Skip to main content

Emerging Trends in Solid Oxide Electrolysis Cells

  • Chapter
  • First Online:
High Temperature Electrolysis

Abstract

Solid oxide electrolysis cells are ceramic multilayer devices based on crystalline oxides with ionic and mixed ionic-electronic properties. Due to their ceramic nature, strong shape limitations have to be considered since conventional manufacturing methods for multilayer ceramics are based on tape casting, screen printing, extrusion, or dip coating, which ultimately result in planar or tubular geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta M, Baiutti F, Tarancón A, MacManus-Driscoll JL (2019) Nanostructured materials and interfaces for advanced ionic electronic conducting oxides. Adv Mater Interfaces 6:1900462

    Article  Google Scholar 

  • Adler SB, Lane JA, Steele BCH (1996) Electrode kinetics of porous mixed-conducting oxygen electrodes. J Electrochem Soc 143:3554–3564

    Article  Google Scholar 

  • Adler SB (2004) Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem Rev 104:4791–4843

    Article  Google Scholar 

  • Aguiar P, Adjiman CS, Brandon NP (2005) Anode-supported intermediate-temperature direct internal reforming solid oxide fuel cell: II. Model-based dynamic performance and control. J Power Sources 147:136–147

    Article  Google Scholar 

  • Akrami S, Edalati P, Fuji M, Edalati K (2021) High-entropy ceramics: review of principles, production and applications. Mater Sci Eng R Rep 146:100644

    Article  Google Scholar 

  • Ali A, Wen X, Nandakumar K, Luo J, Chuang KT (2008) Geometrical modeling of microstructure of solid oxide fuel cell composite electrodes. J Power Sources 185:961–966

    Article  Google Scholar 

  • Ali S, Sørensen K, Nielsen MP (2020) Modeling a novel combined solid oxide electrolysis cell (SOEC)—biomass gasification renewable methanol production system. Renew Energy 154:1025–1034

    Article  Google Scholar 

  • Almar L, Andreu T, Morata A, Tarancón A (2011) Mesoporous NiO-CGO obtained by hard template as high surface area anode for IT-SOFC. ECS Trans 35:1647–1654

    Article  Google Scholar 

  • Almar L, Andreu T, Morata A, Torrell M, Yedra L, Estradé S, Peiró F, Tarancón A (2014) High-surface-area ordered mesoporous oxides for continuous operation in high temperature energy applications. J Mater Chem A 2:3134–3141

    Article  Google Scholar 

  • Almar L, Morata A, Torrell M, Gong M, Liu M, Andreu T, Tarancón A (2016) Synthesis and characterization of robust, mesoporous electrodes for solid oxide fuel cells. J Mater Chem A 4:7650–7657

    Article  Google Scholar 

  • Almar L, Morata A, Torrell M, Gong M, Andreu T, Liu M, Tarancón A (2017) A durable electrode for solid oxide cells: mesoporous Ce0.8Sm0.2O1.9 scaffolds infiltrated with a Sm0.5Sr0.5CoO3-δ catalyst. Electrochim Acta 235:646–653

    Article  Google Scholar 

  • Ambrosi A, Shi RRS, Webster RD (2020) 3D-printing for electrolytic processes and electrochemical flow systems. J Mater Chem A 8:21902–21929

    Article  Google Scholar 

  • Anandkumar M, Bhattacharya S, Deshpande AS (2019) Low temperature synthesis and characterization of single phase multi-component fluorite oxide nanoparticle sols. RSC Adv 9:26825–26830

    Article  Google Scholar 

  • Anelli S, Baiutti F, Hornés A, Bernadet L, Torrell M, Tarancón A (2019) Improved mesostructured oxygen electrodes for highly performing solid oxide cells for co-electrolysis of steam and carbon dioxide. J Mater Chem A 7:27458–27468

    Article  Google Scholar 

  • Anelli S, Moreno-Sanabria L, Baiutti F, Torrell M, Tarancón A (2021) Solid oxide cell electrode nanocomposites fabricated by inkjet printing infiltration of ceria scaffolds. Nanomaterials 11:3435

    Article  Google Scholar 

  • Anelli S, Rosa M, Baiutti F, Torrell M, Esposito V, Tarancón A (2022) Hybrid-3D printing of symmetric solid oxide cells by inkjet printing and robocasting. Addit Manuf 51:102636

    Google Scholar 

  • Arrivé C, Delahaye T, Joubert O, Gauthier G (2013) Exsolution of nickel nanoparticles at the surface of a conducting titanate as potential hydrogen electrode material for solid oxide electrochemical cells. J Power Sources 223:341–348

    Article  Google Scholar 

  • Baiutti F, Chiabrera F, Acosta M, Diercks D, Parfitt D, Santiso J, Wang X, Cavallaro A, Morata A, Wang H, Chroneos A, MacManus-Driscoll J, Tarancon A (2021) A high-entropy manganite in an ordered nanocomposite for long-term application in solid oxide cells. Nat Commun 12:1–11

    Article  Google Scholar 

  • Berges C, Wain A, Andújar R, Naranjo JA, Gallego A, Nieto E, Herranz G, Campana R (2021) Fused filament fabrication for anode supported SOFC development: towards advanced, scalable and cost-competitive energetic systems. Int J Hydrogen Energy 46:26174–26184

    Article  Google Scholar 

  • Bietsch A, Zhang J, Hegner M, Lang HP, Gerber C (2004) Rapid functionalization of cantilever array sensors by inkjet printing. Nanotechnology 15:873–880

    Article  Google Scholar 

  • Blank DHA, Dekkers M, Rijnders G (2013) Pulsed laser deposition in twente: from research tool towards industrial deposition. J Phys D Appl Phys 47:034006

    Article  Google Scholar 

  • Bonnet E, Grenier JC, Bassat JM, Jacob A, Delatouche B, Bourdais S (2021) On the ionic conductivity of some zirconia-derived high-entropy oxides. J Eur Ceram Soc 41:4505–4515

    Article  Google Scholar 

  • Brady GA, Halloran JW (1997) Stereolithography of ceramic suspensions. Rapid Prototyping J 3:61–65

    Article  Google Scholar 

  • Brisse A, Schefold J, Zahid M (2008) High temperature water electrolysis in solid oxide cells. Int J Hydrogen Energy 33:5375–5382

    Article  Google Scholar 

  • Brown KA, Brittman S, Jariwala, D, Celano U (2020) Machine learning in nanoscience: big data at small scales

    Google Scholar 

  • Browne MP, Redondo E, Pumera M (2020) 3D printing for electrochemical energy applications. Chem Rev 120:2783–2810

    Article  Google Scholar 

  • Burnat D, Kontic R, Holzer L, Steiger P, Ferri D, Heel A (2016) Smart material concept: reversible microstructural self-regeneration for catalytic applications. J Mater Chem A 4:11939–11948

    Article  Google Scholar 

  • Cai JW, Zhang BC, Zhang MH, Wen YJ, Qu XH (2021) Indirect 3D printed ceramic: a literature review. J Cent South Univ 28:983–1002

    Google Scholar 

  • Cai Q, Adjiman CS, Brandon NP (2011) Modelling the 3D microstructure and performance of solid oxide fuel cell electrodes: computational parameters. Electrochim Acta 56:5804–5814

    Article  Google Scholar 

  • Cantor B, Chang ITH, Knight P, Vincent AJB (2004) Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A 375–377:213–218

    Article  Google Scholar 

  • Capel AJ, Edmondson S, Christie SDR, Goodridge RD, Bibb RJ, Thurstans M (2013) Design and additive manufacture for flow chemistry. Lab Chip 13:4583–4590

    Article  Google Scholar 

  • Carolan MF, Michaels JN (1987) Chemical vapor deposition of yttria stabilized zirconia on porous supports. Solid State Ionics 25:207–216

    Article  Google Scholar 

  • Cavallaro A, Pramana SS, Ruiz-Trejo E, Sherrell PC, Ware E, Kilner JA, Skinner SJ (2018) Amorphous-cathode-route towards low temperature SOFC. Sustain Energy Fuels 2:862–875

    Article  Google Scholar 

  • Cebollero JA, Lahoz R, Laguna-Bercero MA, Larrea A (2017) Tailoring the electrode-electrolyte interface of solid oxide fuel cells (SOFC) by laser micro-patterning to improve their electrochemical performance. J Power Sources 360:336–344

    Article  Google Scholar 

  • Cebollero JA, Laguna-Bercero MA, Lahoz R, Silva J, Moreno R, Larrea A (2019) Optimization of laser-patterned YSZ-LSM composite cathode-electrolyte interfaces for solid oxide fuel cells. J Eur Ceram Soc 39:3466–3474

    Article  Google Scholar 

  • Cell3Ditor (n.d.)

    Google Scholar 

  • Cell3Ditor project on 3D printing tech for SOFC stacks (2016) Fuel Cells Bull 2016:12

    Google Scholar 

  • Chang I, Ji S, Park J, Lee MH, Cha SW (2015) Ultrathin YSZ coating on Pt cathode for high thermal stability and enhanced oxygen reduction reaction activity. Adv Energy Mater 5:1402251

    Article  Google Scholar 

  • Chanthanumataporn M, Hui J, Yue X, Kakinuma K, Irvine JTS, Hanamura K (2019) Electrical reduction of perovskite electrodes for accelerating exsolution of nanoparticles. Electrochim Acta 306:159–166

    Article  Google Scholar 

  • Chelmehsara ME, Mahmoudimehr J (2018) Techno-economic comparison of anode-supported, cathode-supported, and electrolyte-supported SOFCs. Int J Hydrogen Energy 43:15521–15530

    Article  Google Scholar 

  • Chen XJ, Chan SH, Khor KA (2004) Simulation of a composite cathode in solid oxide fuel cells. Electrochim Acta 49:1851–1861

    Article  Google Scholar 

  • Chen K, Ai N, Jiang SP (2012a) Reasons for the high stability of nano-structured (La,Sr)MnO3 infiltrated Y2O3–ZrO2 composite oxygen electrodes of solid oxide electrolysis cells. Electrochem Commun 19:119–122

    Article  Google Scholar 

  • Chen Y, Bunch J, Li T, Mao Z, Chen F (2012b) Novel functionally graded acicular electrode for solid oxide cells fabricated by the freeze-tape-casting process. J Power Sources 213:93–99

    Article  Google Scholar 

  • Chen K, Ai N, Jiang SP (2014) Performance and structural stability of Gd0.2Ce0.8O1.9 infiltrated La0.8Sr0.2MnO3 nano-structured oxygen electrodes of solid oxide electrolysis cells. Int J Hydrogen Energy 39:10349–10358

    Article  Google Scholar 

  • Chen K, Jiang SP (2016) Review—materials degradation of solid oxide electrolysis cells. J Electrochem Soc 163:F3070–F3083

    Article  Google Scholar 

  • Chen K, Pei X, Tang L, Cheng H, Li Z, Li C, Zhang X, An L (2018a) A five-component entropy-stabilized fluorite oxide. J Eur Ceram Soc 38:4161–4164

    Article  Google Scholar 

  • Chen Z, Ouyang J, Liang W, Yan ZC, Stadler F, Lao C (2018b) Development and characterizations of novel aqueous-based LSCF suspensions for inkjet printing. Ceram Int 44:13381–13388

    Google Scholar 

  • Chen Z, Li Z, Li J, Liu C, Lao C, Fu Y, Liu C, Li Y, Wang P, He Y (2019) 3D printing of ceramics: a review. J Eur Ceram Soc 39:661–687

    Article  Google Scholar 

  • Chen K, Jiang SP (2020) Surface segregation in solid oxide cell oxygen electrodes: phenomena, mitigation strategies and electrochemical properties. Electrochem Energy Rev 3:730–765

    Article  Google Scholar 

  • Chen K, Ma J, Tan C, Li C, An L (2021a) An anion-deficient high-entropy fluorite oxide with very low density. Ceram Int 47:21207–21211

    Article  Google Scholar 

  • Chen Z, Sun X, Shang Y, Xiong K, Xu Z, Guo R, Cai S, Zheng C (2021b) Dense ceramics with complex shape fabricated by 3D printing: a review. J Adv Ceram 10:195–218

    Article  Google Scholar 

  • Cheng Y, Raman AS, Paige J, Zhang L, Sun D, Chen MU, Vojvodic A, Gorte RJ, Vohs JM (2019) Enhancing oxygen exchange activity by tailoring perovskite surfaces. J Phys Chem Lett 10:24

    Article  Google Scholar 

  • Cho S, Kim YN, Lee J, Manthiram A, Wang H (2012) Microstructure and electrochemical properties of PrBaCo2O5+δ/Ce0.9Gd0.1O1.95 vertically aligned nanocomposite thin film as interlayer for thin film solid oxide fuel cells. Electrochim Acta 62:147–152

    Article  Google Scholar 

  • Choi S, Sengodan S, Park S, Ju YW, Kim J, Hyodo J, Jeong HY, Ishihara T, Shin J, Kim G (2016) A robust symmetrical electrode with layered perovskite structure for direct hydrocarbon solid oxide fuel cells: PrBa0.8Ca0.2Mn2O5+δ. J Mater Chem A 4:1747–1753

    Article  Google Scholar 

  • Coddet P, Amany ML, Vulliet J, Caillard A, Thomann AL (2019) YSZ/GDC bilayer and gradient barrier layers deposited by reactive magnetron sputtering for solid oxide cells. Surf Coat Technol 357:103–113

    Article  Google Scholar 

  • Connor PA, Yue X, Savaniu CD, Price R, Triantafyllou G, Cassidy M, Kerherve G, Payne DJ, Maher RC, Cohen LF, Tomov RI, Glowacki BA, Kumar RV, Irvine JTS (2018) Tailoring SOFC electrode microstructures for improved performance. Adv Energy Mater 8:1800120

    Article  Google Scholar 

  • Coppola N, Polverino P, Carapella G, Sacco C, Galdi A, Ubaldini A, Vaiano V, Montinaro D, Maritato L, Pianese C (2018) Structural and electrical characterization of sputter-deposited Gd0.1Ce0.9O2−δ thin buffer layers at the Y-stabilized zirconia electrolyte interface for IT-solid oxide cells. Catalysts 8

    Google Scholar 

  • Coppola N, Polverino P, Carapella G, Sacco C, Galdi A, Montinaro D, Maritato L, Pianese C (2020) Optimization of the electrical performances in solid oxide fuel cells with room temperature sputter deposited Gd0.1Ce0.9O1.95 buffer layers by controlling their granularity via the in-air annealing step. Int J Hydrogen Energy 45:12997–13008

    Article  Google Scholar 

  • Coppola N, Polverino P, Carapella G, Ciancio R, Rajak P, Dario M, Martinelli F, Maritato L, Pianese C (2021) Large area deposition by radio frequency sputtering of Gd0.1Ce0.9O1.95 buffer layers in solid oxide fuel cells: structural, morphological and electrochemical investigation. Materials 14:5826

    Google Scholar 

  • Cost-effective and flexible 3D printed SOFC stacks for commercial applications (n.d.)

    Google Scholar 

  • Dąbrowa J, Szymczak M, Zajusz M, Mikuła A, Moździerz M, Berent K, Wytrwal-Sarna M, Bernasik A, Stygar M, Świerczek K (2020a) Stabilizing fluorite structure in ceria-based high-entropy oxides: influence of Mo addition on crystal structure and transport properties. J Eur Ceram Soc 40:5870–5881

    Article  Google Scholar 

  • Dąbrowa J, Olszewska A, Falkenstein A, Schwab C, Szymczak M, Zajusz M, Moździerz M, Mikuła A, Zielińska K, Berent K, Czeppe T, Martin M, Świerczek K (2020b) An innovative approach to design SOFC air electrode materials: high entropy La1−xSrx(Co,Cr,Fe,Mn,Ni)O3−δ (x = 0, 0.1, 0.2, 0.3) perovskites synthesized by the sol–gel method. J Mater Chem A

    Google Scholar 

  • De Vero JC, Develos-Bagarinao K, Matsuda H, Kishimoto H, Ishiyama T, Yamaji K, Horita T, Yokokawa H (2018) Sr and Zr transport in PLD-grown Gd-doped ceria interlayers. Solid State Ionics 314:165–171

    Article  Google Scholar 

  • del-Mazo-Barbara L, Ginebra MP (2021) Rheological characterisation of ceramic inks for 3D direct ink writing: a review. J Eur Ceram Soc 41:18–33

    Google Scholar 

  • Deng X, Chen K, Tü Ysü H (2017) Protocol for the nanocasting method: preparation of ordered mesoporous metal oxides. Chem Mater 29:40–52

    Article  Google Scholar 

  • Derby B (2010) Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu Rev Mater Res 40:395–414

    Article  Google Scholar 

  • Derby B (2015) Additive manufacture of ceramics components by inkjet printing. Engineering 1:113–123

    Article  Google Scholar 

  • Desai S, Yang M, Xu Z, Sankar J (2014) Direct write manufacturing of solid oxide fuel cells for green energy. J Environ Res Dev 8:477–483

    Google Scholar 

  • Despeisse M, Ford S (2015) The role of additive manufacturing in improving resource efficiency and sustainability. IFIP Adv Inf Commun Technol 460:129–136

    Google Scholar 

  • Develos-Bagarinao K, De Vero J, Kishimoto H, Ishiyama T, Yamaji K, Horita T, Yokokawa H (2018) Multilayered LSC and GDC: an approach for designing cathode materials with superior oxygen exchange properties for solid oxide fuel cells. Nano Energy 52:369–380

    Article  Google Scholar 

  • Develos-Bagarinao K, Budiman RA, Liu SS, Ishiyama T, Kishimoto H, Yamaji K (2020) Evolution of cathode-interlayer interfaces and its effect on long-term degradation. J Power Sources 453:227894

    Article  Google Scholar 

  • Develos-Bagarinao K, Celikbilek O, Budiman RA, Kerherve G, Fearn S, Skinner SJ, Kishimoto H (2022) On the role of surfaces and interfaces in electrochemical performance and long-term stability of nanostructured LSC thin film electrodes. J Mater Chem A 10:2445–2459

    Article  Google Scholar 

  • Ding D, Li X, Lai SY, Gerdes K, Liu M (2014) Enhancing SOFC cathode performance by surface modification through infiltration. Energy Environ Sci 7:552–575

    Article  Google Scholar 

  • Dong D, Shao X, Hu X, Chen K, Xie K, Yu L, Ye Z, Yang P, Parkinson G, Li CZ (2016) Improved gas diffusion within microchanneled cathode supports of SOECs for steam electrolysis. Int J Hydrogen Energy 41:19829–19835

    Article  Google Scholar 

  • Dong D, Xu S, Shao X, Hucker L, Marin J, Pham T, Xie K, Ye Z, Yang P, Yu L, Parkinson G, Li CZ (2017) Hierarchically ordered porous Ni-based cathode-supported solid oxide electrolysis cells for stable CO2 electrolysis without safe gas. J Mater Chem A 5:24098–24102

    Article  Google Scholar 

  • Dudek M, Tomov RI, Wang C, Glowacki BA, Tomczyk P, Socha RP, Mosiałek M (2013) Feasibility of direct carbon solid oxide fuels cell (DC-SOFC) fabrication by inkjet printing technology. Electrochim Acta 105:412–418

    Article  Google Scholar 

  • Esposito V, Gadea C, Hjelm J, Marani D, Hu Q, Agersted K, Ramousse S, Jensen SH (2015) Fabrication of thin yttria-stabilized-zirconia dense electrolyte layers by inkjet printing for high performing solid oxide fuel cells. J Power Sources 273:89–95

    Article  Google Scholar 

  • Esposito V, Tarancón A (eds) (2021) 3D printing for energy applications. John Wiley & Sons Inc., Hoboken, New Jersey

    Google Scholar 

  • Evans A, Bieberle-Hütter A, Rupp JLM, Gauckler LJ (2009) Review on microfabricated micro-solid oxide fuel cell membranes. J Power Sources 194:119–129

    Article  Google Scholar 

  • Evans A, Martynczuk J, Stender D, Schneider CW, Lippert T, Prestat M (2015) Low-temperature micro-solid oxide fuel cells with partially amorphous La0.6Sr0.4CoO3-δ cathodes. Adv Energy Mater 5:1–9

    Article  Google Scholar 

  • Fan H, Zhang Y, Han M (2017) Infiltration of La0.6Sr0.4FeO3-δ nanoparticles into YSZ scaffold for solid oxide fuel cell and solid oxide electrolysis cell. J Alloy Compd 723:620–626

    Article  Google Scholar 

  • Fan L, Zhu B, Su PC, He C (2018) Nanomaterials and technologies for low temperature solid oxide fuel cells: recent advances, challenges and opportunities. Nano Energy 45:148–176

    Article  Google Scholar 

  • Farahani RD, Dubé M, Therriault D (2016) Three-dimensional printing of multifunctional nanocomposites: manufacturing techniques and applications. Adv Mater 5794–5821

    Google Scholar 

  • Farandos NM, Kleiminger L, Li T, Hankin A, Kelsall GH (2016) Three-dimensional inkjet printed solid oxide electrochemical reactors I. Yttria-stabilized zirconia electrolyte. Electrochim Acta 213:324–331

    Article  Google Scholar 

  • Farandos NM, Li T, Kelsall GH (2018) 3-D inkjet-printed solid oxide electrochemical reactors. II LSM–YSZ electrodes. Electrochim Acta 270:264–273

    Article  Google Scholar 

  • Fasaki I, Siamos K, Arin M, Lommens P, Van Driessche I, Hopkins SC, Glowacki BA, Arabatzis I (2012) Ultrasound assisted preparation of stable water-based nanocrystalline TiO2 suspensions for photocatalytic applications of inkjet-printed films. Appl Catal A 411–412:60–69

    Article  Google Scholar 

  • Feilden E, Blanca EGT, Giuliani F, Saiz E, Vandeperre L (2016) Robocasting of structural ceramic parts with hydrogel inks. J Eur Ceram Soc 36:2525–2533

    Article  Google Scholar 

  • Feng Z, Liu L, Li L, Chen J, Liu Y, Li Y, Hao L, Wu Y (2019) 3D printed Sm-doped ceria composite electrolyte membrane for low temperature solid oxide fuel cells. Int J Hydrogen Energy 44:13843–13851

    Article  Google Scholar 

  • Feng Z, Pu J, Liu M, Zhang W, Zhang X, Cui L (2022) Facile construction of hierarchical Co3S4/CeO2 heterogeneous nanorod array on cobalt foam for electrocatalytic overall water splitting. J Colloid Interface Sci 613:806–813

    Article  Google Scholar 

  • Ferreira VJ, Wolff D, Hornés A, Morata A, Torrell M, Tarancón A, Corchero C (2021) 5 kW SOFC stack via 3D printing manufacturing: an evaluation of potential environmental benefits. Appl Energy 291

    Google Scholar 

  • Franco T, Brandner M, Rüttinger M, Kunschert G, Venskutonis A, Sigl L (2009) Recent development aspects of metal supported thin-film SOFC. ECS Trans 25:681–688

    Article  Google Scholar 

  • Gaiselmann G, Neumann M, Holzer L, Hocker T, René M (2013) Stochastic 3D modeling of La0.6Sr0.4CoO3−δ cathodes based on structural segmentation of FIB–SEM images. Comput Mater Sci 67:48–62

    Article  Google Scholar 

  • Gan L, Ye L, Tao S, Xie K (2016) Titanate cathodes with enhanced electrical properties achieved via growing surface Ni particles toward efficient carbon dioxide electrolysis. Phys Chem Chem Phys 18:3137–3143

    Article  Google Scholar 

  • Gao MC, Liaw PK, Yeh JW, Zhang Y (2016a) High-entropy alloys: fundamentals and applications. High-Entropy Alloys Fundam Appl 1–516

    Google Scholar 

  • Gao Y, Chen D, Saccoccio M, Lu Z, Ciucci F (2016b) From material design to mechanism study: nanoscale Ni exsolution on a highly active A-site deficient anode material for solid oxide fuel cells. Nano Energy 27:499–508

    Article  Google Scholar 

  • Gao Z, Mogni LV, Miller EC, Railsback JG, Barnett SA (2016c) A perspective on low-temperature solid oxide fuel cells. Energy Environ Sci 9:1602–1644

    Article  Google Scholar 

  • Garbayo I, Tarancón A, Santiso J, Peiró F, Alarcón-LLadó E, Cavallaro A, Gràcia I, Cané C, Sabaté N (2010) Electrical characterization of thermomechanically stable YSZ membranes for micro solid oxide fuel cells applications. Solid State Ionics 181:322–331

    Article  Google Scholar 

  • Garbayo I, Pla D, Morata A, Fonseca L, Sabate N, Tarancon A (2014) Full ceramic micro solid oxide fuel cells: towards more reliable MEMS power generators operating at high temperatures. Energy Environ Sci 7

    Google Scholar 

  • Garbayo I, Baiutti F, Morata A, Tarancón A (2019) Engineering mass transport properties in oxide ionic and mixed ionic-electronic thin film ceramic conductors for energy applications. J Eur Ceram Soc 39:101–114

    Article  Google Scholar 

  • Gelfond NV, Bobrenok OF, Predtechensky MR, Morozova NB, Zherikova KV, Igumenov IK (2009) Chemical vapor deposition of electrolyte thin films based on yttria-stabilized zirconia. Inorg Mater 45(6):659–665

    Google Scholar 

  • George SM (2009) Atomic layer deposition: an overview. Chem Rev 110:111–131

    Article  Google Scholar 

  • Gild J, Samiee M, Braun JL, Harrington T, Vega H, Hopkins PE, Vecchio K, Luo J (2018) High-entropy fluorite oxides. J Eur Ceram Soc 38:3578–3584

    Article  Google Scholar 

  • Golbert J, Adjiman CS, Brandon NP (2008) Microstructural modeling of solid oxide fuel cell anodes. Ind Eng Chem Res 47:7693–7699

    Article  Google Scholar 

  • Greer JA, Tabat MD (1998) Large-area pulsed laser deposition: techniques and applications. J Vac Sci Technol A Vac Surf Films 13:1175

    Article  Google Scholar 

  • Grew KN, Chiu WKS (2012) A review of modeling and simulation techniques across the length scales for the solid oxide fuel cell. J Power Sources 199:1–13

    Article  Google Scholar 

  • Ha S, Su PC, Cha SW (2013) Combinatorial deposition of a dense nano-thin film YSZ electrolyte for low temperature solid oxide fuel cells. J Mater Chem A 1:9645–9649

    Article  Google Scholar 

  • Han GD, Neoh KC, Bae K, Choi HJ, Park SW, Son JW, Shim JH (2016) Fabrication of lanthanum strontium cobalt ferrite (LSCF) cathodes for high performance solid oxide fuel cells using a low price commercial inkjet printer. J Power Sources 306:503–509

    Article  Google Scholar 

  • Han J, Wang X, Yan L, Dahlak A (2019) Modelling the performance of an SOEC by optimization of neural network with MPSO algorithm. Int J Hydrogen Energy 44:27947–27957

    Article  Google Scholar 

  • Han GD, Bae K, Kang EH, Choi HJ, Shim JH (2020) Inkjet printing for manufacturing solid oxide fuel cells. ACS Energy Lett 1586–1592

    Google Scholar 

  • Han X, Yang Y, Fan Y, Ni H, Guo Y, Chen Y, Ou X, Ling Y (2021) New approach to enhance Sr-free cathode performance by high-entropy multi-component transition metal coupling. Ceram Int 47:17383–17390

    Article  Google Scholar 

  • Hanifi AR, Laguna-Bercero MA, Etsell TH, Sarkar P (2014) The effect of electrode infiltration on the performance of tubular solid oxide fuel cells under electrolysis and fuel cell modes. Int J Hydrogen Energy 39:8002–8008

    Article  Google Scholar 

  • Hartings MR, Ahmed Z (2019) Chemistry from 3D printed objects. Nat Rev Chem 3:305–314

    Article  Google Scholar 

  • Haslam JJ, Pham AQ, Chung BW, DiCarlo JF, Glass RS (2005) Effects of the use of pore formers on performance of an anode supported solid oxide fuel cell. J Am Ceram Soc 88:513–518

    Article  Google Scholar 

  • Haugen AB, Gurauskis J, Kaiser A, Søgaard M (2017) Graphite and PMMA as pore formers for thermoplastic extrusion of porous 3Y-TZP oxygen transport membrane supports. J Eur Ceram Soc 37:1039–1047

    Article  Google Scholar 

  • Hedayat N, Du Y, Ilkhani H (2017) Review on fabrication techniques for porous electrodes of solid oxide fuel cells by sacrificial template methods. Renew Sustain Energy Rev 77:1221–1239

    Article  Google Scholar 

  • Hedayat N, Du Y, Ilkhani H (2018) Pyrolyzable pore-formers for the porous-electrode formation in solid oxide fuel cells: a review. Ceram Int 44:4561–4576

    Article  Google Scholar 

  • Herbstritt D, Weber A, Ivers-Tiffée E (2001) Modelling and DC-polarisation of a three dimensional electrode/electrolyte interface. J Eur Ceram Soc 21:1813–1816

    Article  Google Scholar 

  • Hernández E, Baiutti F, Morata A, Torrell M, Tarancón A (2018) Infiltrated mesoporous oxygen electrodes for high temperature co-electrolysis of H2O and CO2 in solid oxide electrolysis cells. J Mater Chem A 6:9699–9707

    Article  Google Scholar 

  • Hill TY, Reitz TL, Rottmayer MA, Huang H (2015) Controlling inkjet fluid kinematics to achieve SOFC cathode micropatterns. ECS J Solid State Sci Technol 4:P3015–P3019

    Article  Google Scholar 

  • Hjelm J, Soegaard M, Knibbe R, Hagen A, Mogensen M (2008) Electrochemical characterization of planar anode supported SOFC with strontium-doped lanthanum cobalt oxide cathodes. ECS Trans 13:285–299

    Article  Google Scholar 

  • Hoath SD (ed) (2015) Fundamentals of inkjet printing: the science of inkjet and droplets. Wiley-VCH Verlag, Weinheim, Germany

    Google Scholar 

  • Horlick SA, Huang YL, Robinson IA, Wachsman ED (2021) Controlling exsolution with a charge-balanced doping approach. Nano Energy 87:106193

    Article  Google Scholar 

  • Horri BA, Selomulya C, Wang H (2012) Characteristics of Ni/YSZ ceramic anode prepared using carbon microspheres as a pore former. Int J Hydrogen Energy 37:15311–15319

    Article  Google Scholar 

  • Huang H, Nakamura M, Su P, Fasching R, Saito Y, Prinz FB (2007) High-performance ultrathin solid oxide fuel cells for low-temperature operation. J Electrochem Soc 154:B20–B24

    Article  Google Scholar 

  • Hubert M, Laurencin J, Cloetens P, Morel B, Montinaro D, Lefebvre-Joud F (2018) Impact of nickel agglomeration on solid oxide cell operated in fuel cell and electrolysis modes. J Power Sources 397:240–251

    Article  Google Scholar 

  • Huijben M, Koster G, Kruize MK, Wenderich S, Verbeeck J, Bals S, Slooten E, Shi B, Molegraaf HJA, Kleibeuker JE, Van Aert S, Goedkoop JB, Brinkman A, Blank DHA, Golden MS, Van Tendeloo G, Hilgenkamp H, Rijnders G (2013) Defect engineering in oxide heterostructures by enhanced oxygen surface exchange. Adv Func Mater 23:5240–5248

    Article  Google Scholar 

  • Infortuna A, Harvey AS, Gauckler LJ (2008) Microstructures of CGO and YSZ thin films by pulsed laser deposition. Adv Func Mater 18:127–135

    Article  Google Scholar 

  • Iora P, Aguiar P, Adjiman CS, Brandon NP (2005) Comparison of two IT DIR-SOFC models: impact of variable thermodynamic, physical, and flow properties. Steady-state and dynamic analysis. Chem Eng Sci 60:2963–2975

    Article  Google Scholar 

  • Irvine JTSS, Neagu D, Verbraeken MC, Chatzichristodoulou C, Graves C, Mogensen MB (2016) Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers. Nat Energy 1:1–13

    Article  Google Scholar 

  • Ishihara T, Kusaba H, Kim HH, Kang BS (2019) Preparation of La0.9Sr0.1Ga0.8Mg0.2O3 film by pulse laser deposition (PLD) method on porous Ni–Fe metal substrate for CO2 electrolysis. ISIJ Int 59:613–618

    Article  Google Scholar 

  • Ishizaki K, Komarneni S, Nanko M (1998) Porous materials. Med J Zambia, Materials Technology Series, vol 4. Springer US, Boston, MA

    Google Scholar 

  • Islam QA, Paydar S, Akbar N, Zhu B, Wu Y (2021) Nanoparticle exsolution in perovskite oxide and its sustainable electrochemical energy systems. J Power Sources 492:229626

    Article  Google Scholar 

  • Janardhanan VM, Deutschmann O (2011) Modeling diffusion limitation in solid-oxide fuel cells. Electrochim Acta 56:9775–9782

    Article  Google Scholar 

  • Janardhanan VM (2021) Microkinetic modeling of CO2 and H2O electrolysis on Ni in a solid oxide electrolysis cell: a critical evaluation. J Electrochem Soc

    Google Scholar 

  • Jang DY, Kim M, Kim JW, Bae K, Son JW, Schlupp MVF, Shim JH (2017) High performance anode-supported solid oxide fuel cells with thin film yttria-stabilized zirconia membrane prepared by aerosol-assisted chemical vapor deposition. J Electrochem Soc 164:F484–F490

    Google Scholar 

  • Januschewsky J, Ahrens M, Opitz A, Kubel F, Fleig J (2009) Optimized La0.6Sr0.4CoO3-δ thin-film electrodes with extremely fast oxygen-reduction kinetics. Adv Func Mater 19:3151–3156

    Article  Google Scholar 

  • Jardiel T, Caldes MT, Moser F, Hamon J, Gauthier G, Joubert O (2010) New SOFC electrode materials: the Ni-substituted LSCM-based compounds (La0.75Sr0.25)(Cr0.5Mn0.5xNix)O3δ and (La0.75Sr0.25)(Cr0.5xNixMn0.5)O3δ. Solid State Ionics 181:894–901

    Article  Google Scholar 

  • Jha S, Velhal M, Stewart W, Amin V, Wang E, Liang H (2021) Additively manufactured electrodes for supercapacitors: a review. Appl Mater Today 101220

    Google Scholar 

  • Ji S, Cho GY, Yu W, Su PC, Lee MH, Cha SW (2015) Plasma-enhanced atomic layer deposition of nanoscale yttria-stabilized zirconia electrolyte for solid oxide fuel cells with porous substrate. ACS Appl Mater Interfaces 7:2998–3002

    Article  Google Scholar 

  • Jia K, Zheng L, Liu W, Zhang J, Yu F, Meng X, Li C, Sunarso J, Yang N (2022) A new and simple way to prepare monolithic solid oxide fuel cell stack by stereolithography 3D printing technology using 8 mol% yttria stabilized zirconia photocurable slurry. J Eur Ceram Soc 42:4275–4285

    Article  Google Scholar 

  • Jiang SP (2008) Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review. J Mater Sci 43:6799–6833

    Article  Google Scholar 

  • Jiang SP (2012) Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: advances and challenges. Int J Hydrogen Energy 37:449–470

    Article  Google Scholar 

  • Jiang SP (2019) Development of lanthanum strontium cobalt ferrite perovskite electrodes of solid oxide fuel cells—a review. Int J Hydrogen Energy 44:7448–7493

    Article  Google Scholar 

  • Jo S, Sharma B, Park DH, Myung JH (2020) Materials and nano-structural processes for use in solid oxide fuel cells: a review. J Korean Ceram Soc 57:135–151

    Google Scholar 

  • Jordan N, Assenmacher W, Uhlenbruck S, Haanappel VAC, Buchkremer HP, Stöver D, Mader W (2008) Ce0.8Gd0.2O2δ protecting layers manufactured by physical vapor deposition for IT-SOFC. Solid State Ionics 179:919–923

    Article  Google Scholar 

  • Jung W, Dereux JO, Chueh WC, Hao Y, Haile SM (2012) High electrode activity of nanostructured, columnar ceria films for solid oxide fuel cells. Energy Environ Sci 5:8682–8689

    Article  Google Scholar 

  • Kaiser A, Foghmoes SP, Pećanac G, Malzbender J, Chatzichristodoulou C, Glasscock JA, Ramachandran D, Ni DW, Esposito V, Søgaard M, Hendriksen PV (2016) Design and optimization of porous ceramic supports for asymmetric ceria-based oxygen transport membranes. J Membr Sci 513:85–94

    Article  Google Scholar 

  • Kamecki B, Miruszewski T, Górnicka K, Klimczuk T, Karczewski J (2019) Characterization methods of nickel nano-particles obtained by the ex-solution process on the surface of Pr, Ni-doped SrTiO3 perovskite ceramics. SN Appl Sci 1:1–9

    Article  Google Scholar 

  • Kao WX, Lee MC, Chang YC, Lin TN, Wang CH, Chang JC (2010) Fabrication and evaluation of the electrochemical performance of the anode-supported solid oxide fuel cell with the composite cathode of La0.8Sr0.2MnO3δ-Gadolinia-doped ceria oxide/La0.8Sr0.2MnO3–δ. J Power Sources 195:6468–6472

    Article  Google Scholar 

  • Kawale S, Jang I, Farandos N, Kelsall GH (2022) Inkjet 3D-printing of functional layers of solid oxide electrochemical reactors: a review. React Chem Eng

    Google Scholar 

  • Kelly PJ, Arnell RD (2000) Magnetron sputtering: a review of recent developments and applications. Vacuum 56:159–172

    Article  Google Scholar 

  • Kerman K, Tallinen T, Ramanathan S, Mahadevan L (2013) Elastic configurations of self-supported oxide membranes for fuel cells. J Power Sources 222:359–366

    Article  Google Scholar 

  • Khan MZ, Song RH, Mehran MT, Lee SB, Lim TH (2021) Controlling cation migration and inter-diffusion across cathode/interlayer/electrolyte interfaces of solid oxide fuel cells: a review. Ceram Int 47:5839–5869

    Article  Google Scholar 

  • Kiebach R, Zielke P, Høgh JVT, Thydén K, Wang HJ, Barford R, Hendriksen PV (2016) Infiltration of SOFC stacks: evaluation of the electrochemical performance enhancement and the underlying changes in the microstructure. Fuel Cells 16:80–88

    Article  Google Scholar 

  • Kim JD, Kim GD, Moon JW, Park YI, Lee WH, Kobayashi K, Nagai M, Kim CE (2001) Characterization of LSM-YSZ composite electrode by ac impedance spectroscopy. Solid State Ionics 143:379–389

    Google Scholar 

  • Kim EH, Jung HJ, An KS, Park JY, Lee J, Hwang ID, Kim JY, Lee MJ, Kwon Y, Hwang JH (2014) Degradation of La0.6Sr0.4CoO3-based cathode performance in solid oxide fuel cells due to the presence of aluminum oxide deposited through atomic layer deposition. Ceram Int 40:7817–7822

    Article  Google Scholar 

  • Kim KJ, Han H, Defferriere T, Yoon D, Na S, Kim SJ, Dayaghi AM, Son J, Oh TS, Jang HM, Choi GM (2019) Facet-dependent in situ growth of nanoparticles in epitaxial thin films: the role of interfacial energy. J Am Chem Soc 141:7509–7517

    Article  Google Scholar 

  • Kim M, Kim DH, Han GD, Choi HJ, Choi HR, Shim JH (2020) Lanthanum strontium cobaltite-infiltrated lanthanum strontium cobalt ferrite cathodes fabricated by inkjet printing for high-performance solid oxide fuel cells. J Alloy Compd 843:155806

    Article  Google Scholar 

  • Kim S, Joh DW, Lee DY, Lee J, Kim HS, Khan MZ, Hong JE, Lee SB, Park SJ, Song RH, Mehran MT, Rhee CK, Lim TH (2021a) Microstructure tailoring of solid oxide electrolysis cell air electrode to boost performance and long-term durability. Chem Eng J 410:128318

    Article  Google Scholar 

  • Kim S, Kim G, Manthiram A (2021b) A review on infiltration techniques for energy conversion and storage devices: from fundamentals to applications. Sustain Energy Fuels 5:5024–5037

    Article  Google Scholar 

  • Knibbe R, Hjelm J, Menon M, Pryds N, Søgaard M, Wang HJ, Neufeld K (2010) Cathode-electrolyte interfaces with CGO barrier layers in SOFC. J Am Ceram Soc 93:2877–2883

    Article  Google Scholar 

  • Kobsiriphat W, Madsen BD, Wang Y, Shah M, Marks LD, Barnett SA (2010) Nickel-and Ruthenium-doped lanthanum chromite anodes: effects of nanoscale metal precipitation on solid oxide fuel cell performance. J Electrochem Soc 157:279–284

    Article  Google Scholar 

  • Koo B, Kim K, Kim JK, Kwon H, Han JW, Jung WC (2018) Sr Segregation in perovskite oxides: why it happens and how it exists. Joule 2:1476–1499

    Article  Google Scholar 

  • Kostretsova N, Pesce A, Nuñez M, Morata A, Torrell M, Tarancón A (2021) Self-supported solid oxide fuel cells by multimaterial 3D printing. ECS Trans 103:59

    Article  Google Scholar 

  • Kostretsova N, Anelli S, Nuñez M, Morata A, Torrell M, Tarancón A (n.d.) Monolithic solid oxide cells by 3D printing. In: 15th European SOFC & SOE forum. Lucerne, Switzerland, p A1207

    Google Scholar 

  • Krishnan VV (2017) Recent developments in metal-supported solid oxide fuel cells. Wiley Interdisc Rev Energy Environ 6

    Google Scholar 

  • Kuhn M, Napporn T, Meunier M, Vengallatore S, Therriault D (2008) Direct-write microfabrication of single-chamber micro solid oxide fuel cells. J Micromech Microeng 18

    Google Scholar 

  • Kwon CW, Son JW, Lee JH, Kim HM, Lee HW, Kim KB (2011) High-performance micro-solid oxide fuel cells fabricated on nanoporous anodic aluminum oxide templates. Adv Func Mater 21:1154–1159

    Article  Google Scholar 

  • Kwon O, Sengodan S, Kim K, Kim G, Jeong HY, Shin J, Ju YW, Han JW, Kim G (2017) Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites. Nat Commun 8:1–7

    Article  Google Scholar 

  • Kwon O, Joo S, Choi S, Sengodan S, Kim G (2020a) Review on exsolution and its driving forces in perovskites. J Phys Energy 2:032001

    Article  Google Scholar 

  • Kwon O, Joo S, Choi S, Sengodan S, Kim G (2020b) Review on exsolution and its driving forces in perovskites. J Phys Energy 2

    Google Scholar 

  • Laguna-Bercero MA, Hanifi AR, Menand L, Sandhu NK, Anderson NE, Etsell TH, Sarkar P (2018) The effect of pore-former morphology on the electrochemical performance of solid oxide fuel cells under combined fuel cell and electrolysis modes. Electrochim Acta 268:195–201

    Article  Google Scholar 

  • Laha SC, Ryoo R (2003) Synthesis of thermally stable mesoporous cerium oxide with nanocrystalline frameworks using mesoporous silica templates. Chem Commun 2138–2139

    Google Scholar 

  • Larrea A, Sola D, Laguna-Bercero MA, Peña JI, Merino RI, Orera VM (2011) Self-supporting thin yttria-stabilised zirconia electrolytes for solid oxide fuel cells prepared by laser machining. J Electrochem Soc 158:B1193

    Article  Google Scholar 

  • Laurencin J, Hubert M, Couturier K, Le Bihan T, Cloetens P, Lefebvre-Joud F, Siebert E (2015) Reactive mechanisms of LSCF single-phase and LSCF-CGO composite electrodes operated in anodic and cathodic polarisations. Electrochim Acta 174:1299–1316

    Article  Google Scholar 

  • Lee W, Han JW, Chen Y, Cai Z, Yildiz B (2013) Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. J Am Chem Soc 135:7909–7925

    Article  Google Scholar 

  • Lee YH, Chang I, Cho GY, Park J, Yu W, Tanveer WH, Cha SW (2018) Thin film solid oxide fuel cells operating below 600 °C: a review. Int J Precis Eng Manuf-Green Technol 5:441

    Article  Google Scholar 

  • Lee YL, Kleis J, Rossmeisl J, Yang SH, Morgan D (2011) Prediction of solid oxide fuel cell cathode activity with first-principles descriptors. Energy Environ Sci 4:3966–3970

    Article  Google Scholar 

  • Lee C, Shin SS, Choi J, Kim J, Son JW, Choi M, Shin HH (2020) A micro-patterned electrode/electrolyte interface fabricated by soft-lithography for facile oxygen reduction in solid oxide fuel cells. J Mater Chem A 8:16534–16541

    Article  Google Scholar 

  • Lewis JA, Smay JE, Stuecker J, Cesarano J (2006) Direct ink writing of three-dimensional ceramic structures. J Am Ceram Soc 89:3599–3609

    Article  Google Scholar 

  • Li W, Shi Y, Luo Y, Cai N (2014) Theoretical modeling of air electrode operating in SOFC mode and SOEC mode: the effects of microstructure and thickness. Int J Hydrogen Energy 39:13738–13750

    Article  Google Scholar 

  • Li C, Chen H, Shi H, Tade MO, Shao Z (2015) Green fabrication of composite cathode with attractive performance for solid oxide fuel cells through facile inkjet printing. J Power Sources 273:465–471

    Article  Google Scholar 

  • Li X, Wang Y, Liu W, Wilson JA, Wang J, Wang C, Yang J, Xia C, Zhou XD, Guan W (2019) Reliability of CO2 electrolysis by solid oxide electrolysis cells with a flat tube based on a composite double-sided air electrode. Compos B Eng 166:549–554

    Article  Google Scholar 

  • Li H, Song Y, Xu M, Wang W, Ran R, Zhou W, Shao Z (2020) Exsolved alloy nanoparticles decorated Ruddlesden-Popper perovskite as sulfur-tolerant anodes for solid oxide fuel cells. Energy Fuels 34:11449–11457

    Article  Google Scholar 

  • Li J, Huang Q, Lei Q, Maxim T, Chen D (2021a) The effects of microstructural parameters on the electrochemical properties of LSM-LSCF composite cathode by the particle-based discrete element method 2901–2907

    Google Scholar 

  • Li Z, Zhang H, Xu H, Xuan J (2021b) Advancing the multiscale understanding on solid oxide electrolysis cells via modelling approaches: a review. Renew Sustain Energy Rev 141:110863

    Article  Google Scholar 

  • Lichtner AZ, Jauffrès D, Roussel D, Charlot F, Martin CL, Bordia RK (2015) Dispersion, connectivity and tortuosity of hierarchical porosity composite SOFC cathodes prepared by freeze-casting. J Eur Ceram Soc 35:585–595

    Article  Google Scholar 

  • Lim Y, Lee H, Hong S, Kim YB (2019) Co-sputtered nanocomposite nickel cermet anode for high-performance low-temperature solid oxide fuel cells. J Power Sources 412:160–169

    Article  Google Scholar 

  • Ling Y, Liu L, Zhou S, Yang Y, Zhu H, Chen H, Paydar MH, Wang S (2021) Leveraging in-situ formation of Ni–Fe nanoparticles to promote the catalytic performance of Ruddlesden-Popper based electrode for symmetrical solid oxide fuel cells. Int J Hydrogen Energy 46:27149–27155

    Article  Google Scholar 

  • Linne DL, Kuczmarski MA, Johnston JC, Farmer SC, Green RD, Mital SK, Setlock JA (2018) Advanced manifolds for improved solid oxide electrolyzer performance. In: 2018 AIAA SPACE and astronautics forum and exposition, pp 1–6

    Google Scholar 

  • Liu PS, Chen GF (2014) Porous materials—processing and applications. Butterworth-Heinemann, Elsevier

    Google Scholar 

  • Liu X, Tarn TJ, Huang F, Fan J (2015) Recent advances in inkjet printing synthesis of functional metal oxides. Particuology 19:1–13

    Article  Google Scholar 

  • Liu T, Ren C, Zhang Y, Wang Y, Lei L, Chen F (2017) Solvent effects on the morphology and performance of the anode substrates for solid oxide fuel cells. J Power Sources 363:304–310

    Article  Google Scholar 

  • Lu Z, Zhou XD, Fisher D, Templeton J, Stevenson J, Wu N, Ignatiev A (2010) Enhanced performance of an anode-supported YSZ thin electrolyte fuel cell with a laser-deposited Sm0.2Ce0.8O1.9 interlayer. Electrochem Commun 12:179–182

    Google Scholar 

  • Lu X, Heenan TMM, Bailey JJ, Li T, Li K, Brett DJL, Shearing PR (2017a) Correlation between triple phase boundary and the microstructure of solid oxide fuel cell anodes: the role of composition, porosity and Ni densification. J Power Sources 365:210–219

    Article  Google Scholar 

  • Lu Z, Darvish S, Hardy J, Templeton J, Stevenson J, Zhong Y (2017b) SrZrO3 formation at the interlayer/electrolyte interface during (La1–xSrx)1δCo1yFeyO3 cathode sintering. J Electrochem Soc 164:F3097–F3103

    Article  Google Scholar 

  • Lv H, Lin L, Zhang X, Song Y, Matsumoto H, Zeng C, Ta N, Liu W, Gao D, Wang G, Bao X (2020) In situ investigation of reversible exsolution/dissolution of CoFe alloy nanoparticles in a Co-doped Sr2Fe1.5Mo0.5O6−δ cathode for CO2 electrolysis. Adv Mater 32:1–9

    Article  Google Scholar 

  • Ma Y, Ma Y, Wang Q, Schweidler S, Botros M, Fu T, Hahn H, Brezesinski T, Breitung B (2021) High-entropy energy materials: challenges and new opportunities. Energy Environ Sci 14:2883–2905

    Article  Google Scholar 

  • Mahato N, Banerjee A, Gupta A, Omar S, Balani K (2015) Progress in material selection for solid oxide fuel cell technology: a review. Prog Mater Sci 72:141–337

    Article  Google Scholar 

  • Mai A, Haanappel VAC, Tietz F, Stöver D (2006) Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells. Part II. Influence of the CGO interlayer. Solid State Ionics 177:2103–2107

    Article  Google Scholar 

  • Manogharan G, Kioko M, Linkous C (2015) Binder jetting: a novel solid oxide fuel-cell fabrication process and evaluation. JOM J Minerals Metals Mater Soc 67:660–667

    Article  Google Scholar 

  • Marchand P, Hassan IA, Parkin IP, Carmalt CJ (2013) Aerosol-assisted delivery of precursors for chemical vapour deposition: expanding the scope of CVD for materials fabrication. Dalton Trans 42:9406–9422

    Article  Google Scholar 

  • Marquardt T, Hollmann J, Gimpel T, Schade W, Kabelac S (2020) Femtosecond laser-induced surface modification of the electrolyte in solid oxide electrolysis cells. Energies 13:1–22

    Article  Google Scholar 

  • Masciandaro S, Torrell M, Leone P, Tarancón A (2019) Three-dimensional printed yttria-stabilized zirconia self-supported electrolytes for solid oxide fuel cell applications. J Eur Ceram Soc 39:9–16

    Article  Google Scholar 

  • Meng X, Liu Y, Yang N, Tan X, Liu J, Diniz da Costa JC, Liu S (2017) Highly compact and robust hollow fiber solid oxide cells for flexible power generation and gas production. Appl Energy 205:741–748

    Article  Google Scholar 

  • Mitchell-Williams TB, Tomov RI, Saadabadi SA, Krauz M, Aravind PV, Glowacki BA, Kumar RV (2017) Infiltration of commercially available, anode supported SOFC’s via inkjet printing. Mater Renew Sustain Energy 6:1–9

    Article  Google Scholar 

  • Mohammed Hussain A, Høgh JVT, Jacobsen T, Bonanos N (2012) Nickel-ceria infiltrated Nb-doped SrTiO3 for low temperature SOFC anodes and analysis on gas diffusion impedance. Int J Hydrogen Energy 37:4309–4318

    Article  Google Scholar 

  • Monaco F, Ferreira-Sanchez D, Hubert M, Morel B, Montinaro D, Grolimund D, Laurencin J (2021) Oxygen electrode degradation in solid oxide cells operating in electrolysis and fuel cell modes: LSCF destabilization and interdiffusion at the electrode/electrolyte interface. Int J Hydrogen Energy 46:31533–31549

    Article  Google Scholar 

  • Mooraj S, Qi Z, Zhu C, Ren J, Peng S, Liu L, Zhang S, Feng S, Kong F, Liu Y, Duoss EB, Baker S, Chen W (2021) 3D printing of metal-based materials for renewable energy applications. Nano Res 14:2105–2132

    Article  Google Scholar 

  • Morales M, Miguel-Pérez V, Tarancón A, Slodczyk A, Torrell M, Ballesteros B, Ouweltjes JP, Bassat JM, Montinaro D, Morata A (2017) Multi-scale analysis of the diffusion barrier layer of gadolinia-doped ceria in a solid oxide fuel cell operated in a stack for 3000 h. J Power Sources 344:141–151

    Article  Google Scholar 

  • Morales M, Pesce A, Slodczyk A, Torrell M, Piccardo P, Montinaro D, Tarancón A, Morata A (2018) Enhanced performance of gadolinia-doped ceria diffusion barrier layers fabricated by pulsed laser deposition for large-area solid oxide fuel cells. ACS Appl Energy Mater 1:1955–1964

    Article  Google Scholar 

  • Moussaoui H, Laurencin J, Gavet Y, Delette G, Hubert M, Cloetens P, Bihan TL, Debayle J (2018) Stochastic geometrical modeling of solid oxide cells electrodes validated on 3D reconstructions. Comput Mater Sci 143, 262–276

    Google Scholar 

  • Moussaoui H, Sharma RK, Debayle J, Gavet Y, Delette G, Laurencin J (2019) Microstructural correlations for specific surface area and triple phase boundary length for composite electrodes of solid oxide cells. J Power Sources 412:736–748

    Article  Google Scholar 

  • Murty BS, Yeh JW, Ranganathan S, Bhattacharjee PP (2019) High-entropy alloys. Elsevier

    Book  Google Scholar 

  • Myung JH, Neagu D, Miller DN, Irvine JTS (2016) Switching on electrocatalytic activity in solid oxide cells. Nature 537:528–531

    Article  Google Scholar 

  • Nakajo A, Rinaldi G, Caliandro P, Jeanmonod G, Navratilova L, Cantoni M, Van herle J (2020) Evolution of the morphology near triple-phase boundaries in Ni–yttria stabilized zirconia electrodes upon cathodic polarization. J Electrochem Energy Conv Storage 17:1–13

    Google Scholar 

  • Neagu D, Tsekouras G, Miller DN, Ménard H, Irvine JTS (2013) In situ growth of nanoparticles through control of non-stoichiometry. Nat Chem 5:916–923

    Article  Google Scholar 

  • Neagu D, Oh TS, Miller DN, Ménard H, Bukhari SM, Gamble SR, Gorte RJ, Vohs JM, Irvine JTS (2015) Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution. Nat Commun 6:8120

    Article  Google Scholar 

  • Neagu D, Papaioannou EI, Ramli WKW, Miller DN, Murdoch BJ, Ménard H, Umar A, Barlow AJ, Cumpson PJ, Irvine JTS, Metcalfe IS (2017) Demonstration of chemistry at a point through restructuring and catalytic activation at anchored nanoparticles. Nature Commun 8:1–8

    Google Scholar 

  • Nenning A, Fleig J (2019) Electrochemical XPS investigation of metal exsolution on SOFC electrodes: controlling the electrode oxygen partial pressure in ultra-high-vacuum. Surf Sci 680:43–51

    Article  Google Scholar 

  • Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos B Eng 143:172–196

    Article  Google Scholar 

  • Nielsen J, Jacobsen T, Wandel M (2011) Impedance of porous IT-SOFC LSCF:CGO composite cathodes. Electrochim Acta 56:7963–7974

    Article  Google Scholar 

  • Nishihata Y, Mizuki J, Akao T, Tanaka H, Uenishi M, Kimura M, Okamoto T, Hamada N (2002) Self-regeneration of a Pd-perovskite catalyst for automotive emissions control. Nature 418:164–167

    Google Scholar 

  • Niu B, Lu C, Yi W, Luo S, Li X, Zhong X, Zhao X, Xu B (2020) In-situ growth of nanoparticles-decorated double perovskite electrode materials for symmetrical solid oxide cells. Appl Catal B 270:118842

    Article  Google Scholar 

  • Niu Y, Zhou Y, Lv W, Chen Y, Zhang Y, Zhang W, Luo Z, Kane N, Ding Y, Soule L, Liu Y, He W, Liu M (2021) Enhancing oxygen reduction activity and Cr tolerance of solid oxide fuel cell cathodes by a multiphase catalyst coating. Adv Funct Mater 31

    Google Scholar 

  • Noh HS, Hong J, Kim H, Yoon KJ, Kim BK, Lee HW, Lee JH, Son JW (2016) Scale-up of thin-film deposition-based solid oxide fuel cell by sputtering, a commercially viable thin-film technology. J Electrochem Soc 163:F613–F617

    Article  Google Scholar 

  • Nurk G, Vestli M, Möller P, Jaaniso R, Kodu M, Mändar H, Romann T, Kanarbik R, Lust E (2016) Mobility of Sr in gadolinia doped ceria barrier layers prepared using spray pyrolysis, pulsed laser deposition and magnetron sputtering methods. J Electrochem Soc 163:F88–F96

    Article  Google Scholar 

  • Oh S, Park J, Shin JW, Yang BC, Zhang J, Jang DY, An J (2018) High performance low-temperature solid oxide fuel cells with atomic layer deposited-yttria stabilized zirconia embedded thin film electrolyte. J Mater Chem A

    Google Scholar 

  • Opitz AK, Nenning A, Vonk V, Volkov S, Bertram F, Summerer H, Schwarz S, Steiger-Thirsfeld A, Bernardi J, Stierle A, Fleig J (2020) Understanding electrochemical switchability of perovskite-type exsolution catalysts. Nat Commun 11:1–11

    Article  Google Scholar 

  • Osada N, Uchida H, Watanabe M (2006) Polarization behavior of SDC cathode with highly dispersed Ni catalysts for solid oxide electrolysis cells. J Electrochem Soc 153:A816

    Article  Google Scholar 

  • Pandiyan S, El-Kharouf A, Steinberger-Wilckens R (2020) Formulation of spinel based inkjet inks for protective layer coatings in SOFC interconnects. J Colloid Interface Sci 579:82–95

    Article  Google Scholar 

  • Park JH, Hong WS, Yoon KJ, Lee JH, Lee HW, Son JW (2014) Physical and electrochemical characteristics of pulsed laser deposited La0.6Sr0.4CoO3−δCe0.9Gd0.1O2−δ nanocomposites as a function of the mixing ratio. J Electrochem Soc 161:F16–F22

    Article  Google Scholar 

  • Park JH, Han SM, Yoon KJ, Kim H, Hong J, Kim BK, Lee JH, Son JW (2016) Impact of nanostructured anode on low-temperature performance of thin-film-based anode-supported solid oxide fuel cells. J Power Sources 315:324–330

    Article  Google Scholar 

  • Park JH, Lee JH, Yoon KJ, Kim H, Ji HI, Yang S, Park S, Han SM, Son JW (2021) A nanoarchitectured cermet composite with extremely low Ni content for stable high-performance solid oxide fuel cells. Acta Mater 206

    Google Scholar 

  • Parra-Cabrera C, Achille C, Kuhn S, Ameloot R (2018) 3D printing in chemical engineering and catalytic technology: structured catalysts, mixers and reactors. Chem Soc Rev 47:209–230

    Article  Google Scholar 

  • Patro PK, Delahaye T, Bouyer E, Sinha PK (2012) Microstructural development of Ni-1Ce10ScSZ cermet electrode for solid oxide electrolysis cell (SOEC) application. Int J Hydrogen Energy 37:3865–3873

    Article  Google Scholar 

  • Pei K, Zhou Y, Xu K, He Z, Chen Y, Zhang W, Yoo S, Zhao B, Yuan W, Liu M, Chen Y (2020) Enhanced Cr-tolerance of an SOFC cathode by an efficient electro-catalyst coating. Nano Energy 72:104704

    Article  Google Scholar 

  • Peng E, Zhang D, Ding J (2018) Ceramic robocasting: recent achievements, potential, and future developments. Adv Mater 30:1–14

    Article  Google Scholar 

  • Pesce A (2021) 3D printing of ceramic-based solid state energy conversion devices. Autonomus University of Barcelona

    Google Scholar 

  • Pesce A, Lira M, Santos D, Kostretsova N (2020a) B1308 new concepts for solid oxide cells manufacturing: the use of 3D printing technologies 1–10

    Google Scholar 

  • Pesce A, Hornés A, Núñez M, Morata A, Torrell M, Tarancón A (2020b) 3D printing the next generation of enhanced solid oxide fuel and electrolysis cells. J Mater Chem A 8:16926–16932

    Article  Google Scholar 

  • Ping JS, Liu J (2017) Mesoporous materials for advanced energy storage and conversion technologies. CRC Press, Taylor & Francis Group

    Google Scholar 

  • Primdahl S, Mogensen M (1999) Gas diffusion impedance in characterization of solid oxide fuel cell anodes

    Google Scholar 

  • Qu P, Xiong D, Zhu Z, Gong Z, Li Y, Li Y, Fan L, Liu Z, Wang P, Liu C, Chen Z (2021) Inkjet printing additively manufactured multilayer SOFCs using high quality ceramic inks for performance enhancement. Addit Manuf 48:102394

    Google Scholar 

  • Rahmanipour M, Cheng Y, Onn TM, Donazzi A, Vohs JM, Gorte RJ (2017) Modification of LSF-YSZ composite cathodes by atomic layer deposition. J Electrochem Soc 164:F879–F884

    Article  Google Scholar 

  • Ren Y, Bruce PG, Ma Z (2011) Solid-solid conversion of ordered crystalline mesoporous metal oxides under reducing atmosphere. J Mater Chem 21:9312–9318

    Article  Google Scholar 

  • Reolon RP, Sanna S, Xu Y, Lee I, Bergmann CP, Pryds N, Esposito V (2018) Effects of accelerated degradation on metal supported thin film-based solid oxide fuel cells. J Mater Chem A 6:7887–7896

    Article  Google Scholar 

  • Riegraf M, Han F, Sata N, Costa R (2021a) Intercalation of thin-film Gd-doped ceria barrier layers in electrolyte-supported solid oxide cells: physicochemical aspects. ACS Appl Mater Interfaces

    Google Scholar 

  • Riegraf M, Bombarda I, Dömling F, Liensdorf T, Sitzmann C, Langhof N, Schafföner S, Han F, Sata N, Geipel C, Walter C, Costa R (2021b) Enhancing the mechanical strength of electrolyte-supported solid oxide cells with thin and dense doped-ceria interlayers. ACS Appl Mater Interfaces

    Google Scholar 

  • Rispoli N, Vitale F, Califano F, Califano M, Polverino P, Rosen MA, Sorrentino M (2020) Constrained optimal design of a reversible solid oxide cell-based multiple load renewable microgrid. J Energy Storage 31:101570

    Article  Google Scholar 

  • Rosa M, Gooden PN, Butterworth S, Zielke P, Kiebach R, Xu Y, Gadea C, Esposito V (2017) Zirconia nano-colloids transfer from continuous hydrothermal synthesis to inkjet printing. J Eur Ceram Soc 0–6

    Google Scholar 

  • Rost CM, Sachet E, Borman T, Moballegh A, Dickey EC, Hou D, Jones JL, Curtarolo S, Maria JP (2015) Entropy-stabilized oxides. Nature Commun 6

    Google Scholar 

  • Ruiz-Morales JC, Tarancón A, Canales-Vázquez J, Méndez-Ramos J, Hernández-Afonso L, Acosta-Mora P, Marín Rueda JR, Fernández-González R (2017) Three dimensional printing of components and functional devices for energy and environmental applications. Energy Environ Sci 10:846–859

    Article  Google Scholar 

  • Sachs E, Cima M, Williams P, Brancazio D, Cornie J (1992) Three dimensional printing: rapid tooling and prototypes directly from a CAD model. J Manuf Sci E T ASME 114:481–488

    Google Scholar 

  • Sadeghi-chahardeh A, Mollaabbasi R, Picard D, Taghavi SM (2021) Discrete element method modeling for the failure analysis of dry mono-size coke aggregates 1–30

    Google Scholar 

  • Samson AJ, Søgaard M, Hendriksen PV (2017) Model for solid oxide fuel cell cathodes prepared by infiltration. Electrochim Acta 229:73–95

    Article  Google Scholar 

  • Saranya AMAM, Morata A, Pla D, Burriel M, Chiabrera F, Garbayo I, Hornés A, Kilner JAJA, Tarancón A (2018) Unveiling the outstanding oxygen mass transport properties of Mn-rich perovskites in grain boundary-dominated La0.8Sr0.2(Mn1xCox)0.85O3±δ nanostructures. Chem Mater 30:5621–5629

    Article  Google Scholar 

  • Sarikaya A, Dogan F (2013) Effect of various pore formers on the microstructural development of tape-cast porous ceramics. Ceram Int 39:403–413

    Article  Google Scholar 

  • Sarkar A, Velasco L, Wang D, Wang Q, Talasila G, de Biasi L, Kübel C, Brezesinski T, Bhattacharya SS, Hahn H, Breitung B (2018a) High entropy oxides for reversible energy storage. Nature Commun 9

    Google Scholar 

  • Sarkar A, Djenadic R, Wang D, Hein C, Kautenburger R, Clemens O, Hahn H (2018b) Rare earth and transition metal based entropy stabilised perovskite type oxides. J Eur Ceram Soc 38:2318–2327

    Article  Google Scholar 

  • Sarkar A, Breitung B, Hahn H (2020) High entropy oxides: the role of entropy, enthalpy and synergy. Scripta Mater 187:43–48

    Article  Google Scholar 

  • Sažinas R, Hansen KK (2019) Silver exsolution-enhanced electrical properties of lanthanum-based perovskites. J Mater Sci Eng A 9:116–129

    Google Scholar 

  • Schiller G, Ansar A, Lang M, Patz O (2009) High temperature water electrolysis using metal supported solid oxide electrolyser cells (SOEC). J Appl Electrochem 39:293–301

    Article  Google Scholar 

  • Schlupp MVF, Scherrer B, Ma H, Grolig JG, Martynczuk J, Prestat M, Gauckler LJ (2012) Influence of microstructure on the cross-plane oxygen ion conductivity of yttria stabilized zirconia thin films. Phys Status Solidi (A) 209:1414–1422

    Google Scholar 

  • Schlupp MVF, Kurlov A, Hwang J, Yµng Z, Döbeli M, Martynczuk J, Prestat M, Son JW, Gauckler LJ (n.d.) Gadolinia doped ceria thin films prepared by aerosol assisted chemical vapor deposition and applications in intermediate-temperature solid oxide fuel cells

    Google Scholar 

  • Seo H, Iwai H, Kishimoto M, Ding C, Saito M, Yoshida H (2020a) Microextrusion printing for increasing electrode–electrolyte interface in anode-supported solid oxide fuel cells. J Power Sources 450:227682

    Article  Google Scholar 

  • Seo HG, Ji S, Seo J, Kim S, Koo B, Choi Y, Kim H, Kim JH, Kim TS, Jung WC (2020b) Sintering-resistant platinum electrode achieved through atomic layer deposition for thin-film solid oxide fuel cells. J Alloy Compd 835:155347

    Article  Google Scholar 

  • Seo J, Tsvetkov N, Jeong J, Yoo Y, Ji S, Kim JH, Kang JK, Jung W (2020c) Gas-permeable inorganic shell improves the coking stability and electrochemical reactivity of Pt toward methane oxidation. ACS Appl Mater Interfaces 12:4405–4413

    Article  Google Scholar 

  • Seo J, Kim S, Jeon SH, Kim S, Hwan Kim J, Jung WC (2022) Nanoscale interface engineering for solid oxide fuel cells using atomic layer deposition. Nanoscale Adv

    Google Scholar 

  • Shah M, Barnett SA (2008) Solid oxide fuel cell cathodes by infiltration of La0.6Sr0.4Co0.2Fe0.8O3δ into Gd-doped ceria. Solid State Ionics 179:2059–2064

    Article  Google Scholar 

  • Shah MA, Lee DG, Lee BY, Hur S (2021) Classifications and applications of inkjet printing technology: a review. IEEE Access 9:140079–140102

    Article  Google Scholar 

  • Shen L, Du Z, Zhang Y, Dong X, Zhao H (2021) Medium-entropy perovskites Sr(FeαTiβCoγMnζ)O3δ as promising cathodes for intermediate temperature solid oxide fuel cell. Appl Catal B 295:120264

    Article  Google Scholar 

  • Shi Y, Ni N, Ding Q, Zhao X (2021) Tailoring high-temperature stability and electrical conductivity of high entropy lanthanum manganite for solid oxide fuel cell cathodes. J Mater Chem A 21–28

    Google Scholar 

  • Shijie Z, Na L, Liping S, Qiang L, Lihua H, Hui Z (2022) A novel high-entropy cathode with the A2BO4-type structure for solid oxide fuel cells. J Alloy Compd 895:162548

    Article  Google Scholar 

  • Shimada H, Ohba F, Li X, Hagiwara A, Ihara M (2012) Electrochemical behaviors of nickel/yttria-stabilized zirconia anodes with distribution controlled yttrium-doped barium zirconate by ink-jet technique. J Electrochem Soc 159:F360–F367

    Article  Google Scholar 

  • Shin JW, Oh S, Lee S, Yu JG, Park J, Go D, Yang BC, Kim HJ, An J (2019) Ultrathin atomic layer-deposited CeO2 overlayer for high-performance fuel cell electrodes. ACS Appl Mater Interfaces

    Google Scholar 

  • Shin SS, Kim JH, Bae KT, Lee KT, Kim SM, Son JW, Choi M, Kim H (2020) Multiscale structured low-temperature solid oxide fuel cells with 13 W power at 500 °C. Energy Environ Sci 13:3459–3468

    Article  Google Scholar 

  • Sholklapper TZ, Jacobson CP, Visco SJ, De Jonghe LC (2008) Synthesis of dispersed and contiguous nanoparticles in solid oxide fuel cell electrodes. Fuel Cells 8:303–312

    Article  Google Scholar 

  • Shri Prakash B, Senthil Kumar S, Aruna ST (2014) Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: a review. Renew Sustain Energy Rev 36:149–179

    Article  Google Scholar 

  • Singh M, Zappa D, Comini E (2021) Solid oxide fuel cell: decade of progress, future perspectives and challenges. Int J Hydrogen Energy 46:27643–27674

    Article  Google Scholar 

  • Singhal SC (2003) High temperature and solid oxide fuel cells, vol 16. Elsevier, Hoboken, NJ, USA

    Google Scholar 

  • Singhal SC, Kendall K (2003) High temperature and solid oxide fuel cells. Elsevier

    Google Scholar 

  • Skafte TL, Hjelm J, Blennow P, Graves C (2018) Reactivating the Ni-YSZ electrode in solid oxide cells and stacks by infiltration. J Power Sources 378:685–690

    Article  Google Scholar 

  • Sobolev A, Stein P, Borodianskiy K (2020) Synthesis and characterization of NiO colloidal ink solution for printing components of solid oxide fuel cells anodes. Ceram Int 46:25260–25265

    Article  Google Scholar 

  • Solovyev AA, Lebedynskiy AM, Shipilova AV, Ionov IV, Smolyanskiy EA, Lauk AL, Remnev GE, Maslov AS (2017) Scale-up of solid oxide fuel cells with magnetron sputtered electrolyte. Fuel Cells 17:378–382

    Article  Google Scholar 

  • Sønderby S, Klemensø T, Christensen BH, Almtoft KP, Lu J, Nielsen LP, Eklund P (2014) Magnetron sputtered gadolinia-doped ceria diffusion barriers for metal-supported solid oxide fuel cells. J Power Sources 267:452–458

    Article  Google Scholar 

  • Sønderby S, Christensen BH, Almtoft KP, Nielsen LP, Eklund P (2015) Industrial-scale high power impulse magnetron sputtering of yttria-stabilized zirconia on porous NiO/YSZ fuel cell anodes. Surf Coat Technol 281:150–156

    Article  Google Scholar 

  • Song Y, Zhang X, Zhou Y, Jiang Q, Guan F, Lv H, Wang G, Bao X (2018) Promoting oxygen evolution reaction by RuO2 nanoparticles in solid oxide CO2 electrolyzer. Energy Storage Mater 13:207–214

    Article  Google Scholar 

  • Spiridigliozzi L, Ferone C, Cioffi R, Accardo G, Frattini D, Dell’Agli G (2020) Entropy-stabilized oxides owning fluorite structure obtained by hydrothermal treatment. Materials 13:1–12

    Article  Google Scholar 

  • Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature

    Google Scholar 

  • Su PC, Prinz FB (2012) Electrochemistry communications nanoscale membrane electrolyte array for solid oxide fuel cells. Electrochem Commun 16:77–79

    Google Scholar 

  • Sukeshini MA, Cummins R, Reitz TL, Miller RM (2009) Ink-jet printing: a versatile method for multilayer solid oxide fuel cells fabrication. J Am Ceram Soc 92:2913–2919

    Article  Google Scholar 

  • Sukeshini AM, Meisenkothen F, Gardner P, Reitz TL (2013) Aerosol Jet® Printing of functionally graded SOFC anode interlayer and microstructural investigation by low voltage scanning electron microscopy. J Power Sources 224:295–303

    Google Scholar 

  • Sun C, Sun J, Xiao G, Zhang H, Qiu X, Li H, Chen L (2006a) Mesoscale organization of nearly monodisperse flowerlike ceria microspheres. J Phys Chem B 110:13445–13452

    Article  Google Scholar 

  • Sun C, Xie Z, Xia C, Li H, Chen L (2006b) Investigations of mesoporous CeO2-Ru as a reforming catalyst layer for solid oxide fuel cells. Electrochem Commun 8:833–838

    Article  Google Scholar 

  • Sun C, Li H, Chen L (2007) Study of flowerlike CeO2 microspheres used as catalyst supports for CO oxidation reaction. J Phys Chem Solids 68:1785–1790

    Article  Google Scholar 

  • Sun C, Hui R, Roller J (2010) Cathode materials for solid oxide fuel cells: a review. J Solid State Electrochem 14:1125–1144

    Article  Google Scholar 

  • Sun J, Binner J, Bai J (2020) 3D printing of zirconia via digital light processing: optimization of slurry and debinding process. J Eur Ceram Soc 40:5837–5844

    Article  Google Scholar 

  • Sun C, Li H, Chen L (2012a) Nanostructured ceria-based materials: synthesis, properties, and applications. Energy Environ Sci 5:8475–8505

    Article  Google Scholar 

  • Sun W, Zhang N, Mao Y, Sun K (2012b) Preparation of dual-pore anode supported Sc2O3-stabilized-ZrO2 electrolyte planar solid oxide fuel cell by phase-inversion and dip-coating. J Power Sources 218:352–356

    Article  Google Scholar 

  • Szász J, Wankmüller F, Wilde V, Störmer H, Gerthsen D, Menzler NH, Ivers-Tiffée E (2018) Nature and functionality of La0.58Sr0.4Co0.2Fe0.8O3δ/Gd0.2Ce0.8O2δ/Y0.16Zr0.84O2δ interfaces in SOFCs. J Electrochem Soc 165:F898–F906

    Article  Google Scholar 

  • Tabei SA, Sheidaei A, Baniassadi M, Pourboghrat F, Garmestani H (2013) Microstructure reconstruction and homogenization of porous Ni-YSZ composites for temperature dependent properties. J Power Sources 235:74–80

    Article  Google Scholar 

  • Tai XY, Zhakeyev A, Wang H, Jiao K, Zhang H, Xuan J (2019) Accelerating fuel cell development with additive manufacturing technologies: state of the art, opportunities and challenges. Fuel Cells 19:636–650

    Article  Google Scholar 

  • Takahashi K, Fujita H, Ishikawa Y, Nakagaki T (2021) Microfabrication of anode functional layer in SOFC by 3D printer. MATEC Web Conf 333:17001

    Article  Google Scholar 

  • Tanaka H, Uenishi M, Taniguchi M, Tan I, Narita K, Kimura M, Kaneko K, Nishihata Y, Mizuki J (2006) The intelligent catalyst having the self-regenerative function of Pd, Rh and Pt for automotive emissions control. Catal Today 117:321–328

    Article  Google Scholar 

  • Tanasini P, Cannarozzo M, Costamagna P, Faes A, Van Herle J, Hessler-Wyser A, Comninellis C (2009) Experimental and theoretical investigation of degradation mechanisms by particle coarsening in SOFC electrodes. Fuel Cells 9:740–752

    Article  Google Scholar 

  • Tang C, Kousi K, Neagu D, Metcalfe IS (2021) Trends and prospects of bimetallic exsolution. Chem Eur J 27:6666–6675

    Article  Google Scholar 

  • Tarancón A (2009) Strategies for lowering solid oxide fuel cells operating temperature. Energies 2:1130–1150

    Article  Google Scholar 

  • Tarancón A, Esposito V, Torrell M, Vece MD, Son JS, Norby P (2022) 2022 roadmap on 3D printing for energy. J Phys Energy 4:011501

    Google Scholar 

  • The D, Grieshammer S, Schroeder M, Martin M, Al Daroukh M, Tietz F, Schefold J, Brisse A (2015) Microstructural comparison of solid oxide electrolyser cells operated for 6100 h and 9000 h. J Power Sources 275:901–911

    Article  Google Scholar 

  • Tian Y, Zhang L, Liu Y, Jia L, Yang J, Chi B, Pu J, Li J (2019) A self-recovering robust electrode for highly efficient CO2 electrolysis in symmetrical solid oxide electrolysis cells. J Mater Chem A 7:6395–6400

    Article  Google Scholar 

  • Tietz F, Sebold D, Brisse A, Schefold J (2013) Degradation phenomena in a solid oxide electrolysis cell after 9000 h of operation. J Power Sources 223:129–135

    Article  Google Scholar 

  • Timurkutluk B, Timurkutluk C, Mat MD, Kaplan Y (2016) A review on cell/stack designs for high performance solid oxide fuel cells. Renew Sustain Energy Rev 56:1101–1121

    Article  Google Scholar 

  • Timurkutluk B, Altan T, Toros S, Genc O, Celik S, Korkmaz HG (2021a) Engineering solid oxide fuel cell electrode microstructure by a micro-modeling tool based on estimation of TPB length. Int J Hydrogen Energy 46:13298–13317

    Article  Google Scholar 

  • Timurkutluk C, Altan T, Yildirim F, Onbilgin S, Yagiz M, Timurkutluk B (2021b) Improving the electrochemical performance of solid oxide fuel cells by surface patterning of the electrolyte. J Power Sources 512:230489

    Article  Google Scholar 

  • Tomov RI, Krauz M, Jewulski J, Hopkins SC, Kluczowski JR, Glowacka DM, Glowacki BA (2010) Direct ceramic inkjet printing of yttria-stabilized zirconia electrolyte layers for anode-supported solid oxide fuel cells. J Power Sources 195:7160–7167

    Article  Google Scholar 

  • Tomov RI, Dudek M, Hopkins SC, Krauz M, Wang H, Wang C, Shi Y, Tomczyk P, Glowacki BA (2013) Inkjet printing of direct carbon solid oxide fuel cell components. ECS Trans 57:1359–1369

    Article  Google Scholar 

  • Tomov RI, Mitchel-Williams TB, Maher R, Kerherve G, Cohen L, Payne DJ, Kumar RV, Glowacki BA (2018) The synergistic effect of cobalt oxide and Gd-CeO2 dual infiltration in LSCF/CGO cathodes. J Mater Chem A 6:5071–5081

    Article  Google Scholar 

  • Tomov RI, Mitchel-Williams TB, Venezia E, Kawalec M, Krauz M, Kumar RV, Glowacki BA (2021) Inkjet printing infiltration of the doped ceria interlayer in commercial anode-supported SOFCs. Nanomaterials 11:1–14

    Article  Google Scholar 

  • Torrell M, Morata A, Kayser P, Kendall M, Kendall K, Tarancón A (2015a) Performance and long term degradation of 7 W micro-tubular solid oxide fuel cells for portable applications. J Power Sources 285:439–448

    Article  Google Scholar 

  • Torrell M, Almar L, Morata A, Tarancón A (2015b) Synthesis of mesoporous nanocomposites for their application in solid oxide electrolysers cells: microstructural and electrochemical characterization. Faraday Discuss 182:423–435

    Article  Google Scholar 

  • Travitzky N, Bonet A, Dermeik B, Fey T, Filbert-Demut I, Schlier L, Schlordt T, Greil P (2014) Additive manufacturing of ceramic-based materials. Adv Eng Mater 16:729–754

    Article  Google Scholar 

  • Tsai T, Barnett SA (1997) Effect of LSM-YSZ cathode on thin-electrolyte solid oxide fuel cell performance. Solid State Ionics 93:207–217

    Article  Google Scholar 

  • Tsekouras G, Neagu D, Irvine JTS (2013) Step-change in high temperature steam electrolysis performance of perovskite oxide cathodes with exsolution of B-site dopants. Energy Environ Sci 6:256–266

    Article  Google Scholar 

  • Tsoga A, Gupta A, Naoumidis A, Nikolopoulos P (2000) Gadolinia-doped ceria and yttria stabilized zirconia interfaces: regarding their application for SOFC technology. Acta Mater 48:4709–4714

    Article  Google Scholar 

  • Tucker MC (2020) Progress in metal-supported solid oxide electrolysis cells: a review. Int J Hydrogen Energy

    Google Scholar 

  • Uhlenbruck S, Moskalewicz T, Jordan N, Penkalla HJ, Buchkremer HP (2009) Element interdiffusion at electrolyte-cathode interfaces in ceramic high-temperature fuel cells. Solid State Ionics 180:418–423

    Article  Google Scholar 

  • Varghese G, Moral M, Castro-García M, López-López JJ, Marín-Rueda JR, Yagüe-Alcaraz V, Hernández-Afonso L, Ruiz-Morales JC, Canales-Vázquez J (2018) Fabricación y caracterización de cerámicas medinate impresión 3D DLP de bajo coste. Bol Soc Esp Ceram Vidrio 57:9–18

    Article  Google Scholar 

  • Venezia E, Viviani M, Presto S, Kumar V, Tomov RI (2019) Inkjet printing functionalization of SOFC LSCF cathodes. Nanomaterials 9:654

    Article  Google Scholar 

  • Virkar AV (2010) Mechanism of oxygen electrode delamination in solid oxide electrolyzer cells. Int J Hydrogen Energ 35:9527–9543

    Article  Google Scholar 

  • Vohs JM, Gorte RJ (2009) High-performance SOFC cathodes prepared by infiltration. Adv Mater 21:943–956

    Article  Google Scholar 

  • Wan Y, Zhao D (2007) On the controllable soft-templating approach to mesoporous silicates. Chem Rev 107:2821–2860

    Article  Google Scholar 

  • Wang S, Jiang V, Zhang Y, Van J, Li W (1998) The role of 8 mol% yttria stabilized zirconia in the improvement of electrochemical performance of lanthanum manganite composite electrodes. J Electrochem Soc 145:621

    Article  Google Scholar 

  • Wang HB, Xia CR, Meng GY, Peng DK (2000) Deposition and characterization of YSZ thin films by aerosol-assisted CVD. Mater Lett 44:23–28

    Article  Google Scholar 

  • Wang XM, Li CJ, Li CX, Yang GJ (2010) Microstructure and electrochemical behavior of a structured electrolyte/LSM-cathode interface modified by flame spraying for solid oxide fuel cell application. J Therm Spray Technol 19:311–316

    Article  Google Scholar 

  • Wang H, Ji W, Zhang L, Gong Y, Xie B, Jiang Y, Song Y (2011) Preparation of YSZ films by magnetron sputtering for anode-supported SOFC. Solid State Ionics 192:413–418

    Article  Google Scholar 

  • Wang F, Chen D, Shao Z (2012) Sm0.5Sr0.5CoO3−δ-infiltrated cathodes for solid oxide fuel cells with improved oxygen reduction activity and stability. J Power Sources 216:208–215

    Article  Google Scholar 

  • Wang F, Brito ME, Yamaji K, Cho DH, Nishi M, Kishimoto H, Horita T, Yokokawa H (2014a) Effect of polarization on Sr and Zr diffusion behavior in LSCF/GDC/YSZ system. Solid State Ionics 262:454–459

    Article  Google Scholar 

  • Wang XM, Li CX, Huang JY, Yang GJ, Li CJ (2014b) Deposition mechanism of convex YSZ particles and effect of electrolyte/cathode interface structure on cathode performance of solid oxide fuel cell. Int J Hydrogen Energy 39:13650–13657

    Article  Google Scholar 

  • Wang C, Tomov RI, Mitchell-Williams TB, Kumar RV, Glowacki BA (2017) Inkjet printing infiltration of Ni-Gd:CeO2 anodes for low temperature solid oxide fuel cells. J Appl Electrochem 47:1227–1238

    Article  Google Scholar 

  • Wang Y, Li W, Ma L, Li W, Liu X (2020) Degradation of solid oxide electrolysis cells: phenomena, mechanisms, and emerging mitigation strategies—a review. J Mater Sci Technol 55:35–55

    Article  Google Scholar 

  • Wang Y, Wu C, Zu B, Han M, Du Q, Ni M, Jiao K (2021a) Ni migration of Ni-YSZ electrode in solid oxide electrolysis cell: an integrated model study. J Power Sources 516:230660

    Article  Google Scholar 

  • Wang Y, Jia C, Lyu Z, Han M, Wu J, Sun Z, Iguchi F, Yashiro K, Kawada T (2021b) Performance and stability analysis of SOFC containing thin and dense gadolinium-doped ceria interlayer sintered at low temperature. J Materiomics

    Google Scholar 

  • Wei L, Zhang J, Yu F, Zhang W, Meng X, Yang N, Liu S (2019) A novel fabrication of yttria-stabilized-zirconia dense electrolyte for solid oxide fuel cells by 3D printing technique. Int J Hydrogen Energy 44:6182–6191

    Article  Google Scholar 

  • Wen Y, Liu Y (2021) Processing and microstructure of a fluorite high-entropy oxide (Zr0.2Ce0.2Hf0.2Y0.2Al0.2)O2δ. Ceram Int 48:2546–2554

    Article  Google Scholar 

  • Wen K, Lv W, He W (2015) Interfacial lattice-strain effects on improving the overall performance of micro-solid oxide fuel cells. J Mater Chem A 3:20031–20050

    Article  Google Scholar 

  • Wen Y, Yang T, Lee D, Lee HN, Crumlin EJ, Huang K (2018) Temporal and thermal evolutions of surface Sr-segregation in pristine and atomic layer deposition modified La0.6Sr0.4CoO3δ epitaxial films. J Mater Chem A 6:24378–24388

    Article  Google Scholar 

  • Williford RE, Chick LA, Maupin GD, Simner SP, Stevenson JW (2003) Diffusion limitations in the porous anodes of SOFCs. J Electrochem Soc 150:A1067

    Article  Google Scholar 

  • Witte R, Sarkar A, Kruk R, Eggert B, Brand RA, Wende H, Hahn H (2019) High-entropy oxides: an emerging prospect for magnetic rare-earth transition metal perovskites. Phys Rev Mater 3:1–8

    Google Scholar 

  • Wu H, Liu W, He R, Wu Z, Jiang Q, Song X, Chen Y, Cheng L, Wu S (2017) Fabrication of dense zirconia-toughened alumina ceramics through a stereolithography-based additive manufacturing. Ceram Int 43:968–972

    Article  Google Scholar 

  • Wu T, Zhang W, Li Y, Zheng Y, Yu B, Chen J, Sun X (2018) Micro-/nanohoneycomb solid oxide electrolysis cell anodes with ultralarge current tolerance. Adv Energy Mater 8:1–7

    Article  Google Scholar 

  • Wu P, Tian Y, Lü Z, Zhang X, Ding L (2022) Electrochemical performance of La0.65Sr0.35MnO3 oxygen electrode with alternately infiltrated Sm0.5Sr0.5CoO3δ and Sm0.2Ce0.8O1.9 nanoparticles for reversible solid oxide cells. Int J Hydrogen Energy 47:747–760

    Article  Google Scholar 

  • Xing B, Yao Y, Meng X, Zhao W, Shen M, Gao S, Zhao Z (2020a) Self-supported yttria-stabilized zirconia ripple-shaped electrolyte for solid oxide fuel cells application by digital light processing three-dimension printing. Scripta Mater 181:62–65

    Article  Google Scholar 

  • Xing B, Cao C, Zhao W, Shen M, Wang C, Zhao Z (2020b) Dense 8 mol% yttria-stabilized zirconia electrolyte by DLP stereolithography. J Eur Ceram Soc 40:1418–1423

    Article  Google Scholar 

  • Xu M, Wang W, Zhong Y, Xu X, Wang J, Zhou W, Shao Z (2019) Enhancing the triiodide reduction activity of a perovskite-based electrocatalyst for dye-sensitized solar cells through exsolved silver nanoparticles. J Mater Chem A 7:17489–17497

    Article  Google Scholar 

  • Yan Z, Hara S, Shikazono N (2017) Effect of powder morphology on the microstructural characteristics of La0.6Sr0.4Co0.2Fe0.8O3 cathode: a kinetic Monte Carlo investigation. Int J Hydrogen Energy 42:12601–12614

    Article  Google Scholar 

  • Yang H, Zhao D (2005) Synthesis of replica mesostructures by the nanocasting strategy. J Mater Chem 15:1217–1231

    Google Scholar 

  • Yang L, Miyanaji H (2017) Ceramic additive manufacturing: a review of current status and challenges. Solid Freeform Fabrication 2017:652–679

    Google Scholar 

  • Yang J, Ma W, Yu J, Chen X, Sun H, Xie Y (2014) Study on the pore-formers for porous anode substrates of solid oxide fuel cell. Xiyou Jinshu Cailiao Yu Gongcheng/rare Metal Mater Eng 43:269–273

    Google Scholar 

  • Yang SM, Lee S, Jian J, Zhang W, Lu P, Jia Q, Wang H, Noh TW, Kalinin SV, MacManus-Driscoll JL (2015) Strongly enhanced oxygen ion transport through samarium-doped CeO2 nanopillars in nanocomposite films. Nat Commun 6:8588

    Article  Google Scholar 

  • Yang Q, Wang G, Wu H, Beshiwork BA, Tian D, Zhu S, Yang Y, Lu X, Ding Y, Ling Y, Chen Y, Lin B (2021a) A high-entropy perovskite cathode for solid oxide fuel cells. J Alloy Compd 872:159633

    Article  Google Scholar 

  • Yang Y, Bao H, Ni H, Ou X, Wang S, Lin B, Feng P, Ling Y (2021b) A novel facile strategy to suppress Sr segregation for high-entropy stabilized La0.8Sr0.2MnO3δ cathode. J Power Sources 482:228959

    Article  Google Scholar 

  • Ye L, Zhang M, Huang P, Guo G, Hong M, Li C, Irvine JTS, Xie K (2017) Enhancing CO2 electrolysis through synergistic control of non-stoichiometry and doping to tune cathode surface structures. Nat Commun 8:1–10

    Article  Google Scholar 

  • Yoon J, Cho S, Kim JH, Lee J, Bi Z, Serquis A, Zhang X, Manthiram A, Wang H (2009) Vertically aligned nanocomposite thin films as a cathode/electrolyte interface layer for thin-film solid oxide fuel cells. Adv Func Mater 19:3868–3873

    Article  Google Scholar 

  • Yoon KJ, Biswas M, Kim HHJ, Park M, Hong J, Kim HHJ, Son JW, Lee JH, Kim BK, Lee HW (2017) Nano-tailoring of infiltrated catalysts for high-temperature solid oxide regenerative fuel cells. Nano Energy 36:9–20

    Google Scholar 

  • Young D, Sukeshini AM, Cummins R, Xiao H, Rottmayer M, Reitz T (2008) Ink-jet printing of electrolyte and anode functional layer for solid oxide fuel cells. J Power Sources 184:191–196

    Article  Google Scholar 

  • Zhang H, Zhao F, Chen F, Xia C (2011) Nano-structured Sm0.5Sr0.5CoO3δ electrodes for intermediate-temperature SOFCs with zirconia electrolytes. Solid State Ionics 192:591–594

    Article  Google Scholar 

  • Zhang W, Zheng Y, Yu B, Wang J, Chen J (2017) Electrochemical characterization and mechanism analysis of high temperature Co-electrolysis of CO2 and H2O in a solid oxide electrolysis cell. Int J Hydrogen Energy 42:29911–29920

    Article  Google Scholar 

  • Zhang J, Wei L, Meng X, Yu F, Yang N, Liu S (2020a) Digital light processing-stereolithography three-dimensional printing of yttria-stabilized zirconia. Ceram Int 46:8745–8753

    Article  Google Scholar 

  • Zhang X, Wu X, Shi J (2020b) Additive manufacturing of zirconia ceramics: a state-of-the-art review. J Market Res 9:9029–9048

    Google Scholar 

  • Zhang F, Cheng F, Cheng C, Guo M, Liu Y, Miao Y, Gao F, Wang X (2022) Preparation and electrical conductivity of (Zr,Hf,Pr, Y,La)O high entropy fluorite oxides. J Mater Sci Technol 105:122–130

    Article  Google Scholar 

  • Zhao D, Wan Y, Zhou W (2013) Ordered mesoporous materials. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim, Germany

    Book  Google Scholar 

  • Zheng Y, Wang J, Yu B, Zhang W, Chen J, Qiao J, Zhang J (2017) A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology. Chem Soc Rev 46:1427–1463

    Article  Google Scholar 

  • Zhong Y, Fang H, Ma Q, Dong X (2018) Analysis of droplet stability after ejection from an inkjet nozzle. J Fluid Mech 845:378–391

    Article  Google Scholar 

  • Zhou J, Shin TH, Ni C, Chen G, Wu K, Cheng Y, Irvine JTS (2016) In Situ growth of nanoparticles in layered perovskite La0.8Sr1.2Fe0.9Co0.1O4-δ as an active and stable electrode for symmetrical solid oxide fuel cells. Chem Mater 28:2981–2993

    Article  Google Scholar 

  • Zhu K, Yang D, Yu Z, Ma Y, Zhang S, Liu R, Li J, Cui J, Yuan H (2020) Additive manufacturing of SiO2–Al2O3 refractory products via direct ink writing. Ceram Int 46:27254–27261

    Article  Google Scholar 

  • Zhu Z, Gong Z, Qu P, Li Z, Rasaki SA, Liu Z, Wang P, Liu C, Lao C, Chen Z (2021) Additive manufacturing of thin electrolyte layers via inkjet printing of highly-stable ceramic inks. J Adv Ceram 10:279–290

    Article  Google Scholar 

  • Zouridi L, Garagounis I, Vourros A, Marnellos GE, Binas V (2022) Advances in inkjet-printed solid oxide fuel cells. Adv Mater Technol 2101491:1–32

    Google Scholar 

Download references

Acknowledgements

The authors want to acknowledge the Generalitat de Catalunya (2017 SGR 1421, NANOEN) for the received funding. The authors also received funding from the national project 3DPASSION (RETOS INV, PID2019-107106RB-C31) and from the NewSOC Project (ref. 874577) supported through the European Commission’s Fuel Cells Hydrogen Joint Undertaking.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Torrell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tarancón, A. et al. (2023). Emerging Trends in Solid Oxide Electrolysis Cells. In: Laguna-Bercero, M.A. (eds) High Temperature Electrolysis. Lecture Notes in Energy, vol 95. Springer, Cham. https://doi.org/10.1007/978-3-031-22508-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22508-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22507-9

  • Online ISBN: 978-3-031-22508-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics