Skip to main content

Surgical Site Infections

  • Chapter
  • First Online:
Textbook of Emergency General Surgery
  • 117 Accesses

Abstract

Surgical site infection (SSI) represents the most common postoperative complication after emergency surgery. It carries significant morbidity and mortality and is a major risk factor for further wound complications including dehiscence, evisceration, and incisional hernia caused by impaired wound healing. SSIs can be classified according to the anatomical plane infected, with different associated causative organisms depending on the anatomical plane involved as well as the nature of the emergency procedure. The diagnosis of SSI is made by clinical, microbiological, or radiological approaches, but many cases go unrecognised due to inadequate auditing structures. High-risk patients for SSI include older, frail patients, those functionally immunosuppressed, and those with impaired wound healing, whilst operative factors such as emergency surgery and in particular wound contamination also increase the risk of SSI. Various peri- and intra-operative strategies are available to reduce the risk of SSI. Treatment strategies for SSI include drainage of infection, debridement of tissue, and the appropriate use of antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. National Healthcare Safety Network. Surgical site infection event (SSI). Centres Dis Control Prev. 2021;(January):1–39.

    Google Scholar 

  2. Kirkland KB, Briggs JP, Trivette SL, Wilkinson WE, Sexton DJ, Kirkland KB, Briggs JP, Trivette SL, Wilkinson WE, Sexton DJ. The impact of surgical-site infections in the 1990s: attributable mortality, excess length of hospitalization, and extra costs. Infect Control Hosp Epidemiol. 1999;20(11):725–30.

    Article  CAS  PubMed  Google Scholar 

  3. Badia JM, Casey AL, Petrosillo N, Hudson PM, Mitchell SA, Crosby C. Impact of surgical site infection on healthcare costs and patient outcomes: a systematic review in six European countries. J Hosp Infect. 2017;96(1):1–15. https://doi.org/10.1016/j.jhin.2017.03.004.

    Article  CAS  PubMed  Google Scholar 

  4. Weiser TG, Regenbogen SE, Thompson KD, Haynes AB, Lipsitz SR, Berry WR, et al. An estimation of the global volume of surgery: a modelling strategy based on available data. Lancet. 2008;372(9633):139–44.

    Article  PubMed  Google Scholar 

  5. van Ramshorst GH, Eker HH, van der Voet JA, Jeekel J, Lange JF. Long-term outcome study in patients with abdominal wound dehiscence: a comparative study on quality of life, body image, and incisional hernia. J Gastrointest Surg. 2013;17(8):1477–84.

    Article  PubMed  Google Scholar 

  6. Meijerink H, Lamagni T, Eriksen HM, Elgohari S, Harrington P, Kacelnik O. Is it valid to compare surgical site infections rates between countries? Insights from a study of English and Norwegian Surveillance Systems. Infect Control Hosp Epidemiol. 2017;38(2):162–71.

    Article  PubMed  Google Scholar 

  7. El-Saed A, Balkhy HH, Alshamrani MM, Aljohani S, Alsaedi A, Al Nasser W, et al. High contribution and impact of resistant gram negative pathogens causing surgical site infections at a multi-hospital healthcare system in Saudi Arabia, 2007–2016. BMC Infect Dis. 2020;20(1):1–9.

    Article  Google Scholar 

  8. Bhangu A, Ademuyiwa AO, Aguilera ML, Alexander P, Al-Saqqa SW, Borda-Luque G, et al. Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study. Lancet Infect Dis. 2018;18(5):516–25.

    Article  Google Scholar 

  9. Elgohari S, S. Thelwall, T. Lamagni et al. Surveillance of surgical site infections in NHS hospitals in England. Public Heal Engl. 2014;(April 2019):29.

    Google Scholar 

  10. Scott RDI. The direct medical costs of healthcare-associated infections in U.S. hospitals and the benefits of prevention. 2009.

    Google Scholar 

  11. Engemann JJ, Carmeli Y, Cosgrove SE, Fowler VG, Bronstein MZ, Trivette SL, et al. Adverse clinical and economic outcomes attributable to methicillin resistance among patients with Staphylococcus aureus surgical site infection. Clin Infect Dis. 2003;36(5):592–8.

    Article  PubMed  Google Scholar 

  12. Meszaros AJ, Reichner JS, Albina JE. Macrophage-induced neutrophil apoptosis. J Immunol. 2000;165(1):435–41.

    Article  CAS  PubMed  Google Scholar 

  13. Leibovich SJ, Ross R. A macrophage dependent factor that stimulates the proliferation of fibroblasts in vitro. Am J Pathol. 1976;84(3):501–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Höer JJ, Junge K, Schachtrupp A, Klinge U, Schumpelick V. Influence of laparotomy closure technique on collagen synthesis in the incisional region. Hernia. 2002;6(3):93–8.

    Article  PubMed  Google Scholar 

  15. Grant R, Aupee M, Buchs NC, Cooper K, Eisenring MC, Lamagni T, et al. Performance of surgical site infection risk prediction models in colorectal surgery: external validity assessment from three European national surveillance networks. Infect Control Hosp Epidemiol. 2019;40(9):983–90.

    Article  PubMed  Google Scholar 

  16. Mu Y, Edwards JR, Horan TC, Berrios-Torres SI, Fridkin SK. Improving risk-adjusted measures of surgical site infection for the national healthcare safety network. Infect Control Hosp Epidemiol. 2011;32(10):970–86.

    Article  PubMed  Google Scholar 

  17. De Simone B, Sartelli M, Coccolini F, Ball CG, Brambillasca P, Chiarugi M, et al. Intraoperative surgical site infection control and prevention: a position paper and future addendum to WSES intra-abdominal infections guidelines. World J Emerg Surg. 2020;15(1):1–23.

    Article  Google Scholar 

  18. Hawn MT, Richman JS, Vick CC, Deierhoi RJ, Graham LA, Henderson WG, et al. Timing of surgical antibiotic prophylaxis and the risk of surgical site infection. JAMA Surg. 2013;148(7):649–57.

    Article  PubMed  Google Scholar 

  19. Pea F, Viale P. Bench-to-bedside review: appropriate antibiotic therapy in severe sepsis and septic shock - does the dose matter? Crit Care. 2009;13:1–13.

    Article  Google Scholar 

  20. Shafi S, Elliott A, Gentilello L. Is hypothermia simply a marker of shock and injury severity or an independent risk factor for mortality in trauma patients? Analysis of a large national trauma registry. J Trauma. 2005;59(5):1081–5.

    Article  PubMed  Google Scholar 

  21. Kurz A, Sessler D, Lenhardt R. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of Wound Infection and Temperature Group. N Engl J Med. 1996;334(19):1209–15.

    Article  CAS  PubMed  Google Scholar 

  22. Lan CCE, Wu CS, Kuo HY, Huang SM, Chen GS. Hyperglycaemic conditions hamper keratinocyte locomotion via sequential inhibition of distinct pathways: new insights on poor wound closure in patients with diabetes. Br J Dermatol. 2009;160(6):1206–14.

    Article  CAS  PubMed  Google Scholar 

  23. The NICE-SUGAR Study Investigators. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360(13):1283–97.

    Article  Google Scholar 

  24. Cohen B, Schacham YN, Ruetzler K, Ahuja S, Yang D, Mascha EJ, et al. Effect of intraoperative hyperoxia on the incidence of surgical site infections: a meta-analysis. Br J Anaesth. 2018;120(6):1176–86. https://doi.org/10.1016/j.bja.2018.02.027.

    Article  CAS  PubMed  Google Scholar 

  25. Henneberg SW, Simonsen I. Effect of high perioperative oxygen fraction. JAMA. 2009;302(14):1543–50.

    PubMed  Google Scholar 

  26. Cox PJ. Towards no incisional hernias: lateral paramedian versus midline incisions. J R Soc Med. 1986;79(December):711–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bickenbach KA, Karanicolas PJ, Ammori JB, Jayaraman S, Winter JM, Fields RC, et al. Up and down or side to side? A systematic review and meta-analysis examining the impact of incision on outcomes after abdominal surgery. Am J Surg. 2013;206(3):400–9. https://doi.org/10.1016/j.amjsurg.2012.11.008.

    Article  PubMed  Google Scholar 

  28. Tanner J, Norrie P, Melen K, Tanner J, Norrie P, Melen K. Preoperative hair removal to reduce surgical site infection. Cochrane Database Syst Rev. 2011;(11):CD004122.

    Google Scholar 

  29. Sidhwa F, Itani KMF. Skin preparation before surgery. Surg Infect. 2015;16(1):14–23.

    Article  Google Scholar 

  30. Kang S II, Oh HK, Kim MH, Kim MJ, Kim DW, Kim HJ, et al. Systematic review and meta-analysis of randomized controlled trials of the clinical effectiveness of impervious plastic wound protectors in reducing surgical site infections in patients undergoing abdominal surgery. Surgery. 2018;164(5):939–45.

    Google Scholar 

  31. Sajid MS, Rathore MA, Sains P, Singh KK. A systematic review of clinical effectiveness of wound edge protector devices in reducing surgical site infections in patients undergoing abdominal surgery. Updat Surg. 2017;69(1):21–8.

    Article  Google Scholar 

  32. Pinkney TD, Calvert M, Bartlett DC, Gheorghe A, Redman V, Dowswell G, et al. Impact of wound edge protection devices on surgical site infection after laparotomy: multicentre randomized controlled trial (ROSSINI Trial). BMJ. 2013;347(7919):1–13. https://doi.org/10.1136/bmj.f4305.

    Article  Google Scholar 

  33. van’t Riet M, Steyerberg EW, Nellensteyn J, Bonjer HJ, Jeekel J. Meta-analysis of techniques for closure of midline abdominal incisions. Br J Surg. 2002;89:1530–356.

    Google Scholar 

  34. Israelsson LA, Millbourn D. Closing midline abdominal incisions. Langenbecks Arch Surg. 2012;397(8):1201–7.

    Article  PubMed  Google Scholar 

  35. Fink C, Baumann P, Wente MN, Knebel P, Bruckner T, Ulrich A, et al. Incisional hernia rate 3 years after midline laparotomy. Br J Surg. 2014;101(2):51–4.

    Article  CAS  PubMed  Google Scholar 

  36. Obermeier A, Schneider J, Wehner S, Matl FD, Schieker M, Von Eisenhart-Rothe R, et al. Novel high efficient coatings for anti-microbial surgical sutures using chlorhexidine in fatty acid slow-release carrier systems. PLoS One. 2014;9(7):e101426.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tae BS, Park JH, Kim JK, Ku JH, Kwak C, Kim HH, et al. Comparison of intraoperative handling and wound healing between (NEOSORB® plus) and coated polyglactin 910 suture (NEOSORB®): a prospective, single-blind, randomized controlled trial. BMC Surg. 2018;18(1):1–10.

    Google Scholar 

  38. Daoud FC, Edmiston CE, Leaper D. Meta-analysis of prevention of surgical site infections following incision closure with triclosan-coated sutures: robustness to new evidence. Surg Infect. 2014;15(3):165–81.

    Article  Google Scholar 

  39. Leaper DJ, Edmiston CE, Holy CE. Meta-analysis of the potential economic impact following introduction of absorbable antimicrobial sutures. Br J Surg. 2017;104(2):e134–44.

    Article  CAS  PubMed  Google Scholar 

  40. Leaper D, Wilson P, Assadian O, Edmiston C, Kiernan M, Miller A, et al. The role of antimicrobial sutures in preventing surgical site infection. Ann R Coll Surg Engl. 2017;99(6):439–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Justinger C, Slotta JE, Ningel S, Gräber S, Kollmar O, Schilling MK. Surgical-site infection after abdominal wall closure with triclosan-impregnated polydioxanone sutures: results of a randomized clinical pathway facilitated trial (NCT00998907). Surgery. 2013;154(3):589–95.

    Article  PubMed  Google Scholar 

  42. Henriksen NA, Deerenberg EB, Venclauskas L, Fortelny RH, Garcia-Alamino JM, Miserez M, et al. Triclosan-coated sutures and surgical site infection in abdominal surgery: the TRISTAN review, meta-analysis and trial sequential analysis. Hernia. 2017;21(6):833–41.

    Article  CAS  PubMed  Google Scholar 

  43. Norman G, Atkinson RA, Smith TA, Rowlands C, Rithalia AD, Crosbie EJ, et al. Intracavity lavage and wound irrigation for prevention of surgical site infection. Cochrane Database Syst Rev. 2017;2017(10):CD012234.

    PubMed Central  Google Scholar 

  44. Gurusamy KS, Davidson BR. Continuous versus interrupted skin sutures for non-obstetric surgery. Cochrane Database Syst Rev. 2013;2013(2):CD010365.

    Google Scholar 

  45. Tuuli MG, Rampersad RM, Carbone JF, Stamilio D, Macones GA, Odibo AO. Staples compared with subcuticular suture for skin closure after cesarean delivery: a systematic review and meta-analysis. Obstet Gynecol. 2011;117(3):682–90.

    Article  PubMed  Google Scholar 

  46. Smith TO, Sexton D, Mann C, Donell S. Sutures versus staples for skin closure in orthopaedic surgery: meta-analysis. BMJ. 2010;340(7749):747.

    Google Scholar 

  47. Imamura K, Adachi K, Sasaki R, Monma S, Shioiri S, Seyama Y, et al. Randomized comparison of subcuticular sutures versus staples for skin closure after open abdominal surgery: a multicenter open-label randomized controlled trial. J Gastrointest Surg. 2016;20(12):2083–92. https://doi.org/10.1007/s11605-016-3283-z.

    Article  PubMed  Google Scholar 

  48. Tsujinaka T, Yamamoto K, Fujita J, Endo S, Kawada J, Nakahira S, et al. Subcuticular sutures versus staples for skin closure after open gastrointestinal surgery: a phase 3, multicentre, open-label, randomised controlled trial. Lancet. 2013;382(9898):1105–12. https://doi.org/10.1016/S0140-6736(13)61780-8.

    Article  PubMed  Google Scholar 

  49. Norman G, Goh EL, Dumville JC, Shi C, Liu Z, Chiverton L, et al. Negative pressure wound therapy for surgical wounds healing by primary closure. Cochrane Database Syst Rev. 2020;5:CD009261.

    PubMed  Google Scholar 

  50. Papes D. Negative pressure wound therapy for open fractures. JAMA. 2018;320(16):1709.

    Article  PubMed  Google Scholar 

  51. Hyldig N, Birke-Sorensen H, Kruse M, Vinter C, Joergensen JS, Sorensen JA, et al. Meta-analysis of negative-pressure wound therapy for closed surgical incisions. Br J Surg. 2016;103(5):477–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Condon R, Sherertz R, Gaynes RP, Martone WJ, Jarvis WR, Emori TG, et al. CDC definitions of nosocomial surgical site infections, 1992: a modification of CDC definitions of surgical wound infections. Infect Control Hosp Epidemiol. 1992;13(10):606–8.

    Article  Google Scholar 

  53. Gassman A, Mehta A, Bucholdz E, Abthani A, Guerra O, Maclin MM Jr, et al. Positive outcomes with negative pressure therapy over primarily closed large abdominal wall reconstruction reduces surgical site infection rates. Hernia. 2015;19:273–8.

    Article  CAS  PubMed  Google Scholar 

Further Reading

  • Bhangu A, Ademuyiwa AO, Aguilera ML, Alexander P, Al-Saqqa SW, Borda-Luque G, Costas-Chavarri A, Drake TM, Ntirenganya F, Fitzgerald JE, Fergusson SJ. Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study. Lancet Infect Dis. 2018;18(5):516–25.

    Article  Google Scholar 

  • De Simone B, Sartelli M, Coccolini F, Ball CG, Brambillasca P, Chiarugi M, Campanile FC, Nita G, Corbella D, Leppaniemi A, Boschini E. Intraoperative surgical site infection control and prevention: a position paper and future addendum to WSES intra-abdominal infections guidelines. World J Emerg Surg. 2020;15(1):10.

    Article  PubMed  PubMed Central  Google Scholar 

  • UK, NICE Guideline Updates Team. Surgical site infections: prevention and treatment. 2019.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Walker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Walker, A., Wilson, M. (2023). Surgical Site Infections. In: Coccolini, F., Catena, F. (eds) Textbook of Emergency General Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-22599-4_115

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22599-4_115

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22598-7

  • Online ISBN: 978-3-031-22599-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics