Skip to main content
Log in

Effect of Metastable Mg2Si and Dislocations on α-Al(MnFe)Si Dispersoid Formation in Al-Mn-Mg 3xxx Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of metastable Mg2Si and dislocations on the formation of α-Al(MnFe)Si dispersoids in Al-Mn-Mg 3xxx alloys were studied by a close examination of the dispersoid precipitation process using the quench technique and TEM observation. Special attention was paid to the nucleation mechanisms. Mg plays an important role in promoting the formation of α-Al(MnFe)Si dispersoids. The number density and volume fraction of the dispersoids in the Mg-containing alloy are much higher than those in the control alloy without Mg, resulting in a strong dispersoid strengthening effect. During the heating process in the Mg-containing alloy, metastable Mg2Si precipitated and dissolved, leaving local Si-rich areas on pervious metastable Mg2Si, which provide favorable nucleation sites for α-Al(MnFe)Si dispersoids. It was found that β′-Mg2Si precipitates were more effective at the promotion of the dispersoid nucleation than β″-Mg2Si. In the deformed sample, the dislocations become the preferable sites for the α-Al(MnFe)Si dispersoid nucleation. By reducing dispersoid-free zones, the dispersoid distribution became more uniform compared to the non-deformed sample. The dispersoid nucleation mechanisms based on both metastable Mg2Si and dislocations are proposed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. 1. K. Liu and X. G. Chen: Mater. Design, 2015, vol. 84, pp. 340-50.

    Article  CAS  Google Scholar 

  2. 2. Z. Li, Z. Zhang and X. G. Chen: T. Nonferr. Metal. SOC., 2016, vol. 26, pp. 2793-99.

    Article  CAS  Google Scholar 

  3. 3. K. Liu and X.-G. Chen: Metall. Trans. B, 2016, vol. 47, pp. 3291-300.

    Article  CAS  Google Scholar 

  4. 4. Y. J. Li, A. M. F. Muggerud, A. Olsen and T. Furu: Acta Mater., 2012, vol. 60, pp. 1004-14.

    Article  CAS  Google Scholar 

  5. 5. A. M. F. Muggerud, E. A. Mørtsell, Y. Li and R. Holmestad: Mat. Sci. Eng. A, 2013, vol. 567, pp. 21-8.

    Article  CAS  Google Scholar 

  6. 6. Y. J. Li and L. Arnberg: Acta Mater., 2003, vol. 51, pp. 3415-28.

    Article  CAS  Google Scholar 

  7. 7. A. M. F. Muggerud, J. C. Walmsley, R. Holmestad and Y. Li: Philos. Mag., 2015, vol. 95, pp. 744-58.

    Article  CAS  Google Scholar 

  8. 8. K. Liu, H. Ma and X. G. Chen: J. Alloy. Compd., 2017, vol. 694, pp. 354-65.

    Article  CAS  Google Scholar 

  9. 9. G. A. Edwards, K. Stiller, G. L. Dunlop and M. J. Couper: Acta Mater., 1998, vol. 46, pp. 3893-904.

    Article  CAS  Google Scholar 

  10. 10. C. D. Marioara, S. J. Andersen, H. W. Zandbergen and R. Holmestad: Metall. Trans. A, 2005, vol. 36, pp. 691-702.

    CAS  Google Scholar 

  11. 11. S. J. Andersen, H. W. Zandbergen, J. Jansen, C. TrÆholt, U. Tundal and O. Reiso: Acta Mater., 1998, vol. 46, pp. 3283-98.

    Article  CAS  Google Scholar 

  12. 12. R. Vissers, M. A. van Huis, J. Jansen, H. W. Zandbergen, C. D. Marioara and S. J. Andersen: Acta Mater., 2007, vol. 55, pp. 3815-23.

    Article  CAS  Google Scholar 

  13. 13. M. Murayama and K. Hono: Acta Mater., 1999, vol. 47, pp. 1537-48.

    Article  CAS  Google Scholar 

  14. 14. C. S. Tsao, C. Y. Chen, U. S. Jeng and T. Y. Kuo: Acta Mater., 2006, vol. 54, pp. 4621-31.

    Article  CAS  Google Scholar 

  15. 15. M. H. Jacobs: Philos. Mag., 1972, vol. 26, pp. 1-13.

    Article  CAS  Google Scholar 

  16. 16. X. Wang, S. Esmaeili and D. J. Lloyd: Metall Trans. A, 2006, vol. 37, pp. 2691-99.

    Article  Google Scholar 

  17. 17. H. Hirasawa: Scripta Mater., 1975, vol. 9, pp. 955-8.

    Article  CAS  Google Scholar 

  18. 18. L. Lodgaard and N. Ryum: Mat. Sci. Eng. A, 2000, vol. 283, pp. 144-52.

    Article  Google Scholar 

  19. 19. R. Hu, T. Ogura, H. Tezuka, T. Sato and Q. Liu: J. Mat. Sci. Tec., 2010, vol. 26, pp. 237-243.

    Article  Google Scholar 

  20. 20. Z. Li, Z. Zhang and X. G. Chen: Metals, 2018, vol. 8, pp. 155.

    Article  Google Scholar 

  21. 21. C. Genevois, D. Fabrègue, A. Deschamps and W. J. Poole: Mat. Sci. Eng. A, 2006, vol. 441, pp. 39-48.

    Article  Google Scholar 

  22. 22. A. Deschamps, F. Livet and Y. Bréchet: Acta Mater., 1998, vol. 47, pp. 281-92.

    Article  Google Scholar 

  23. 23. A. Deschamps and Y. Brechet: Acta Mater., 1998, vol. 47, pp. 293-305.

    Article  Google Scholar 

  24. 24. R. S. Yassar, D. P. Field and H. Weiland: Scripta Mater., 2005, vol. 53, pp. 299-303.

    Article  CAS  Google Scholar 

  25. 25. D. Yin, Q. Xiao, Y. Chen, H. Liu, D. Yi, B. Wang and S. Pan: Mater. Design, 2016, vol. 95, pp. 329-39.

    Article  CAS  Google Scholar 

  26. 26. T. Saito, S. Muraishi, C. D. Marioara, S. J. Andersen, J. Røyset and R. Holmestad: Metall. Trans. A, 2013, vol. 44, pp. 4124-35.

    Article  Google Scholar 

  27. 27. S. P. Chen, N. C. W. Kuijpers and S. van der Zwaag: Mater. Sci. Eng. A, 2003, vol. 341, pp. 296-306.

    Article  Google Scholar 

  28. 28. J. D. Robson, T. Hill and N. Kamp: Mater. Sci. Forum, 2014, vol. 794, pp. 697-703.

    Article  Google Scholar 

  29. 29. Z. Li, Z. Zhang, X. G. Chen: Mater. Sci. Eng. A, 2017, vol. 708, pp. 383-394

    Article  CAS  Google Scholar 

  30. 30. D. Tabor: J. I. Met., 1951, vol. 79, pp. 1-18.

    CAS  Google Scholar 

  31. 31. W. Yang, M. Wang, X. Sheng, Q. Zhang, L. Huang: Philosophical Magazine Letters, 2011, vol. 91, pp. 150-160

    Article  CAS  Google Scholar 

  32. 32. W. Yang, M. Wang, R. Zhang, Q. Zhang, X. Sheng: Scripta Mater., 2010, vol. 62, pp. 705-708

    Article  CAS  Google Scholar 

  33. 33. Q. Du, W. J. Poole, M. A. Wells and N. C. Parson: Acta Mater., 2013, vol. 61, pp. 4961-73.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) and Rio Tinto Aluminum through the NSERC Industry Research Chair in the Metallurgy of Aluminum Transformation at University of Quebec at Chicoutimi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X.-Grant Chen.

Additional information

Manuscript submitted March 5, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhang, Z. & Chen, XG. Effect of Metastable Mg2Si and Dislocations on α-Al(MnFe)Si Dispersoid Formation in Al-Mn-Mg 3xxx Alloys. Metall Mater Trans A 49, 5799–5814 (2018). https://doi.org/10.1007/s11661-018-4852-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4852-4

Navigation