Skip to main content

Effect of Sc and Zr Additions on Dispersoid Microstructure and Mechanical Properties of Hot-Rolled AA5083

  • Conference paper
  • First Online:
Light Metals 2023 (TMS 2023)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

  • 2245 Accesses

Abstract

5xxx aluminum alloys are traditionally considered non-heat-treatable. With the addition of Sc/Zr and multistep heat treatment, two kinds of dispersoids (AlMn and Al3(Sc,Zr)) were formed. The effect of Sc additions (0.08–0.43 wt.%) on dispersoid formation and mechanical properties of hot-rolled sheets was investigated. The results showed that tensile properties initially increased with increasing Sc addition. The yield strength (YS) and ultimate tensile strength (UTS) of the alloy with 0.16 wt.% Sc reached 295 and 411 MPa, respectively, showing improvements of 28% in YS and 8% in UTS compared to the base alloy. However, with a further increase of Sc, the tensile properties declined owing to the formation of a line/fan-shaped microstructure associated with discontinuous Al3(Sc,Zr) precipitation during solidification. The evolution of Al3(Sc,Zr) and AlMn dispersoids during heat treatment and hot rolling was characterized using scanning and transmission electron microscopies. Their influence on the mechanical properties of hot-rolled AA5083 alloys was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J.R. Davis, (2001) Aluminum and aluminum alloys, light metals and alloys p 351–416. https://doi.org/10.1361/autb2001p351

  2. J.A.V.D. Hoeven, L. Zhuang, (2002) A New 5xxx Series Alloy Developed for Automotive Applications, SAE TECHNICAL PAPER SERIES (724): 1-8. https://doi.org/10.4271/2002-01-2128

    Article  Google Scholar 

  3. J. Jiang, F. Jiang, M. Zhang, Z. Tang, M. Tong, (2020) Recrystallization behavior of Al-Mg-Mn-Sc-Zr alloy based on two different deformation ways, Materials Letters 265: 127455. https://doi.org/10.1016/j.matlet.2020.127455

    Article  CAS  Google Scholar 

  4. Y. Peng, S. Li, Y. Deng, H. Zhou, G. Xu, Z. Yin, (2016) Synergetic effects of Sc and Zr microalloying and heat treatment on mechanical properties and exfoliation corrosion behavior of Al-Mg-Mn alloys, Materials Science and Engineering A 666: 61-71. https://doi.org/10.1016/j.msea.2016.04.029

    Article  CAS  Google Scholar 

  5. C.B. Fuller, J.L. Murray, D.N. Seidman, (2005) Temporal evolution of the nanostructure of Al(Sc ,Zr) alloys:Part I -Chemical compositions of Al3( Sc1-xZrx) precipitates, Acta Materialia 53(20): 5401-5413. https://doi.org/10.1016/j.actamat.2005.08.016

    Article  CAS  Google Scholar 

  6. Y. Li, A. Muggerud, A. Olsen, T. Furu, (2012) Precipitation of partially coherent α-Al (Mn, Fe) Si dispersoids and their strengthening effect in AA 3003 alloy, Acta Materialia 60(3): 1004-1014. https://doi.org/10.1016/j.actamat.2011.11.003

    Article  CAS  Google Scholar 

  7. K. Liu, X.G. Chen, (2015) Development of Al-Mn-Mg 3004 alloy for applications at elevated temperature via dispersoid strengthening, Materials and Design 84: 340-350. https://doi.org/10.1016/j.matdes.2015.06.140

    Article  CAS  Google Scholar 

  8. A.Y. Algendy, K. Liu, X.G. Chen, (2021) Evolution of dispersoids during multistep heat treatments and their effect on rolling performance in an Al-5 % Mg-0 . 8 % Mn alloy, Materials Characterization 181:111487. https://doi.org/10.1016/j.matchar.2021.111487

  9. Z. Li, Z. Zhang, X.G. Chen, (2018) Improvement in the mechanical properties and creep resistance of Al-Mn-Mg 3004 alloy with Sc and Zr addition, Materials Science and Engineering A 729: 196-207. https://doi.org/10.1016/j.msea.2018.05.055

    Article  CAS  Google Scholar 

  10. A.Y. Algendy, K. Liu, P. Rometsch, N. Parson, X.G. Chen, (2022) Effects of AlMn dispersoids and Al3(Sc,Zr) precipitates on the microstructure and ambient/elevated-temperature mechanical properties of hot-rolled AA5083 alloys, Materials Science and Engineering: A 855: 143950. https://doi.org/10.1016/j.msea.2022.143950

    Article  CAS  Google Scholar 

  11. A.K. Lohar, B. Mondal, D. Rafaja, V. Klemm, S.C. Panigrahi, (2009) Microstructural investigations on as-cast and annealed Al-Sc and Al-Sc-Zr alloys, Materials Characterization 60(11): 1387-1394. https://doi.org/10.1016/j.matchar.2009.06.012

    Article  CAS  Google Scholar 

  12. J. Røyset, N. Ryum, (2005) Scandium in aluminium alloys, International Materials Reviews 50(1): 19-44. https://doi.org/10.1179/174328005X14311

    Article  CAS  Google Scholar 

  13. D.N. Seidman, E.A. Marquis, D.C. Dunand, (2002) Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al (Sc) alloys, Acta Materialia 50(16): 4021-4035. https://doi.org/10.1016/S1359-6454(02)00201-X

    Article  CAS  Google Scholar 

  14. Q. Dong, A. Howells, D.J. Lloyd, M. Gallerneault, V. Fallah, (2020) Effect of solidification cooling rate on kinetics of continuous/discontinuous Al3(Sc,Zr) precipitation and the subsequent age-hardening response in cold-rolled AlMgSc(Zr) sheets, Materials Science and Engineering A 772: 138693. https://doi.org/10.1016/j.msea.2019.138693

    Article  CAS  Google Scholar 

  15. Y. Sun, Q. Pan, Y. Luo, S. Liu, W. Wang, J. Ye, Y. Shi, Z. Huang, S. Xiang, Y. Liu, (2021) The effects of scandium heterogeneous distribution on the precipitation behavior of Al3(Sc, Zr) in aluminum alloys, Materials Characterization 174: 110971. https://doi.org/10.1016/j.matchar.2021.110971

    Article  CAS  Google Scholar 

  16. A.K. Lohar, B.N. Mondal, S.C. Panigrahi, (2010) Influence of cooling rate on the microstructure and ageing behavior of as-cast Al–Sc–Zr alloy, Journal of Materials Processing Tech. 210(15): 2135-2141. https://doi.org/10.1016/j.jmatprotec.2010.07.035

    Article  CAS  Google Scholar 

  17. K. Liu, E. Elgallad, C. Li, X.G. Chen, (2021) Effects of Zr and Sc additions on precipitation of α-Al(FeMn)Si dispersoids under various heat treatments in Al-Mg-Si AA6082 alloys, International Journal of Materials Research 112(9): 706-716. https://doi.org/10.1515/ijmr-2021-8283

    Article  CAS  Google Scholar 

  18. L.L. Rokhlin, N.R. Bochvar, I.E. Tarytina, N.P. Leonova, (2010) Phase composition and recrystallization of Al-based Al-Sc-Mn-Zr alloys, Russian Metallurgy (Metally) 2010(3): 241-247. https://doi.org/10.1134/S0036029510030158

    Article  Google Scholar 

  19. A.Y. Algendy, K. Liu, P. Rometsch, N. Parson, X.G. Chen, (2022) Evolution of discontinuous/continuous Al3(Sc, Zr) precipitation in Al-Mg-Mn 5083 alloy during thermomechanical process and its impact on tensile properties, Materials Characterization 192: 112241. https://doi.org/10.1016/j.matchar.2022.112241

    Article  CAS  Google Scholar 

  20. Z. Li, Z. Zhang, X.G. Chen, (2018) Effect of Metastable Mg2Si and Dislocations on α-Al(MnFe)Si Dispersoid Formation in Al-Mn-Mg 3xxx Alloys, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 49(11): 5799-5814. https://doi.org/10.1007/s11661-018-4852-4

    Article  CAS  Google Scholar 

  21. M.J. Starink, N. Gao, N. Kamp, S.C. Wang, P.D. Pitcher, I. Sinclair, (2006) Relations between microstructure, precipitation, age-formability and damage tolerance of Al-Cu-Mg-Li (Mn, Zr, Sc) alloys for age forming, Materials Science and Engineering A 418(1-2): 241-249. https://doi.org/10.1016/j.msea.2005.11.023

    Article  CAS  Google Scholar 

  22. P. Xu, F. Jiang, M. Tong, Z. Tang, J. Jiang, N. Yan, Y. Peng, (2019) Precipitation characteristics and morphological transitions of Al3Sc precipitates, Journal of Alloys and Compounds 790: 509-516. https://doi.org/10.1016/j.jallcom.2019.03.256

    Article  CAS  Google Scholar 

  23. M. Cabibbo, E. Evangelista, M. Vedani, (2005) Influence of severe plastic deformations on secondary phase precipitation in a 6082 Al-Mg-Si alloy, Metallurgical and Materials Transactions A 36(5): 1353-1364. https://doi.org/10.1007/s11661-005-0226-9

    Article  Google Scholar 

  24. M. Li, Q. Pan, Y. Shi, X. Sun, H. Xiang, (2017) High strain rate superplasticity in an Al–Mg–Sc–Zr alloy processed via simple rolling, Materials Science and Engineering A 687 298-305. https://doi.org/10.1016/j.msea.2017.01.091

    Article  CAS  Google Scholar 

  25. J. Jiang, F. Jiang, M. Zhang, Z. Tang, M. Tong, (2020) Al3(Sc, Zr) precipitation in deformed Al-Mg-Mn-Sc-Zr alloy: effect of annealing temperature and dislocation density, Journal of Alloys and Compounds 831: 154856. https://doi.org/10.1016/j.jallcom.2020.154856

    Article  CAS  Google Scholar 

  26. A.H. Chokshi, (2020) Grain boundary processes in strengthening, weakening, and superplasticity, Advanced Engineering Materials 22(1): 1900748. https://doi.org/10.1002/adem.201900748

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) and Rio Tinto Aluminum under the Grant No. CRDPJ 514651-17, through the Research Chair in Metallurgy of Aluminum Transformation at the University of Quebec at Chicoutimi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X.-Grant Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Algendy, A.Y., Liu, K., Rometsch, P., Parson, N., Chen, XG. (2023). Effect of Sc and Zr Additions on Dispersoid Microstructure and Mechanical Properties of Hot-Rolled AA5083. In: Broek, S. (eds) Light Metals 2023. TMS 2023. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-22532-1_165

Download citation

Publish with us

Policies and ethics