Skip to main content

Thermal and Mechanical Properties (I): Optimum Predictive Thermal Conduction Model Development for Epoxy-Filled Copper Oxide Nanoparticles Composite Coatings on Spent Nuclear Fuel Steel Casks

  • Chapter
  • First Online:
Resource Recovery and Recycling from Waste Metal Dust

Abstract

High-radiation levels in casks are usually caused by the deposition of radioactive salts during the transportation of spent nuclear fuel (SNF). Sanding is a method used to get rid of these salts, although it results in mechanical corrosion. Instead, it is encouraged to use surface coating materials for corrosion mitigation, prevention, and repair. In order to function well as a coating on the steel casks used for transportation of SNF, the material is expected to have excellent thermal conductivity property in addition to its anticorrosion property. Even though epoxy has been utilized to create coating for this purpose, by adding inorganic nano-fillers like copper oxide nanoparticles (CuO-NPs) to it, its characteristics can be enhanced even further. This school of thinking is supported by the proposed study, which aims to produce a variety of CuO-NPs from concentrates obtained through the density separation of waste copper dust. The different CuO-NP compositions will be employed as fillers in an epoxy matrix to produce organic-inorganic composite coatings. To better understand the heat resistance at the interfaces (i.e., interface thermal resistance) between fillers and between fillers and the matrix. Further research will be done to determine how this understanding can increase the level of agreement between experimental data and predicted thermal conduction models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.K. Nematchoua, J.A. Orosa, Life cycle assessment of radioactive materials from a residential neighbourhood. Sustain. Mater. Technol. 33, e00468 (2022)

    CAS  Google Scholar 

  2. G. Vaidyanathan, R.D. Kale, India’s nuclear power program: A critical review. Sādhanā 47(3), 1–18 (2022)

    Article  Google Scholar 

  3. T.A. Kurniawan, M.H.D. Othman, D. Singh, R. Avtar, G.H. Hwang, T. Setiadi, W.H. Lo, Technological solutions for long-term storage of partially used nuclear waste: A critical review. Ann. Nucl. Energy 166, 108736 (2022)

    Article  CAS  Google Scholar 

  4. T. Sakuragi, T. Okamura, R. Hamada, H. Asano, E. Minari, M. Nakase, K. Takeshita, T. Oniki, M. Uchiyama, Optimal waste loading in high-level nuclear waste glass from high-burnup spent fuel for waste volume and geological disposal footprint reduction. MRS Adv. 7(7), 150–154 (2022)

    Article  CAS  Google Scholar 

  5. M.S. Yim, Characteristics of spent fuel and its storage and transportation, in Nuclear Waste Management, (Springer, Dordrecht, 2022), pp. 257–339

    Chapter  Google Scholar 

  6. M.S. Yim, Spent fuel reprocessing and nuclear waste transmutation, in Nuclear Waste Management, (Springer, Dordrecht, 2022), pp. 341–384

    Chapter  Google Scholar 

  7. M.S. Yim, Management of low and intermediate level waste, in Nuclear Waste Management, (Springer, Dordrecht, 2022), pp. 635–685

    Chapter  Google Scholar 

  8. M. Alwaeli, V. Mannheim, Investigation into the current state of nuclear energy and nuclear waste management—A state-of-the-art review. Energies 15(12), 4275 (2022)

    Article  Google Scholar 

  9. A. Yadav, A. Singh, A. Shukla, Nuclear energy and conventional clean fuel, in Status and Future Challenges for Non-conventional Energy Sources, vol. 1, (Springer, Singapore, 2022), pp. 23–44

    Chapter  Google Scholar 

  10. Safety Series No. 6, Regulations for the Safe Transport of Radioactive Materials (International Atomic Energy Agency, Vienna, 1985)

    Google Scholar 

  11. Standard Safety Series No. TS-R-1, Regulations for the Safe Transport of Radioactive Materials (International Atomic Energy Agency, Vienna, 2003)

    Google Scholar 

  12. Standard Safety Series, Transportation of Spent Research Reactor Fuel to USA (Phoenix, 2011)

    Google Scholar 

  13. S. Kang, D.H. Kim, Y.S. Chang, S. Lee, Integrity assessment of spent fuel assembly in vertically and obliquely dropping cask. J. Mech. Sci. Technol. 35(9), 3821–3827 (2021)

    Article  Google Scholar 

  14. D. Grgić, M. Matijević, P. Dučkić, R. Ječmenica, Analysis of the HI-TRAC VW transfer cask dose rates for spent fuel assemblies loaded in nuclear power plant Krsko storage campaign one. J. Nucl. Eng. Radiat. Sci. 8(4), 041902 (2022)

    Article  Google Scholar 

  15. Y. Liu, B. Craig, Z. Han, J. Li, K. Byrne, H. Takeda, T. Saegusa, RAMM-TM for detection of gas leakage from canisters containing spent nuclear fuel. Nucl. Eng. Des. 385, 111534 (2021)

    Article  CAS  Google Scholar 

  16. A. Knight, B. Nation, C. Bryan, R. Schaller, FY21 Status Report: SNF Canister Coatings for Corrosion Prevention and Mitigation. (No. SAND2021-10810R) (Sandia National Lab (SNL-NM), Albuquerque, 2021)

    Book  Google Scholar 

  17. P. Goyal, V. Verma, A. Dutta, J. Chattopadhyay, Quantification of lead melting in a radioactive transport cask using CFD. BARC Newsletter (2021)

    Google Scholar 

  18. L. Vergari, M. Fratoni, Spent fuel management strategies for fluoride-cooled pebble bed reactors. Nucl. Eng. Des. 378, 111189 (2021)

    Article  CAS  Google Scholar 

  19. M.G. El-Samrah, A.F. Tawfic, S.E. Chidiac, Spent nuclear fuel interim dry storage; design requirements, most common methods, and evolution: A review. Ann. Nucl. Energy 160, 108408 (2021)

    Article  CAS  Google Scholar 

  20. I.M. Mousaa, N.A. Abdelreheim, S.A. Elnaggar, R.M. Fathy, Green synthesis and use of copper oxide nanoparticles to prepare a highly thermal, antimicrobial, and anticorrosion hybrid coating for mild steel under electron beam irradiation. Anti-Corros. Methods Mater. 69(2), 160–170 (2022)

    Article  CAS  Google Scholar 

  21. G.Y. Shkoukani Al-Qous, Shielding and Corrosion Behavior of Materials in Nuclear Applications (North Carolina State University ProQuest Dissertations Publishing, 2021)

    Google Scholar 

  22. D. Asefi, M. Arami, N.M. Mahmoodi, Electrochemical effect of cationic gemini surfactant and halide salts on corrosion inhibition of low carbon steel in acid medium. Corros. Sci. 52(3), 794–800 (2010)

    Article  CAS  Google Scholar 

  23. I.M. Mousaa, N.M. Ali, M.K. Attia, Preparation of high performance coating films based on urethane acrylate oligomer and liquid silicone rubber for corrosion protection of mild steel using electron beam radiation. Prog. Org. Coat. 155, 106222 (2021)

    Article  CAS  Google Scholar 

  24. T. Wang, Q. Guo, T.C. Zhang, Y.X. Zhang, S. Yuan, Large-scale prepared superhydrophobic HDTMS-modified diatomite/epoxy resin composite coatings for high-performance corrosion protection of magnesium alloys. Prog. Org. Coat. 170, 106999 (2022)

    Article  CAS  Google Scholar 

  25. O. Mazzantini, F. D’Auria, J.R. Riznic, Atucha II plant description, in Pressurized Heavy Water Reactors, (Elsevier, 2022), pp. 1–49

    Google Scholar 

  26. K.A. Ross, M. Pole, B. Gwalani, T.J. Montoya, R. Schaller, E. Karasz, Cold Spray for Mitigation and Repair of Spent Nuclear Fuel Dry Storage Canisters. (No. PNNL-32917) (Pacific Northwest National Lab (PNNL), Richland, 2022)

    Book  Google Scholar 

  27. S.G. Acharyya, A. Khandelwal, V. Kain, A. Kumar, I. Samajdar, Surface working of 304L stainless steel: Impact on microstructure, electrochemical behavior and SCC resistance. Mater. Charact. 72, 68–76 (2012)

    Article  CAS  Google Scholar 

  28. ASTM Standard, Standard Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings (ASTM International, West Conshohocken, 2014), pp. 2–8

    Google Scholar 

  29. J. Fiebig, E. Bakan, T. Kalfhaus, G. Mauer, O. Guillon, R. Vaßen, Thermal spray processes for the repair of gas turbine components. Adv. Eng. Mater. 22(6), 1901237 (2020)

    Article  CAS  Google Scholar 

  30. S. Ghosh, V. Kain, Effect of surface machining and cold working on the ambient temperature chloride stress corrosion cracking susceptibility of AISI 304L stainless steel. Mater. Sci. Eng. A 527(3), 679–683 (2010)

    Article  Google Scholar 

  31. S.W. Glass, M.R. Larche, M.S. Prowant, J.D. Suter, J.P. Lareau, X. Jiang, K.A. Ross, Cold spray NDE for porosity and other process anomalies, in AIP Conference Proceedings, vol. 1949, no. 1, (AIP Publishing LLC, 2018), p. 020010

    Google Scholar 

  32. M.R. Rokni, C.A. Widener, O.C. Ozdemir, G.A. Crawford, Microstructure and mechanical properties of cold sprayed 6061 Al in As-sprayed and heat treated condition. Surf. Coat. Technol. 309, 641–650 (2017)

    Article  CAS  Google Scholar 

  33. B. Hanson, H. Alsaed, C. Stockman, D. Enos, R. Meyer, K. Sorenson, Gap Analysis to Support Extended Storage of Used Nuclear Fuel. (No. PNNL-20509) (2012)

    Google Scholar 

  34. R. Hosler, J. Hall, Outside Diameter Initiated Stress Corrosion Cracking. (No. PA-MSC-0474) (2010)

    Google Scholar 

  35. J.P. Lareau, Operating Experience with Chloride Induced Stress Corrosion Cracking. (EPRI ESCP) (2014)

    Google Scholar 

  36. A.W. Knight, R. Schaller, C.R. Bryan, T.J. Montoya, A.M. Parey, J. Carpenter, M. Maguire, K. Ross, Corrosion-Resistant Coatings for Mitigation and Repair of Spent Nuclear Fuel Dry Storage Canisters. (No. SAND-2020-7916R) (Sandia National Lab (SNL-NM), Albuquerque, 2020)

    Book  Google Scholar 

  37. S.J. Saltzstein, B. Hanson, G.A. Freeze, Spent Fuel and Waste Science and Technology Storage and Transportation R&D Strategic Plan. (No. SAND2020-11667C) (Sandia National Lab (SNL-NM), Albuquerque, 2020)

    Book  Google Scholar 

  38. C.R. Bryan, D.G. Enos, Analysis of Dust Samples Collected from Spent Nuclear Fuel Interim Storage Containers at Hope Creek, Delaware, and Diablo Canyon, California. (No. SAND2014-16383) (Sandia National Lab (SNL-NM), Albuquerque, 2014)

    Book  Google Scholar 

  39. C.R. Bryan, D. Enos, Analysis of Dust Samples Collected from an Unused Spent Nuclear Fuel Interim Storage Container at Hope Creek, Delaware. (No. SAND-2015-1746) (Sandia National Lab (SNL-NM), Albuquerque, 2015)

    Book  Google Scholar 

  40. C.R. Bryan, A.W. Knight, Analysis of Dust Samples Collected from an Inland ISFSI Site (Site A). (No. SAND-2020-13674) (Sandia National Lab (SNL-NM), Albuquerque, 2020)

    Book  Google Scholar 

  41. C.R. Bryan, E.J. Schindelholz, Analysis of Samples Collected from the Surface of Interim Storage Canisters at Calvert Cliffs in June 2017: Revision 01. (No. SAND2017-12429) (Sandia National Lab (SNL-NM), Albuquerque, 2017)

    Book  Google Scholar 

  42. C.R. Bryan, E.J. Schindelholz, FY18 Status Report: SNL Research into Stress Corrosion Cracking of SNF Interim Storage Canisters. (No. SAND-2018-12595R) (Sandia National Lab (SNL-NM), Albuquerque, 2018)

    Book  Google Scholar 

  43. R.F. Schaller, A.W. Knight, C. Bryan, B. Nation, T.J. Montoya, R.M. Katona, FY20 Status Report: SNF Interim Storage Canister Corrosion and Surface Environment Investigations. (No. M2SF-21SN010207055) (US Department of Energy. Sandia National Laboratories, Albuquerque, 2020)

    Google Scholar 

  44. E.J. Schindelholz, C.R. Bryan, C.L. Alexander, FY17 Status Report: Research on Stress Corrosion Cracking of SNF Interim Storage Canisters. (No. SAND-2017-10338R) (Sandia National Lab (SNL-NM), Albuquerque, 2017)

    Book  Google Scholar 

  45. A. Knight, C. Bryan, Analysis of Dust Samples Collected from an Inland ISFSI Site (“Site B”). (No. SAND2020-14144) (Sandia National Lab (SNL-NM), Albuquerque, 2020)

    Book  Google Scholar 

  46. C.R. Bryan, D.G. Enos, Interim Storage Environment: Considerations for Corrosion Testing of SNF Dry Storage Containers. (No. SAND2013-3519C) (Sandia National Lab (SNL-NM), Albuquerque, 2013)

    Google Scholar 

  47. H. Wu, L. Cheng, C. Liu, X. Lan, H. Zhao, Engineering the interface in graphene oxide/epoxy composites using bio-based epoxy-graphene oxide nanomaterial to achieve superior anticorrosion performance. J. Colloid Interface Sci. 587, 755–766 (2021)

    Article  CAS  Google Scholar 

  48. Y. Hu, L. Zeng, A.J. Minnich, M.S. Dresselhaus, G. Chen, Spectral mapping of thermal conductivity through nanoscale ballistic transport. Nat. Nanotechnol. 10(8), 701–706 (2015)

    Article  CAS  Google Scholar 

  49. Y. Lin, Y. Jia, G. Alva, G. Fang, Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage. Renew. Sust. Energ. Rev. 82, 2730–2742 (2018)

    Article  CAS  Google Scholar 

  50. M.K. Hassanzadeh-Aghdam, R. Ansari, H.M. Deylami, Influence of graphene nano-platelets on thermal transport performance of carbon fiber-polymer hybrid composites: Overall assessment of microstructural aspects. Int. J. Therm. Sci. 171, 107209 (2022)

    Article  CAS  Google Scholar 

  51. M.K. Hassanzadeh-Aghdam, R. Ansari, A micromechanics-based hierarchical analysis of thermal conductivity of metallic nanocomposites with agglomerated ceramic nanoparticles. Arab. J. Sci. Eng. 46(8), 7143–7151 (2021)

    Article  CAS  Google Scholar 

  52. J. Park, D. Kim, H. Kim, J. Lee, W. Chung, Thermal radiative copper oxide layer for enhancing heat dissipation of metal surface. Nanomaterials 11(11), 2819 (2021)

    Article  CAS  Google Scholar 

  53. M. Ramezanzadeh, B. Ramezanzadeh, Thermomechanical and anticorrosion characteristics of metal-organic frameworks, in Metal-Organic Frameworks for Chemical Reactions, (Elsevier, 2021), pp. 295–330

    Chapter  Google Scholar 

  54. X. Wang, Z. Lin, Robust, hydrophobic anti-corrosion coating prepared by PDMS modified epoxy composite with graphite nanoplatelets/nano-silica hybrid nanofillers. Surf. Coat. Technol. 421, 127440 (2021)

    Article  CAS  Google Scholar 

  55. G.M. Nair, T. Sajini, B. Mathew, Advanced green approaches for metal and metal oxide nanoparticles synthesis and their environmental applications. Talanta Open 5, 100080 (2021)

    Article  Google Scholar 

  56. S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, R. Kumar, Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Prog. Polym. Sci. 38(8), 1232–1261 (2013)

    Article  CAS  Google Scholar 

  57. A.M. El Saeed, M. Abd El-Fattah, A.M. Azzam, Synthesis of ZnO nanoparticles and studying its influence on the antimicrobial, anticorrosion and mechanical behavior of polyurethane composite for surface coating. Dyes Pigments 121, 282–289 (2015)

    Article  Google Scholar 

  58. X. Xiao, L. Miao, G. Xu, L. Lu, Z. Su, N. Wang, S. Tanemura, A facile process to prepare copper oxide thin films as solar selective absorbers. Appl. Surf. Sci. 257(24), 10729–10736 (2011)

    Article  CAS  Google Scholar 

  59. R. Albatici, F. Passerini, A.M. Tonelli, S. Gialanella, Assessment of the thermal emissivity value of building materials using an infrared thermovision technique emissometer. Energ. Buildings 66, 33–40 (2013)

    Article  Google Scholar 

  60. A.H. Jayatissa, K. Guo, A.C. Jayasuriya, Fabrication of cuprous and cupric oxide thin films by heat treatment. Appl. Surf. Sci. 255(23), 9474–9479 (2009)

    Article  CAS  Google Scholar 

  61. J. Karthikeyan, The advantages and disadvantages of the cold spray coating process, in The Cold Spray Materials Deposition Process, (Woodhead Publishing, 2007), pp. 62–71

    Chapter  Google Scholar 

  62. W.J. Stepniowski, W.Z. Misiolek, Review of fabrication methods, physical properties, and applications of nanostructured copper oxides formed via electrochemical oxidation. Nanomaterials 8(6), 379 (2018)

    Article  Google Scholar 

  63. F. Jiang, W. Zhao, Y. Wu, J. Dong, K. Zhou, G. Lu, J. Pu, Anti-corrosion behaviors of epoxy composite coatings enhanced via graphene oxide with different aspect ratios. Prog. Org. Coat. 127, 70–79 (2019)

    Article  CAS  Google Scholar 

  64. D. Okanigbe, P. Olawale, A. Popoola, A. Abraham, A. Michael, K. Andrei, Centrifugal separation experimentation and optimum predictive model development for copper recovery from waste copper smelter dust. Cogent Eng. 5(1), 1551175 (2018)

    Article  Google Scholar 

  65. S. Saha, J. Khan, T. Knight, T. Farouk, A global model for predicting vacuum drying of used nuclear fuel assemblies. Nucl. Technol. 208(3), 414–427 (2022)

    Article  Google Scholar 

  66. A. Pasha, S. Khasim, A.A.A. Darwish, T.A. Hamdalla, S.A. Al-Ghamdi, High performance organic coatings of polypyrrole embedded with manganese iron oxide nanoparticles for corrosion protection of conductive copper surface. J. Inorg. Organomet. Polym. Mater. 32(2), 499–512 (2022)

    Article  CAS  Google Scholar 

  67. C. Huang, X. Qian, R. Yang, Thermal conductivity of polymers and polymer nanocomposites. Mater. Sci. Eng. R Rep. 132, 1–22 (2018)

    Article  Google Scholar 

  68. F. Jiang, S. Cui, C. Rungnim, N. Song, L. Shi, P. Ding, Control of a dual-cross-linked boron nitride framework and the optimized design of the thermal conductive network for its thermoresponsive polymeric composites. Chem. Mater. 31(18), 7686–7695 (2019)

    Article  CAS  Google Scholar 

  69. X. Fu, Z. Ji, W. Lin, Y. Yu, T. Wu, The advancement of neutron shielding materials for the storage of spent nuclear fuel. Sci. Technol. Nucl. Install. 2021, 5541047 (2021)

    Google Scholar 

  70. C.K. Wilson, The 1996 IAEA regulations for the safe transport of radioactive materials—The transport of fissile material. Int. J. Radioact. Mater. Transp. 8(2), 127–132 (1997)

    CAS  Google Scholar 

  71. Y. Song, F. Jiang, N. Song, L. Shi, P. Ding, Multilayered structural design of flexible films for smart thermal management. Compos. A: Appl. Sci. Manuf. 141, 106222 (2021)

    Article  Google Scholar 

  72. Z. Zhu, C. Li, E. Songfeng, L. Xie, R. Geng, C.T. Lin, L. Li, Y. Yao, Enhanced thermal conductivity of polyurethane composites via engineering small/large sizes interconnected boron nitride nanosheets. Compos. Sci. Technol. 170, 93–100 (2019)

    Article  CAS  Google Scholar 

  73. J.S. George, J.K. Paduvilan, N. Salim, J. Sunarso, N. Kalarikkal, N. Hameed, S. Thomas, Advances and future outlook in epoxy/graphene composites for anticorrosive applications. Prog. Org. Coat. 162, 106571 (2022)

    Article  CAS  Google Scholar 

  74. J. Zhang, W. Zhang, L. Wei, L. Pu, J. Liu, H. Liu, Y. Li, J. Fan, T. Ding, Z. Guo, Alternating multilayer structural epoxy composite coating for corrosion protection of steel. Macromol. Mater. Eng. 304(12), 1900374 (2019)

    Article  CAS  Google Scholar 

  75. N. Keshmiri, P. Najmi, M. Ramezanzadeh, B. Ramezanzadeh, Designing an eco-friendly lanthanide-based metal organic framework (MOF) assembled graphene-oxide with superior active anti-corrosion performance in epoxy composite. J. Clean. Prod. 319, 128732 (2021)

    Article  CAS  Google Scholar 

  76. Z. Yu, L. Lv, Y. Ma, H. Di, Y. He, Covalent modification of graphene oxide by metronidazole for reinforced anti-corrosion properties of epoxy coatings. RSC Adv. 6(22), 18217–18226 (2016)

    Article  CAS  Google Scholar 

  77. M. Conradi, A. Kocijan, D. Kek-Merl, M. Zorko, I. Verpoest, Mechanical and anticorrosion properties of nanosilica-filled epoxy-resin composite coatings. Appl. Surf. Sci. 292, 432–437 (2014)

    Article  CAS  Google Scholar 

  78. C.Y. Ge, X.G. Yang, B.R. Hou, Synthesis of polyaniline nanofiber and anticorrosion property of polyaniline–epoxy composite coating for Q235 steel. J. Coat. Technol. Res. 9(1), 59–69 (2012)

    Article  CAS  Google Scholar 

  79. P. Ghahremani, A.H. Mostafatabar, G. Bahlakeh, B. Ramezanzadeh, Rational design of a novel multi-functional carbon-based nano-carrier based on multi-walled-CNT-oxide/polydopamine/chitosan for epoxy composite with robust pH-sensitive active anti-corrosion properties. Carbon 189, 113–141 (2022)

    Article  CAS  Google Scholar 

  80. M. Motamedi, M. Ramezanzadeh, B. Ramezanzadeh, M. Mahdavian, One-pot synthesis and construction of a high performance metal–organic structured nano pigment based on nanoceria decorated cerium (III)-imidazole network (NC/CIN) for effective epoxy composite coating anti-corrosion and thermo-mechanical properties improvement. Chem. Eng. J. 382, 122820 (2020)

    Article  Google Scholar 

  81. R. Hsissou, O. Dagdag, M. Berradi, M. El Bouchti, M. Assouag, A. Elharfi, Development rheological and anti-corrosion property of epoxy polymer and its composite. Heliyon 5(11), e02789 (2019)

    Article  Google Scholar 

  82. S.M. Lashgari, H. Yari, M. Mahdavian, B. Ramezanzadeh, G. Bahlakeh, M. Ramezanzadeh, Application of nanoporous cobalt-based ZIF-67 metal-organic framework (MOF) for construction of an epoxy-composite coating with superior anti-corrosion properties. Corros. Sci. 178, 109099 (2021)

    Article  CAS  Google Scholar 

  83. S. Chhetri, P. Samanta, N.C. Murmu, T. Kuila, Anticorrosion properties of epoxy composite coating reinforced by molybdate-intercalated functionalized layered double hydroxide. J. Compos. Sci. 3(1), 11 (2019)

    Article  CAS  Google Scholar 

  84. K. Cao, Z. Yu, D. Yin, Preparation of Ce-MOF@ TEOS to enhance the anti-corrosion properties of epoxy coatings. Prog. Org. Coat. 135, 613–621 (2019)

    Article  CAS  Google Scholar 

  85. Y. Wu, J. Yu, W. Zhao, C. Wang, B. Wu, G. Lu, Investigating the anti-corrosion behaviors of the waterborne epoxy composite coatings with barrier and inhibition roles on mild steel. Prog. Org. Coat. 133, 8–18 (2019)

    Article  CAS  Google Scholar 

  86. C. Yu, J. Zhang, Z. Li, W. Tian, L. Wang, J. Luo, Q. Li, X. Fan, Y. Yao, Enhanced through-plane thermal conductivity of boron nitride/epoxy composites. Compos. A: Appl. Sci. Manuf. 98, 25–31 (2017)

    Article  CAS  Google Scholar 

  87. F. Jiang, S. Cui, N. Song, L. Shi, P. Ding, Hydrogen bond-regulated boron nitride network structures for improved thermal conductive property of polyamide-imide composites. ACS Appl. Mater. Interfaces 10(19), 16812–16821 (2018)

    Article  CAS  Google Scholar 

  88. X.J. Zha, J. Yang, J.H. Pu, C.P. Feng, L. Bai, R.Y. Bao, Z.Y. Liu, M.B. Yang, W. Yang, Enhanced thermal conductivity and balanced mechanical performance of PP/BN composites with 1 vol% finely dispersed MWCNTs assisted by OBC. Adv. Mater. Interfaces 6(9), 1900081 (2019)

    Article  Google Scholar 

  89. J. Gu, K. Ruan, Breaking through bottlenecks for thermally conductive polymer composites: A perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nanomicro Lett. 13(1), 1–9 (2021)

    Google Scholar 

  90. A. Aparna, A.S. Sethulekshmi, J.S. Jayan, A. Saritha, K. Joseph, Recent advances in boron nitride based hybrid polymer nanocomposites. Macromol. Mater. Eng. 306(11), 2100429 (2021)

    Article  CAS  Google Scholar 

  91. D. Zou, X. Huang, Y. Zhu, J. Chen, P. Jiang, Boron nitride nanosheets endow the traditional dielectric polymer composites with advanced thermal management capability. Compos. Sci. Technol. 177, 88–95 (2019)

    Article  CAS  Google Scholar 

  92. Y. Han, X. Shi, X. Yang, Y. Guo, J. Zhang, J. Kong, J. Gu, Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers. Compos. Sci. Technol. 187, 107944 (2020)

    Article  CAS  Google Scholar 

  93. F. Kargar, Z. Barani, R. Salgado, B. Debnath, J.S. Lewis, E. Aytan, R.K. Lake, A.A. Balandin, Thermal percolation threshold and thermal properties of composites with high loading of graphene and boron nitride fillers. ACS Appl. Mater. Interfaces 10(43), 37555–37565 (2018)

    Article  CAS  Google Scholar 

  94. R. Künzel, E. Okuno, Effects of the particle sizes and concentrations on the X-ray absorption by CuO compounds. Appl. Radiat. Isot. 70(4), 781–784 (2012)

    Article  Google Scholar 

  95. M.E. Mahmoud, R.M. El-Sharkawy, E.A. Allam, R. Elsaman, A. El-Taher, Fabrication and characterization of phosphotungstic acid-copper oxide nanoparticles-plastic waste nanocomposites for enhanced radiation-shielding. J. Alloys Compd. 803, 768–777 (2019)

    Article  CAS  Google Scholar 

  96. H.M. Abd El-Lateef, M. Gouda, Novel nanocomposites of nickel and copper oxide nanoparticles embedded in a melamine framework containing cellulose nanocrystals: Material features and corrosion protection applications. J. Mol. Liq. 342, 116960 (2021)

    Article  Google Scholar 

  97. D. Hassan, A. Hashim, Structural and optical properties of (polystyrene–copper oxide) nanocomposites for biological applications. J. Bionanosci. 12(3), 341–345 (2018)

    Article  CAS  Google Scholar 

  98. A.T. Sunny, M. Mozetic, G. Primc, S. Mathew, S. Thomas, Tunable morphology and hydrophilicity to epoxy resin from copper oxide nanoparticles. Compos. Sci. Technol. 146, 34–41 (2017)

    Article  CAS  Google Scholar 

  99. A.T. Sunny, R. Adhikari, S. Mathew, S. Thomas, Copper oxide nanoparticles in an epoxy network: Microstructure, chain confinement and mechanical behaviour. Phys. Chem. Chem. Phys. 18(29), 19655–19667 (2016)

    Article  CAS  Google Scholar 

  100. V.B. Rajendren, K. Subramani, Studies on Thermal Conductivity and Thermal Stability of Cu-CNT Composite Powder Filled Epoxy Composites Using a Novel Approach for Sophisticated Thermal Management Applications (2021)

    Google Scholar 

  101. K.A. Jasim, R.N. Fadhil, A.H. Shaban, H.I. Jaafar, B.K. Maiyaly, S.H. Aleabi, E.M. Salman, The effects of copper additives on the glass transition temperature and hardness for epoxy resin. Prog. Ind. Ecol. Int. J. 13(2), 163–172 (2019)

    Article  Google Scholar 

  102. M.H. Nazari, Y. Zhang, A. Mahmoodi, G. Xu, J. Yu, J. Wu, X. Shi, Nanocomposite organic coatings for corrosion protection of metals: A review of recent advances. Prog. Org. Coat. 162, 106573 (2022)

    Article  Google Scholar 

  103. H. Zhang, J. Cao, L. Sun, F. Kong, J. Tang, X. Zhao, Y. Tang, Y. Zuo, Comparative study on the degradation of two self-polishing antifouling coating systems with copper-based antifouling agents. Coatings 12(8), 1156 (2022)

    Article  CAS  Google Scholar 

  104. M.M. El-Masry, N.G. Imam, A comparative study between Ag-CuO/epoxy and Mg-CuO/epoxy hybrid nanocomposites: Impressive electrical, mechanical and thermal properties. J. Mater. Res. Technol. 18, 1784–1801 (2022)

    Article  CAS  Google Scholar 

  105. Y. Agari, T. Uno, Estimation on thermal conductivities of filled polymers. J. Appl. Polym. Sci. 32(7), 5705–5712 (1986)

    Article  CAS  Google Scholar 

  106. A. Agrawal, A. Satapathy, Development of a heat conduction model and investigation on thermal conductivity enhancement of AlN/epoxy composites. Procedia Eng. 51, 573–578 (2013)

    Article  CAS  Google Scholar 

  107. D.O. Okanigbe, Production of copper and copper oxide nano-particles from leach solution of low grade copper smelter dust. Dissertation, Tshwane University of Technology, 2019

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Ogochukwu Okanigbe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okanigbe, D.O., Van Der Merwe, S.R. (2023). Thermal and Mechanical Properties (I): Optimum Predictive Thermal Conduction Model Development for Epoxy-Filled Copper Oxide Nanoparticles Composite Coatings on Spent Nuclear Fuel Steel Casks. In: Ogochukwu Okanigbe, D., Popoola, A.P. (eds) Resource Recovery and Recycling from Waste Metal Dust. Springer, Cham. https://doi.org/10.1007/978-3-031-22492-8_7

Download citation

Publish with us

Policies and ethics