Skip to main content

Glass Ceramic Sealants for Solid Oxide Cells

  • Chapter
  • First Online:
High Temperature Electrolysis

Part of the book series: Lecture Notes in Energy ((LNEN,volume 95))

  • 1060 Accesses

Abstract

Sealants for high-temperature fuel cells and electrolyzers must exhibit special properties due to the high operating temperatures, the reactive atmospheres, and the electric voltage between the sealed interconnects. Various technological approaches and material classes are being pursued for this application. At the same time, there are also successful stack concepts that completely abandon the use of sealants. With regard to the materials in consideration, metallic brazing alloys and such based on mica compression seals play a marginal role and are only used in individual cases. Glass-ceramic seals are predominantly used and are therefore the focus of this section. A general insight into the topic of glass-ceramic sealants and their properties as well as strategies for their development will be provided. The content will help you better understand the behavior of complex glass-ceramic sealants. Important sections also embrace discussions on their degradation behavior under typical SOC conditions as well as their mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd El-Moneim A, Youssof IM, Abd El-Latif L (2006) Structural role of RO and Al2O3 in borate glasses. Acta Materialia 54:3811–3819

    Google Scholar 

  • Batfalsky P, Haanappel VAC, Shemet V, Vinke IC, Steinbrech RW (2006) Chemical interaction between glass-ceramic sealants and interconnect steels in SOFC stacks. J Power Sour 155(2):128–137

    Article  Google Scholar 

  • Beatty CC (2005) Compliant glass-silver seals for SOFC applications electrochemical society proceedings 2005-07, pp 1949–1955

    Google Scholar 

  • Bhattacharya S, Shashikala HD (2019) Effect of BaO on thermal and mechanical properties of alkaline earth borosilicate glasses with and without Al2O3. Physica B: Condensed Matter 571:76–86. https://doi.org/10.1016/j.physb.2019.06.065

  • Bram M, Reckers S, Drinovac P, Mnch J, Steinbrech RW, Buchkremer HP, Stver D (2004) Deformation behavior and leakage tests of alternate sealing materials for SOFS stacks. J Power Sour 138:111–119

    Article  Google Scholar 

  • Cela Greven B, Gross-Barsnick S, Koppitz T, Conradt R, Smeacetto F, Ventrella A, Ferraris M (2018) Torsional shear strength of novel glass-ceramic composite sealants for solid oxide fuel cell stacks Int. J Appl Ceram Technol 15(2):286–295. https://doi.org/10.1111/IJAC.12819

    Article  Google Scholar 

  • Chou YS, Stevenson JW (2004) Novel infiltrated Phlogopite mica compressive seals for solid oxide fuel cells. J Power Sour 135:72–78

    Article  Google Scholar 

  • Chou YS, Stevenson JW, Gow NR (2007a) Novel alkaline earth silicate sealing glass for SOFC Part I the effect of nickel oxide on the thermal and mechanical properties. J Power Sour 168:426–433

    Article  Google Scholar 

  • Chou YS, Stevenson JW, Gow NR (2007b) Novel alkaline earth silicate sealing glass for SOFC part II sealing and interfacial microstructure. J Power Sour 2007(170):395–400

    Article  Google Scholar 

  • Chou YS, Stevenson JW, Singh P (2007c) Novel refractory alkaline earth silicate sealing glassesfor planar solid oxide fuel cells. J Electrochem Soc 7(154):644–651

    Article  Google Scholar 

  • Chou Y, Stevenson JW, Singh P (2008a) Effect of pre-oxidation and environmental aging on the seal strength of a novel high-temperature solid oxide fuel cell (SOFC) sealing glass with metallic interconnect. J Power Sour 184(1):238–244. https://doi.org/10.1016/j.jpowsour.2008.06.020

  • Chou YS, Stevenson JW, Singh P (2008b) Effect of pre-oxidation and environmental aging on the seal strength of a novel high-temperature solid oxide fuel cell (SOFC) sealing glass with metallic interconnect. J Power Sour 184:238–244

    Google Scholar 

  • Chou Y, Stevenson JW, Choi J-P (2010) Alkali effect on the electrical stability of a solid oxide fuel cell sealing glass. J Electrochem Soc 157(3):B348. https://doi.org/10.1149/1.3275744

    Article  Google Scholar 

  • Cleek GW, Babcock CI (1973) Properties of glasses in some ternary systems containing BaO and SiO2. National Bureau of Standards Monograph, vol 135

    Google Scholar 

  • Corral EL, Gauntt BD, Loehman RE (2008) Properties of particle-filled glass composites used for sealing solid oxide fuel cells. In: Ceramic engineering and science proceedings band 28 (2008) 4, Seite 315–323 (9 Seiten, 11 Quellen), Westerville: American Ceramic Society (ACS)

    Google Scholar 

  • Da Silva MJ, Bartolomé JF, Aza AH de, Mello-Castanho S (2016) Glass ceramic sealants belonging to BAS (BaO–Al2O3–SiO2) ternary system modified with B2O3 addition: a different approach to access the SOFC seal issue. J Europ Ceramic Soc 36(3):631–644. https://doi.org/10.1016/j.jeurceramsoc.2015.10.005

  • Donald IW (1993) Preparation, properties and chemistry of glass- and glass-ceramic-to-metal seals and coatings. J Mater Sci 28(11):2841–2886. https://doi.org/10.1007/BF00354689

  • Donald IW, Metcalfe BL, Gerrard LA (2008) Interfacial reactions in glass-ceramic-to-metal seals. J Am Ceram Soc 91(3):715–720

    Article  Google Scholar 

  • Donald IW, Mallison PM, Metcalfe BL, Gerrard LA, Fernie JA (2011) Recent developments in the preparation, characterization and applications of glass and glass-ceramic-to-metal- seals and coatings. J Mater Sci 46:1975–2000. https://doi.org/10.1007/s10853-010-5095-y

  • Eichler K, Solow G, Otschik P, Schaffrath W (2000) Degradation effects at sealing glasses for the SOFC European solid oxide fuel cell. Forum 4:899–906

    Google Scholar 

  • Faidel D (2011) Laserstrahllöten mit glas-keramischen Zusatzwerkstoffen. Zugl.: Aachen, Techn. Hochs., Dissertion, Aachener Berichte Fügetechnik, 2012, 2. Shaker, Aachen

    Google Scholar 

  • Fakouri Hasanabadi M, Faghihi-Sani MA, Kokabi AH, Malzbender J (2017) The analysis of torsional shear strength test of sealants for solid oxide fuel cells. Ceram Int 43(15):12546–12550. https://doi.org/10.1016/j.ceramint.2017.06.128

    Article  Google Scholar 

  • Fergus JW (2005) Sealants for solid oxide fuel cells. J Power Sour 147:46–57

    Article  Google Scholar 

  • Ferraris M, de La Pierre S, Sabato AG, Smeacetto F, Javed H, Walter C, Malzbender J (2020) Torsional shear strength behavior of advanced glass-ceramic sealants for SOFC/SOEC applications. J Eur Ceram Soc 40(12):4067–4075. https://doi.org/10.1016/j.jeurceramsoc.2020.04.034

    Article  Google Scholar 

  • Folgner C, Sauchuck V, Kusnezoff M, Michaelis A (2022) Influence of temperature and steam content on degradation of metallic interconnects in reducing atmosphere, pp 17–33. https://doi.org/10.1002/9781119474746.ch3

  • Frandsen HL, Ritucci I, Khajavi P, Talic B, Kiebach R, Hendriksen PV (2019) Enhancing the robustness of brittle solid oxide cell stack components. ECS Trans 91(1):2201–2211. https://doi.org/10.1149/09101.2201ecst

  • Frieser RG (1975) A review of solder glasses. Electrocomponent Sci Technol 2:163–199

    Google Scholar 

  • Gent AN (1960) Theory of the parallel plate viscosimeter. British J Appl Phys 11:85–87

    Google Scholar 

  • Goel A, Tulyaganov DU, Kharton VV, Yaremchenko AA (2009) Optimization of La2O3-containing diopside based glass-ceramic sealants for fuel cell applications. J Power Sour 189:1032–1043

    Google Scholar 

  • Goel A, Pascual MJ, Ferreira JM (2010) Stable glass-ceramic sealants for solid oxide fuel cells: influence of Bi2O3 doping. Int J Hydrogen Energy 35(13):6911–6923. https://doi.org/10.1016/j.ijhydene.2010.04.106

  • Govindaraju N, Liu WN, Sun X, Singh P, Singh RN (2009) A modeling study on the thermomechanical behavior of glass-ceramic and self-healing glass seals at elevated temperatures. J Power Sour 190(2):476–484

    Article  Google Scholar 

  • Gross SM, Koppitz T, Reisgen U, Verlotski V, Conradt R (2005) Glass-ceramic Composites as a new sealing material for SOFCs. In: Electrochemical society proceedings 2005-07, pp 1924–1931

    Google Scholar 

  • Gross SM, Federmann D, Remmel J, Pap M (2011) Reinforced composite sealants for solid oxide fuel cell applications. J Power Sour 196(17):7338–7342. https://doi.org/10.1016/j.jpowsour.2011.02.002

    Article  Google Scholar 

  • Gueguen Y, Houizot P, Célarié F, Chen M, Hirata A, Tan Y, Allix M, Chenu S, Roux-Langlois C, Rouxel T (2017) Structure and viscosity of phase-separated BaO-SiO2 glasses. J Amer Ceramic Soc 100(5):1982–1993. https://doi.org/10.1111/jace.14642

  • Guo Q, Feng T, Lance MJ, Unocic KA, Pantelides ST, Lara-Curzio E (2022) Evolution of the structure and chemical composition of the interface between multi-component silicate glasses and yttria-stabilized zirconia after 40,000 h exposure in air at 800 °C. J Europ Ceramic Soc 42(4):1576–1584. https://doi.org/10.1016/j.jeurceramsoc.2021.11.013

  • Haanappel VAC, Shemet V, Gross SM, Koppitz T, Menzler NH, Zahid M, Quadakkers WJ (2005) Behaviour of various-glass-ceramic sealants with ferritic steels under simulated SOFC stack conditions. J Power Sour 150:86–100

    Article  Google Scholar 

  • Heinrich JG, Aldinger F (2001) Ceramic materials and components for engines. Wiley-VCH, Weinheim, New York

    Book  Google Scholar 

  • Horita T, Sakai N, Kawada T, Yokokawa H, Dokiya M (1993) Reaction of SOFC components with sealing materials. Denki Kagaku1961. 61(7):760–762. https://doi.org/10.5796/electrochemistry.61.760

  • Hsueh C-H, Becher PF (1996) Residual thermal stresses in ceramic composites. Part i: with Ellipsoidal Inclusions Mater Sci Eng: A 212(1):22–28. https://doi.org/10.1016/0921-5093(96)10176-3

    Article  Google Scholar 

  • Javed H, Sabato AG, Mansourkiaei M, Ferrero D, Santarelli M, Herbrig K, Walter C, Smeacetto F (2020) Glass-ceramic sealants for SOEC: thermal characterization and electrical resistivity in dual atmosphere. Energies 13(14):3682.https://doi.org/10.3390/en13143682

  • Kilinc E, Hand RJ (2015) Mechanical properties of soda–lime–silica glasses with varying alkaline earth contents. J Non-Crystalline Solids 429:190–197. https://doi.org/10.1016/j.jnoncrysol.2015.08.013

  • Kolitsch U, Lengauer CL, Krause W, Bernhardt H-J, Medenbach O, Blaß G (2003) BaZrSi2O7, a new mineral from the Eifel volcanic area Germany. Mitt Österr Mineral Ges 148:199–200

    Google Scholar 

  • Kuang K, Easler K (eds) (2007) Fuel cell electronics packaging. Springer, New York, NY

    Google Scholar 

  • Kubaschewski O (2010) Iron-binary phase diagrams. Springer, Berlin, Heidelberg, New York, Verlag Stahleisen m.b.H.Dsseldorf, pp 172–175

    Google Scholar 

  • Lahl N, Singh K, Singheiser L, Hilpert K, Bahadur D (2000) Crystallisation kinetics in AO-Al2O3-SiO2-B2O3 glasses (A = Ba, Ca, Mg). J Mater Sci 35(12):3089–3096

    Google Scholar 

  • Lahl N, Bahadur D, Singh K, Singheiser L, Hilpert K (2002) Chemical interactions between aluminosilicate base sealants and the components on the anode side of solid oxide fuel cells. J Electrochem Soc 149. https://doi.org/10.1149/1.1467945

  • Lara C, Pascual MJ, Durn A (2004a) Glass-forming ability, sinterability and thermal properties in the systems RO-BaO-SiO2 (R = Mg, Zn). J Non-Crystalline Solids 348:149–155

    Google Scholar 

  • Lara C, Pascual MJ, Prado MO, Durn A (2004b) Sintering of glasses in the system RO-Al2O3-BaO-SiO2 (R=Ca, Mg, Zn) studied by hot-stage microscopy. Solid State Ionics 170:201–208

    Google Scholar 

  • Larsen PH, Poulsen FW, Berg RW (1999) The influence of SiO2 addition to 2MgO-Al2O3–3.3P2O5 glass. J Non-Crystalline Solids Band 244:Heft 1, Seite 16–24 (9 Seiten, 6 Bilder, 6 Tabellen, 21 Quellen) (1999)

    Google Scholar 

  • Le S, Sun K, Zhang N, An M, Zhou D, Zhang J, Li D (2006) Novel compressive seals for solid oxide fuel cells. J Power Sour 161:901–906

    Article  Google Scholar 

  • Lejeune A-M, Richet P (1995) Rheology of crystal-bearing silicate melts: an experimental study at high viscosities. J Geophys Res 100(B3):4215–4229. https://doi.org/10.1029/94JB02985

    Article  Google Scholar 

  • Lessing PA (2007) A review of sealing technologies applicable to solid oxide electrolysis cells. J Mater Sci 42:3465–3476

    Article  Google Scholar 

  • Ley KL, Krumpelt M, Kumar R, Meiser JH, Bloom I (1996) Glass-ceramic sealants for solid oxide fuel cells: part I. Phys Propert J Mater Res 11(6):1489–1493. https://doi.org/10.1557/JMR.1996.0185

    Article  Google Scholar 

  • Li R, Tao M, Wang P, Yang J, Ma B, Chi B, Pu J (2021) Effect of interconnect pre-oxidation on high-temperature wettability and mechanical properties of glass seals in SOFC. J Am Ceram Soc 104(12):6172–6182. https://doi.org/10.1111/jace.18024

    Article  Google Scholar 

  • Li JH, Jiang YL, Wu JW, Pineault R, Gemmenn R, Liu XB (2010) Effect of electrical current on solid oxide fuel cells metallic interconnect oxidation in syngas SO. Int J Appl Ceram Technol 7(1):41–48. https://doi.org/10.1111/j.1744-7402.2009.02430.x

    Article  Google Scholar 

  • Lin C-K, Huang L-H, Chiang L-K, Chyou Y-P (2009) Thermal stress analysis of planar solid oxide fuel cell stacks: effects of sealing design. J Power Sour 192(2):515–524. https://doi.org/10.1016/j.jpowsour.2009.03.010

    Article  Google Scholar 

  • Lin C-K, Chen J-Y, Tian J-W, Chiang L-K, Wu S-H (2012) Joint strength of a solid oxide fuel cell glass–ceramic sealant with metallic interconnect. J Power Sour 205:307–317. https://doi.org/10.1016/j.jpowsour.2012.01.048

  • Liu WN, Sun X, Koeppel B, Stephens E, Khaleel MA (2011) Creep behavior of glass/ceramic sealant and its effect on long-term performance of solid oxide fuel cells. Int J Appl Ceram Technol 8(1):49–59. https://doi.org/10.1111/j.1744-7402.2009.02455.x

    Article  Google Scholar 

  • Mahapatra MK, Lu K (2010a) Effect of atmosphere on interconnect-seal glass interaction for solid oxide fuel/electrolyzer cells. J Am Ceram Soc 94(3):875–885

    Article  Google Scholar 

  • Mahapatra MK, Lu K (2010b) Glass-based seals for solid oxide fuel and electrolyzer cells—a review. Mater Sci Eng: R: Reports 67(5–6):65–85. https://doi.org/10.1016/j.mser.2009.12.002

  • Mahapatra MK, Lu K (2010) seal glass for solid oxide fuel cells. J Power Sour 195(21):7129–7139

    Google Scholar 

  • Malzbender J, Steinbrech RW, Singheiser L (2003) Determination of the interfacial fracture energies of cathodes and glass ceramic sealants in a planar solid-oxide fuel cell design. J Mater Res 18(4):929–934. https://doi.org/10.1557/JMR.2003.0127

    Article  Google Scholar 

  • Malzbender J, Zhao Y (2012) Flexural strength and viscosity of glass ceramic sealants for solid oxide fuel cell stacks. Fuel Cells 12(1):47–53. https://doi.org/10.1002/fuce.201100116

    Article  Google Scholar 

  • Malzbender J, Toonder J den, Balkenende AR, With G de (2002) Measuring mechanical properties of coatings: a methodology applied to nano-particle-filled sol–gel coatings on glass. Mater Sci Eng: R: Reports 36(2–3):47–103. https://doi.org/10.1016/S0927-796X(01)00040-7

  • Malzbender J, Mnch J, Steinbrech RW, Koppitz T, Gross SM, Remmel J (2007) Symmetric shear test of glass-ceramic sealants at SOFC operation temperature. J Mater Sci 42:6297–6301

    Article  Google Scholar 

  • Meinhardt KD, Kim DS, Chou YS, Weil KS (2008) Synthesis and properties of a barium aluminosilicate solid oxide fuel cell glass-ceramic sealant. J Power Sour 182(2):188–196

    Article  Google Scholar 

  • Menzler NH, Sebold D, Gross SM, Shemet V, Zahid M (2005) Interaction of metallic SOFC interconnect and glass ceramic sealing under various atmospheric conditions at 800 °C. Electrochem Soc Proc 2005–07:1903–1912

    Google Scholar 

  • Messler RW (2004) Joining of materials and structures: from pragmatic process to enabling technology. Elsevier, Amsterdam, Heidelberg

    Book  Google Scholar 

  • Miao X-Y, Rizvandi OB, Navasa M, Frandsen HL (2021) Modelling of local mechanical failures in solid oxide cell stacks. Appl Energy 293:116901.https://doi.org/10.1016/j.apenergy.2021.116901

  • Miletich R, Allan DR, Angel RJ (1997) The synthetic Cr2+ silicates BaCrSi4O10 and SrCrSi4O10: the missing links in the gillespite-type ABSi4O10 series. American Mineralogist 82(697)

    Google Scholar 

  • Mita K, Ikeda T, Maeda M (2001) Phase diagram study of Fe-Zn intermetallics. J Phase Eqilibria 22(2):122–125

    Google Scholar 

  • Moritz T, Schilm J, Rost A, Schwarzer E, Weingarten S, Scheithauer U, Wätzig K, Wagner D, Michaelis A (2019) Ceramic additive manufacturing methods applied to sintered glass components with novel properties CMT 1(2):111–119.https://doi.org/10.29272/cmt.2019.0008

  • Nielsen KA, Solvang M, Nielsen SBL, Dinesen AR, Beaff D, Larsen PH (2007) Glass composite seals for SOFC application. J Eur Ceram Soc 27(2–3):1817–1822

    Article  Google Scholar 

  • Niewolak L, Tietz F, Quadakkers WJ (2016) Interconnects. In: High-temperature solid oxide fuel cells for the 21st century, Elsevier, pp 195–254

    Google Scholar 

  • Pascual MJ, Durán A (2001) Determination of the viscosity-temperature curve for glasses on the basis of fixed viscosity points determined by hot stage microscopy. Phys Chem Glasses 42(1):61–66

    Google Scholar 

  • Pascual MJ, Guillet A, Durn A (2007) Optimization of glass-ceramic sealant compositions in the system MgO-BaO-SiO2 for solid oxide fuel cells (SOFC). J Power Sour 169:40–46

    Google Scholar 

  • Prado MO, Zanotto ED (2002) Glass sintering with concurrent crystallization. C R Chim 5(11):773–786. https://doi.org/10.1016/S1631-0748(02)01447-9

    Article  Google Scholar 

  • Quadakkers WJ, Greiner H, Köck W (1994) Metals and alloys for high temperature SOFC applications. Europ Solid Oxide Fuel Cell Forum 535–541

    Google Scholar 

  • Reddy AA, Tulyaganov DU, Pascual MJ, Kharton VV, Tsipis EV, Kolotygin VA, Ferreira JM (2013) Diopside–Ba disilicate glass–ceramic sealants for SOFCs: enhanced adhesion and thermal stability by Sr for Ca substitution. Int J Hydrogen Energy 38(7):3073–3086. https://doi.org/10.1016/j.ijhydene.2012.12.074

  • Ritucci I, Kiebach R, Talic B, Han L, Zielke P, Hendriksen PV, Frandsen HL (2019) Improving the interface adherence at sealings in solid oxide cell stacks. J Mater Res 34(07):1167–1178. https://doi.org/10.1557/jmr.2018.459

    Article  Google Scholar 

  • Rodríguez-López S, Haanappel V, Durán A, Muñoz F, Mather GC, Pascual MJ, Gross-Barsnick SM (2016) Glass–ceramic seals in the system MgO BaOB2O3SiO2 operating under simulated SOFC conditions. Int J Hydrogen Energy 41(34):15335–15345. https://doi.org/10.1016/j.ijhydene.2016.07.051

  • Rost A, Schilm J, Kusnezoff M (2009) Influence of electrical load on the stability of glass sealings. ECS Trans 25(2):1509–1518

    Article  Google Scholar 

  • Rost A, Schilm J, Kusnezoff M, Michaelis A (2012) Degradation of sealing glasses for SOFC under electrical load and dual atmosphere. J Ceramic Sci Technol 3(2):69–80. https://doi.org/10.4416/JCST2012-00002

    Article  Google Scholar 

  • Rost A (ed) (2013) Competence in ceramics: Entwicklung degradationsstabiler Glaslote für keramische Hochtemperaturbrennstoffzellen, vol 17. FRAUNHOFER VERLAG, Stuttgart

    Google Scholar 

  • Sabato AG, Rost A, Schilm J, Kusnezoff M, Salvo M, Chrysanthou A, Smeacetto F (2019) Effect of electric load and dual atmosphere on the properties of an alkali containing diopside-based glass sealant for solid oxide cells. J Power Sour 415:15–24. https://doi.org/10.1016/j.jpowsour.2019.01.051

    Article  Google Scholar 

  • Sarkardeh FB, Meschke F, Hilpert K, Singheiser L (eds) (1999) Berichte des Forschungszentrums Jülich: Stabilität und Kompatibilität des keramischen Interkonnektors der Hochtemperatur-Brennstoffzelle SOFC, Jülich

    Google Scholar 

  • Sauchuck V, Kusnezoff M, Trofimenko N, Megel S, Baldus H-P, Reinert A (2008) Development of effective protective materials for SOFC metallic interconnects. In: 8th European solid oxide fuel cell forum, vol 09

    Google Scholar 

  • Sauchuck V, Trofimenko N, Megel S, Rothe S, Schilm J, Andritschky M, Hiller M, Goebel C, Froitzheim J, Kusnezoff M (2020) Application of composite coatings as protection/contacting layers for metallic highchromium-content SOFC interconnect material. In: 14th European SOFC & SOE Forum, pp 601–611

    Google Scholar 

  • Schilling C, Roosen A (2012) Fügen von keramischen Komponenten der Hochtemperatur-Brennstoffzellen mittels Glas-und Glaskeramikloten. Friedrich Alexander University Erlangen-Nuremberg, PdD

    Google Scholar 

  • Schilm J, Rost A, Kusnezoff M, Michaelis A (2010) Sealing glasses for SOFC—degradation behaviour. In: Advances in solid oxide fuel cells V, Wiley, Ltd, pp 183–193

    Google Scholar 

  • Schilm J, Rost A, Poenicke A, Kusnezoff M, Michaelis A (2012) Ceramic integration technologies for solid oxide fuel cells. Int J Appl Ceram Technol 9(4):688–699. https://doi.org/10.1111/j.1744-7402.2012.02789.x

    Article  Google Scholar 

  • Schilm J, Rost A, Kusnezoff M, Megel S, Michaelis A (2018) Glass ceramics sealants for SOFC interconnects based on a high chromium sinter alloy Int. J Appl Ceram Technol 15(2):239–254. https://doi.org/10.1111/ijac.12811

    Article  Google Scholar 

  • Scholze H (1962) Der Einfluss Von Viskositaet Und Oberflchenspannung Auf Erhitzungsmikroskopische Messungen an Glaesern Berichte Der Deutschen Keramischen Gesellschaft 59:63–68

    Google Scholar 

  • Scholze H (1977) Glas, natur, struktur und eigenschaften, Zweite, neubearbeitete. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Selçuk A, Atkinson A (1997) Elastic properties of ceramic oxides used in solid oxide fuel cells (SOFC). J Europ Ceramic Soc 17(12):1523–1532. https://doi.org/10.1016/S0955-2219(96)00247-6

  • Selsing J (1961) Internal stresses in ceramics. J Am Ceram Soc 44(8):419. https://doi.org/10.1111/j.1151-2916.1961.tb15475.x

    Article  Google Scholar 

  • Serbena FC, Soares VO, Peitl O, Pinto H, Muccillo R, Zanotto ED (2011) Internal residual stresses in sintered and commercial low expansion Li2O-Al2O3-SiO2 glass-ceramics. J Amer Ceramic Soc 94(4):1206–1214. https://doi.org/10.1111/j.1551-2916.2010.04220.x

  • Shabanova GN, Taranenkova VV, Korogodskaya AN, Khristich EV (2003) Structure of the BaO-Al2O3-SiO2 system (a review). Glass and Ceramics 60(1–2):43–46

    Google Scholar 

  • Shelby JE (1979) Effect of morphology on the properties of alkaline earth silicate glasses. J Appl Phys 50(12):8010–8015. https://doi.org/10.1063/1.325986

    Article  Google Scholar 

  • Singh K, Walia T (2021) Review on silicate and borosilicate-based glass sealants and their interaction with components of solid oxide fuel cell. Int J Energy Res 45(15):20559–20582. https://doi.org/10.1002/er.7161

    Article  Google Scholar 

  • Smeacetto F, Salvo M, Ferraris M, Casalegno V, Asinari P, Chrysanthou A (2008a5a) Characterization and performance of glass-ceramic sealant to join metallic interconnects to YSZ and anode-supported-electrolyte in planar SOFCs. J Europ Ceramic Soc 28:2521–2527

    Google Scholar 

  • Smeacetto F, Salvo M, Ferraris M, Casalegno V, Asinari P, Chrysanthou A (2008b) Characterization and performance of glass–ceramic sealant to join metallic interconnects to YSZ and anode-supported-electrolyte in planar SOFCs. J Europ Ceramic Soc 28(13):2521–2527. https://doi.org/10.1016/j.jeurceramsoc.2008.03.035

  • Smeacetto F, Salvo M, Ferraris M, Casalegno V, Asinari P (2008c) Glass and composite seals for the joining of YSZ to metallic interconnect in solid oxide fuel cells. J Eur Ceram Soc 28(3):611–616

    Article  Google Scholar 

  • Sohn S-B, Choi S-Y, Kim G-H, Song H-S, Kim G-D (2002) Stable sealing glass for planar solid oxide fuel cell. J Non-Cryst Solids 297(2–3):103–112. https://doi.org/10.1016/S0022-3093(01)01042-0

    Article  Google Scholar 

  • Sohn SB, Choi SY, Kim GH, Song HS, Kim GD (2004) Suitable glass-ceramic sealant for planar solid-oxide fuel cells. J Am Ceram Soc 87(2):254–260

    Article  Google Scholar 

  • Sumi H, Shimada H, Yamaguchi T, Fujishiro Y, Awano M (2019) Development of portable solid oxide fuel cell system driven by hydrocarbon and alcohol fuels. In: Salem J, Koch D, Mechnich P, Kusnezoff M, Bansal N, LaSalvia J, Balaya P, Fu Z, Ohji T (eds) Proceeding of the 42nd international conference on advanced ceramics and composites. Ceramic engineering and science proceedings, Wiley, Inc, Hoboken, NJ, USA, pp 159–163

    Google Scholar 

  • Sun T, Xiao H, Guo W, Hong X (2010) Effect of Al2O3 content on BaO–Al2O3–B2O3–SiO2 glass sealant for solid oxide fuel cell. Ceramics Int 36(2):821–826. https://doi.org/10.1016/j.ceramint.2009.09.045

  • Theerapapvisetpong A, Jiemsirilers S, Thavorniti P, Conradt R (2011) Barium-free glass-ceramic sealants from the system CaO-MgO-B2O3-Al2O3-SiO2 for application in the SOFC. MSF 695:1–4. https://doi.org/10.4028/www.scientific.net/MSF.695.1

  • Thomas RH (1950) Phase equilibrium in a portion of the ternary system Ba OA-I2,O3,-SiO2. J Amer Ceramic Soc 33(2):35–44. https://doi.org/10.1111/j.1151-2916.1950.tb14163.x

  • Venskutonis A, Brandner M, Kraussler W, Sigl L (2009) High volume fabrication of ready-to-stack components for planar SOFC concepts ECS. Trans 25(2):1353–1359. https://doi.org/10.1149/1.3205664

  • Wanko E, Gross SM, Koppitz T, Remmel J, Reisgen U, Wilsmann W, Conradt R (eds) (2007) Glaskeramische Materialien des Systems BaO-MgO-SiO2 zum Lten der Hochtemperatur-Brennstoffzelle (SOFC). In: Disserion. Brazing, High Temperature Brazing and Diffusion Welding, Aachen

    Google Scholar 

  • Wanko E, Gross SM, Remmel J, Reisgen U, Conradt R (2008a) Composits from the system BaO-MgO-SiO2 as sealing material for the high temperature fuel cell (SOFC) DVS-Berichte(250), 474–477 (2008a)

    Google Scholar 

  • Wanko E, Gross SM, Remmel J, Reisgen U, Conradt R (eds) (2008b) Verbundwerkstoffe aus dem System BaO-MgO-SiO2als Fügematerial für die Hochtemperaturbrennstoffzelle (SOFC). In: Dissertion Groe Schweitechnische Tagung, Dresden

    Google Scholar 

  • Weil KS, Deibler JE, Hardy JS, Kim DS, Xia GG, Chick LA, Coyle CA (2004) Rupture testing as a tool for developing planar solid oxide fuel cell seals. J Mater Eng Perform 13(3):316–326. https://doi.org/10.1361/10599490419306

    Article  Google Scholar 

  • Wenning NL, Xin S, Brian K, Mohammad K (2010) Experimental study of the aging and self-healing of the glass/ceramic sealant used in SOFCs SO. Int J Appl Ceram Technol 7(1):22–29. https://doi.org/10.1111/j.1744-7402.2009.02417.x

    Article  Google Scholar 

  • Wiener F, Bram M, Sebold D (2007) Chemical interaction between Crofer 22 APU and mica-based gaskets under simulated SOFC conditions. J Mater Sci 42(8):2643–2651

    Google Scholar 

  • Yang Z, Meinhardt KD, Stevenson JW (2003) Chemical compatibility of barium-calcium-aluminosilicate-based sealing glasses with the ferritic stainless steel interconnect in SOFCs. J Electrochem Soc 150(8):1095–1101. https://doi.org/10.1149/1.1590325

  • Yang Z, Xia GG, Meinhardt J, Weil KS, Stevenson JW (2005) Glass sealing in planar SOFC stacks and chemical stability of seal interfaces. Ceram Trans 158:135–146

    Google Scholar 

  • Yeong SC, Stevenson JW, Chick LA (2003) Novel compressive mica seals with metallic interlayers for solid oxide fuel cell applications. J Am Ceram Soc 86(6):1003–1007

    Article  Google Scholar 

  • Zhang T, Fahrenholtz WG, Reis ST, Brow RK (2008) Borate volatility from SOFC sealing glasses. J Am Ceram Soc 91(8):2564–2569. https://doi.org/10.1111/j.1551-2916.2008.02479.x

    Article  Google Scholar 

  • Zhao Y, Malzbender J, Gross SM (2011) The effect of room temperature and high temperature exposure on the elastic modulus, hardness and fracture toughness of glass ceramic sealants for solid oxide fuel cells. J Europ Ceramic Soc 31(4):541–548. https://doi.org/10.1016/j.jeurceramsoc.2010.10.032

  • Zhang T, Brow RK, Fahrenholtz WG, Reis ST (2012) Chromate formation at the interface between a solid oxide fuel cell sealing glass and interconnect alloy. J Power Sour 205:301–306

    Article  Google Scholar 

  • Zhenguo Y, Stevenson JW, Meinhardt KD (2003) Chemical interactions of barium-calcium-aluminosilicate-based sealing glasses with oxidation resistant alloys. Solid State Ionics 160:213–225

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Schilm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schilm, J., Kusnezoff, M., Rost, A. (2023). Glass Ceramic Sealants for Solid Oxide Cells. In: Laguna-Bercero, M.A. (eds) High Temperature Electrolysis. Lecture Notes in Energy, vol 95. Springer, Cham. https://doi.org/10.1007/978-3-031-22508-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22508-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22507-9

  • Online ISBN: 978-3-031-22508-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics