corresponding author has full access to the manuscript and assumes final responsibility for the decision to submit for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonora Balaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gamblin, A.S. et al. (2023). The Role of Liquid Biopsy in Brain Tumors. In: Cote, R.J., Lianidou, E. (eds) Circulating Tumor Cells. Current Cancer Research. Springer, Cham. https://doi.org/10.1007/978-3-031-22903-9_23

Download citation

Publish with us

Policies and ethics