Skip to main content

Aircraft Engine Fan Blade Design: Impact Tolerance Prediction of Partially Filled 3D Printed Aluminum, Titanium, and PEEK-Filled Waste Metal Dusts

  • Chapter
  • First Online:
Resource Recovery and Recycling from Waste Metal Dust

Abstract

Cost-cutting measures are taken to reduce acquisition and operating expenses as a result of price rivalry facing airline operators. Utilizing lightweight components can help aircrafts consume less fuel, which could help cut operational expenses. While 3D-Print Technology (3D-PT) faces a hurdle of time and material loss when parameters like infill density are set to 100% for maximum tensile strength of printed components, aircraft components created using this technology are frequently strong. As a result, heavier components are created, which raises fuel consumption. It becomes crucial to establish the ideal infill density level needed to prevent plastic deformation of components made using 3D-PT. Therefore, the intended goal can be achieved by examining the impact tolerance of a 3D printed turbine component when the infill density ranges from 20% to 85%. Another suggested study looks at how employing lightweight waste metal dust, like the copper smelter dust, affects the impact resistance of 3D printed turbine components and how that affects material costs. The proposed research will offer suggestions for the best infill density for 3D printed turbine component additive manufacturing. The ideal compositional ratio of the matrix and reinforcement for the generated composite will also be suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. O.A. Akinboade, L.A. Braimoh, International tourism and economic development in South Africa: A Granger causality test. Int. J. Tour. Res. 12(2), 149–163 (2010)

    Article  Google Scholar 

  2. A. Gisario, M. Kazarian, F. Martina, M. Mehrpouya, Metal additive manufacturing in the commercial aviation industry: A review. J. Manuf. Syst. 53, 124–149 (2019)

    Article  Google Scholar 

  3. S. Ford, M. Despeisse, Additive manufacturing and sustainability: An exploratory study of the advantages and challenges. J. Clean. Prod. 137, 1573–1587 (2016)

    Article  Google Scholar 

  4. D.O. Okanigbe, A.P.I. Popoola, T.N. Makua, Determination of physico-chemical and hardness properties of mullite-rich tailings from density separated copper smelter dust for ceramic application, in TMS 2021 150th Annual Meeting & Exhibition Supplemental Proceedings, (Springer, Cham, 2021), pp. 1026–1035

    Chapter  Google Scholar 

  5. P.L. Linda, D.O. Okanigbe, A.P.I. Popoola, O.M. Popoola, Characterization of density separated mullite-rich tailings from a secondary copper resource, a potential reinforcement material for development of an enhanced thermally conductive and wear resistant Ti-6Al-4V matrix composite, in The Proceedings of the 60th International Conference of Metallurgist. Canada, (2021)

    Google Scholar 

  6. M.K. Niaki, F. Nonino, The Management of Additive Manufacturing, vol 10 (Springer, 2018), pp. 978–973

    Book  Google Scholar 

  7. J.A. Castillo-Robles, A.P. Dimas-Muñoz, J.A. Rodríguez-García, C.A. Calles-Arriaga, E.N. Armendáriz-Mireles, W.J. Pech-Rodríguez, E. Rocha-Rangel, Mechanical and microstructural response of aluminum composites reinforced with ceramic micro-particles. J. Compos. Sci. 5(9), 228 (2021)

    Article  CAS  Google Scholar 

  8. N. Kota, M.S. Charan, T. Laha, S. Roy, Review on development of metal/ceramic interpenetrating phase composites and critical analysis of their properties. Ceram. Int. 48(2), 1451–1483 (2022)

    Article  CAS  Google Scholar 

  9. D. Zhao, D. Wu, J. Shi, F. Niu, G. Ma, Microstructure and mechanical properties of melt-grown alumina-mullite/glass composites fabricated by directed laser deposition. J. Adv. Ceram. 11(1), 75–93 (2022)

    Article  CAS  Google Scholar 

  10. K.N. Lee, D. Zhu, R.S. Lima, Perspectives on environmental barrier coatings (EBCs) manufactured via air plasma spray (APS) on ceramic matrix composites (CMCs): A tutorial paper. J. Therm. Spray Technol. 30, 1–19 (2021)

    Article  Google Scholar 

  11. S.K. Suleimanov, V.G. Babashov, M.U. Dzhanklich, V.G. Dyskin, M.I. Daskovskii, S.Y. Skripachev, N.A. Kulagina, G.M. Arushanov, Behavior of a heat-protective material based on Al 2 O 3 and SiO 2 fibers under exposure to concentrated solar energy flux. Refract. Ind. Ceram. 61(6), 675–679 (2021)

    Article  CAS  Google Scholar 

  12. O. Zaporozhets, V. Isaienko, K. Synylo, PARE preliminary analysis of ACARE FlightPath 2050 environmental impact goals. CEAS Aeronaut. J. 12(3), 653–667 (2021)

    Article  Google Scholar 

  13. N.P. Padture, Advanced structural ceramics in aerospace propulsion. Nat. Mater. 15(8), 804–809 (2016)

    Article  CAS  Google Scholar 

  14. J. King, P. Greaves, H. Low, Composite materials in aero gas turbines: Performance potential versus commercial constraint. Aircr. Eng. Aerosp. Technol 70, 3 (1998)

    Article  Google Scholar 

  15. J. Cheung, J. Scanlan, J. Wong, J. Forrester, H. Eres, P. Collopy, P. Hollingsworth, S. Wiseall, S. Briceno, Application of value-driven design to commercial aeroengine systems. J. Aircr. 49(3), 688–702 (2012)

    Article  Google Scholar 

  16. T.D. Ngo, A. Kashani, G. Imbalzano, K.T. Nguyen, D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B 143, 172–196 (2018)

    Article  CAS  Google Scholar 

  17. J. Kraft, S. Kuntzagk, Engine fleet-management: The use of digital twins from a MRO perspective, in Turbo expo: Power for Land, Sea, and Air, vol. 50770, (American Society of Mechanical Engineers, 2017), p. V001T01A007

    Google Scholar 

  18. G.M. Laskowski, J. Kopriva, V. Michelassi, S. Shankaran, U. Paliath, R. Bhaskaran, Q. Wang, C. Talnikar, Z.J. Wang, F. Jia, Future directions of high fidelity CFD for aerothermal turbomachinery analysis and design, in 46th AIAA Fluid Dynamics Conference, (AIAA, 2016), p. 3322

    Google Scholar 

  19. R. Jansen, C. Bowman, A. Jankovsky, R. Dyson, J. Felder, Overview of NASA electrified aircraft propulsion (EAP) research for large subsonic transports, in 53rd AIAA/SAE/ASEE Joint Propulsion Conference, (AIAA, 2017), p. 4701

    Google Scholar 

  20. S.K. Sinha, S. Dorbala, Dynamic loads in the fan containment structure of a turbofan engine. J. Aerosp. Eng. 22(3), 260–269 (2009)

    Article  Google Scholar 

  21. J. Carter, Simulation software to assess how, why, where and when components will fail, in 2018 Annual Reliability and Maintainability Symposium (RAMS), (IEEE, 2018), pp. 1–5

    Google Scholar 

  22. B. Strack, V. Nagpal, S. Pai, A software tool subjecting component designs to system-level reliability constraints, in 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, (AIAA, 2007), p. 2292

    Google Scholar 

  23. R. Saltoğlu, Opportunities of cost reduction and risks of budget overrun in maintenance spending of an airline in the current market conditions. Doctoral dissertation, Fen Bilimleri Enstitüsü, 2019

    Google Scholar 

  24. N. Kedir, C. Gong, L. Sanchez, M.J. Presby, S. Kane, D.C. Faucett, S.R. Choi, Erosion in gas-turbine grade ceramic matrix composites. J. Eng. Gas Turbines Power 141(1), 011019 (2019). https://doi.org/10.1115/1.4040848

    Article  CAS  Google Scholar 

  25. A.K. Misra, L.A. Greenbauer-Seng, Aerospace propulsion and power materials and structures research at NASA Glenn Research Center. J. Aerosp. Eng. 26(2), 459–490 (2013)

    Article  Google Scholar 

  26. P.W. Beaumont, On the problems of cracking and the question of structural integrity of engineering composite materials. Appl. Compos. Mater. 21(1), 5–43 (2014)

    Article  Google Scholar 

  27. M. Schwab, H.E. Pettermann, Modelling and simulation of damage and failure in large composite components subjected to impact loads. Compos. Struct. 158, 208–216 (2016)

    Article  Google Scholar 

  28. K. Raju, T.E. Tay, V.B.C. Tan, A review of the FE 2 method for composites. Multiscale Multidiscip. Model. Exp. Des 4, 1–24 (2021)

    Article  CAS  Google Scholar 

  29. Y. Sun, Y. Zhang, Y. Zhou, H. Zhang, H. Zeng, K. Yang, Evaluating impact damage of flat composite plate for surrogate bird-strike testing of Aeroengine fan blade. J. Compos. Sci. 5(7), 171 (2021)

    Article  Google Scholar 

  30. S.W. Ahmed, G. Hussain, K. Altaf, S. Ali, M. Alkahtani, M.H. Abidi, A. Alzabidi, On the effects of process parameters and optimization of interlaminate bond strength in 3D printed ABS/CF-PLA composite. Polymers 12(9), 2155 (2020)

    Article  CAS  Google Scholar 

  31. G.D. Goh, Y.L. Yap, H.K.J. Tan, S.L. Sing, G.L. Goh, W.Y. Yeong, Process–structure–properties in polymer additive manufacturing via material extrusion: A review. Crit. Rev. Solid State Mater. Sci. 45(2), 113–133 (2020)

    Article  CAS  Google Scholar 

  32. N. Mohan, P. Senthil, S. Vinodh, N. Jayanth, A review on composite materials and process parameters optimisation for the fused deposition modelling process. Virtual Phys. Prototyp. 12(1), 47–59 (2017)

    Article  Google Scholar 

  33. M. Moradi, S. Meiabadi, A. Kaplan, 3D printed parts with honeycomb internal pattern by fused deposition modelling; experimental characterization and production optimization. Met. Mater. Int. 25(5), 1312–1325 (2019)

    Article  Google Scholar 

  34. T. Muthuramalingam, B. Mohan, Application of Taguchi-grey multi responses optimization on process parameters in electro erosion. Measurement 58, 495–502 (2014)

    Article  Google Scholar 

  35. T. Geethapriyan, K. Kalaichelvan, T. Muthuramalingam, Multi performance optimization of electrochemical micro-machining process surface related parameters on machining Inconel 718 using Taguchi-grey relational analysis. La Metallurgia Italiana 4, 13–19 (2016)

    Google Scholar 

  36. İ. Istif, K. Feratoğlu, A. Acar, Investigation of mechanical behaviours of PLA parts manufactured by fused deposition modeling, in 56th ISC of the University of Ruse’17, Ruse, Bulgaristan, (2017), pp. 26–29

    Google Scholar 

  37. N. Singh, I.U.H. Mir, A. Raina, A. Anand, V. Kumar, S.M. Sharma, Synthesis and tribological investigation of Al-SiC based nano hybrid composite. Alex. Eng. J. 57(3), 1323–1330 (2018)

    Article  Google Scholar 

  38. M.I.U. Haq, A. Anand, Dry sliding friction and wear behavior of AA7075-Si 3 N 4 composite. SILICON 10(5), 1819–1829 (2018)

    Article  Google Scholar 

  39. A. Bernard, A. Fischer, New trends in rapid product development. CIRP Ann. 51(2), 635–652 (2002)

    Article  Google Scholar 

  40. M.I.H.C. Abdullah, M.F.B. Abdollah, H. Amiruddin, N. Tamaldin, N.R.M. Nuri, Optimization of tribological performance of hBN/AL2O3Nanoparticles as engine oil additives. Procedia Eng. 68, 313–319 (2013)

    Article  CAS  Google Scholar 

  41. C.K. Chua, K.F. Leong, C.S. Lim, Rapid Prototyping: Principles and Applications (with Companion CD-ROM) (World Scientific Publishing Company, 2010)

    Book  Google Scholar 

  42. M. Vaezi, C.K. Chua, Effects of layer thickness and binder saturation level parameters on 3D printing process. Int. J. Adv. Manuf. Technol. 53(1), 275–284 (2011)

    Article  Google Scholar 

  43. F. Górski, R. Wichniarek, W. Kuczko, P. Zawadzki, P. Buń, Strength of ABS parts produced by fused deposition modelling technology–a critical orientation problem. Adv. Sci. Tecnol. Res. J. 9(26), 12–19 (2015)

    Article  Google Scholar 

  44. L. Li, Q. Sun, C. Bellehumeur, P. Gu, Composite modeling and analysis for fabrication of FDM prototypes with locally controlled properties. J. Manuf. Process. 4(2), 129–141 (2002)

    Article  Google Scholar 

  45. I. Gajdoš, J. Slota, Influence of printing conditions on structure in FDM prototypes. Tehnički Vjesnik 20(2), 231–236 (2013)

    Google Scholar 

  46. A. Bellini, S. Güçeri, Mechanical characterization of parts fabricated using fused deposition modeling. Rapid Prototyp. J. 9, 252 (2003)

    Article  Google Scholar 

  47. S.H. Ahn, C. Baek, S. Lee, I.S. Ahn, Anisotropic tensile failure model of rapid prototyping parts-fused deposition modeling (FDM). Int. J. Mod. Phys. B 17(08n09), 1510–1516 (2003)

    Article  Google Scholar 

  48. F. Górski, W. Kuczko, R. Wichniarek, Influence of process parameters on dimensional accuracy of parts manufactured using fused deposition modelling technology. Adv. Sci. Tecnol. Res. J. 7(19), 27–35 (2013)

    Article  Google Scholar 

  49. T.F. Abbas, F.M. Othman, H.B. Ali, Influence of layer thickness on impact property of 3D-printed PLA. Int. Res. J. Eng. Technol. (IRJET) 5, 1–4 (2018)

    Google Scholar 

  50. R. Srinivasan, W. Ruban, A. Deepanraj, R. Bhuvanesh, T. Bhuvanesh, Effect on infill density on mechanical properties of PETG part fabricated by fused deposition modelling. Mater. Today: Proc. 27, 1838–1842 (2020)

    CAS  Google Scholar 

  51. E. Ebel, T. Sinnemann, Fabrication of FDM 3D objects with ABS and PLA and determination of their mechanical properties. Rapid Technol 2014(1), 4–22 (2014)

    Google Scholar 

  52. M.Q. Tanveer, A. Haleem, M. Suhaib, Effect of variable infill density on mechanical behaviour of 3-D printed PLA specimen: An experimental investigation. SN Appl. Sci. 1(12), 1–12 (2019)

    Article  Google Scholar 

  53. K.N. Gunasekaran, V. Aravinth, C.M. Kumaran, K. Madhankumar, S.P. Kumar, Investigation of mechanical properties of PLA printed materials under varying infill density. Mater. Today: Proc. 45, 1849–1856 (2021)

    Google Scholar 

  54. E. AtiK, C. Meriç, B. Karlik, Determination of yield strength of 2014 Aluminium alloy under aging conditions by means of Artifical neural networks method. Math. Comput. Appl. 1(2), 16–20 (1996)

    Google Scholar 

  55. P.P.N.K.V. Rambabu, N.E. Prasad, V.V. Kutumbarao, R.J.H. Wanhill, Aluminium alloys for aerospace applications, in Aerospace Materials and Material Technologies, (Springer, 2017), pp. 29–52

    Chapter  Google Scholar 

  56. P. Mukhopadhyay, Alloy designation, processing, and use of AA6XXX series aluminium alloys. Int. Sch. Res. Not. 2012, 165082 (2012)

    Google Scholar 

  57. C. Kammer, Aluminum and aluminum alloys, in Springer Handbook of Materials Data, (Springer, Cham, 2018), pp. 161–197

    Chapter  Google Scholar 

  58. D. Altenpohl, Aluminum Viewed from Within: An Introduction into the Metallurgy of Aluminum Fabrication (Aluminium-Verlag GmbH, Konigsallee, 1982), p. 223

    Google Scholar 

  59. S.R. Ch, A. Raja, P. Nadig, R. Jayaganthan, N.J. Vasa, Influence of working environment and built orientation on the tensile properties of selective laser melted AlSi10Mg alloy. Mater. Sci. Eng. A 750, 141–151 (2019)

    Article  CAS  Google Scholar 

  60. K.G. Prashanth, S. Scudino, J. Eckert, Defining the tensile properties of Al-12Si parts produced by selective laser melting. Acta Mater. 126, 25–35 (2017)

    Article  CAS  Google Scholar 

  61. Y. Ou, Q. Zhang, Y. Wei, Y. Hu, S. Sui, J. Chen, X. Wang, W. Li, Evolution of heterogeneous microstructure and its effects on tensile properties of selective laser melted AlSi10Mg alloy. J. Mater. Eng. Perform. 30(6), 4341–4355 (2021)

    Article  CAS  Google Scholar 

  62. M.S. Kumar, H.R. Javidrad, R. Shanmugam, M. Ramoni, A.A. Adediran, C.I. Pruncu, Impact of print orientation on morphological and mechanical properties of L-PBF based AlSi7Mg parts for aerospace applications. Silicon 14, 1–15 (2021)

    CAS  Google Scholar 

  63. M. Gowda, M. Karthick, S.K. Niketh, M. Kanagil, V. Guptha, A. Bharatish, R. Sharma, Effect of laser parameters on the vibrational characteristics of AlSi10Mg parts produced using selective laser melting (SLM). Lasers Eng. (Old City Publishing) 51(1–5), p187–203. 17p, (2021)

    Google Scholar 

  64. D. Dai, D. Gu, H. Zhang, J. Xiong, C. Ma, C. Hong, R. Poprawe, Influence of scan strategy and molten pool configuration on microstructures and tensile properties of selective laser melting additive manufactured aluminum-based parts. Opt. Laser Technol. 99, 91–100 (2018)

    Article  CAS  Google Scholar 

  65. J. Bi, Y.B. Chen, X. Chen, M.D. Starostenkov, G.J. Dong, Densification, microstructural features and tensile properties of selective laser melted AlMgSiScZr alloy from single track to block specimen. J. Cent. South Univ. 28(4), 1129–1143 (2021)

    Article  CAS  Google Scholar 

  66. P. Ponnusamy, S.H. Masood, D. Ruan, S. Palanisamy, R.R. Rashid, R. Mukhlis, N.J. Edwards, Dynamic compressive behaviour of selective laser melted AlSi12 alloy: Effect of elevated temperature and heat treatment. Addit. Manuf. 36, 101614 (2020)

    CAS  Google Scholar 

  67. M. Awd, S. Siddique, F. Walther, Microstructural damage and fracture mechanisms of selective laser melted Al-Si alloys under fatigue loading. Theor. Appl. Fract. Mech. 106, 102483 (2020)

    Article  CAS  Google Scholar 

  68. A. Mishra, R. Agarwal, N. Kumar, A. Rana, A.K. Pandey, S.P. Dwivedi, A critical review on the additive manufacturing of aluminium alloys. Mater. Today: Proc. 47, 4074 (2021)

    CAS  Google Scholar 

  69. K.C. Bae, K.S. Ha, Y.H. Kim, J.J. Oak, W. Lee, Y.H. Park, Building direction dependence of wear resistance of selective laser melted AISI 316L stainless steel under high-speed tribological environment. Int. J. Adv. Manuf. Technol. 108, 2385–2396 (2020)

    Article  Google Scholar 

  70. P. Wang, S. Yu, J. Shergill, A. Chaubey, J. Eckert, K.G. Prashanth, S. Scudino, Selective laser melting of Al-7Si-0.5 mg-0.5 cu: Effect of heat treatment on microstructure evolution, mechanical properties and Wear resistance. Acta Metall. Sin. (English Letters) 35, 1–8 (2021)

    Google Scholar 

  71. T. Maconachie, M. Leary, P. Tran, J. Harris, Q. Liu, G. Lu, D. Ruan, O. Faruque, M. Brandt, The effect of topology on the quasi-static and dynamic behaviour of SLM AlSi10Mg lattice structures. Int. J. Adv. Manuf. Technol. 118, 1–20 (2021)

    Google Scholar 

  72. A. Patel, V. Venoor, F. Yang, X. Chen, M.J. Sobkowicz, Evaluating poly (ether ether ketone) powder recyclability for selective laser sintering applications. Polym. Degrad. Stab. 185, 109502 (2021)

    Article  CAS  Google Scholar 

  73. P. Wang, B. Zou, H. Xiao, S. Ding, C. Huang, Effects of printing parameters of fused deposition modeling on mechanical properties, surface quality, and microstructure of PEEK. J. Mater. Process. Technol. 271, 62–74 (2019)

    Article  CAS  Google Scholar 

  74. T. Niino, T. Uehara, Low temperature selective laser melting of high tempertaure plastic powder, in Proceedings Solid Freeform Fabrication Symposium, (2015), pp. 866–877

    Google Scholar 

  75. Y. Wang, J. Shen, M. Yan, X. Tian, Poly ether ether ketone and its composite powder prepared by thermally induced phase separation for high temperature selective laser sintering. Mater. Des. 201, 109510 (2021)

    Article  CAS  Google Scholar 

  76. C.R. Knowles, T.H. Becker, R.B. Tait, Residual stress measurements and structural integrity implications for selective laser melted Ti-6Al-4V: General article. S. Afr. J. Ind. Eng. 23(3), 119–129 (2012)

    Google Scholar 

  77. C. Madikizela, L.A. Cornish, L.H. Chown, H. Möller, Microstructure and mechanical properties of selective laser melted Ti-3Al-8V-6Cr-4Zr-4Mo compared to Ti-6Al-4V. Mater. Sci. Eng. A 747, 225–231 (2019)

    Article  CAS  Google Scholar 

  78. J. Yang, H. Yu, Z. Wang, X. Zeng, Effect of crystallographic orientation on mechanical anisotropy of selective laser melted Ti-6Al-4V alloy. Mater. Charact. 127, 137–145 (2017)

    Article  CAS  Google Scholar 

  79. D. García-González, M. Rodríguez-Millán, A. Vaz-Romero, A. Arias, High impact velocity on multi-layered composite of polyether ether ketone and aluminium. Compos. Interfaces 22(8), 705–715 (2015)

    Article  Google Scholar 

  80. I.S. Boldyrev, I.A. Shchurov, A.V. Nikonov, Numerical simulation of the aluminum 6061-T6 cutting and the effect of the constitutive material model and failure criteria on cutting forces’ prediction. Procedia Eng. 150, 866–870 (2016)

    Article  CAS  Google Scholar 

  81. J. Ran, F. Jiang, X. Sun, Z. Chen, C. Tian, H. Zhao, Microstructure and mechanical properties of Ti-6Al-4V fabricated by electron beam melting. Crystals 10(11), 972 (2020)

    Article  CAS  Google Scholar 

  82. C. Charles, Microstructure model for Ti-6Al-4V used in simulation of additive manufacturing. Doctoral dissertation, Luleå Tekniska Universitet, 2016

    Google Scholar 

  83. M. Fellah, M. Labaïz, O. Assala, L. Dekhil, A. Taleb, H. Rezag, A. Iost, Tribological behavior of Ti-6Al-4V and Ti-6Al-7Nb alloys for total hip prosthesis. Adv Tribol. 2014, 1 (2014)

    Article  Google Scholar 

  84. A.A.S. Miguel, P.M. Matos, B.W. Claus, Sizing optimization for industrial applications, in Proceeding of 11th World Congress on Structural and Multidisciplinary Optimization, (ACM, 2015), pp. 1–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Ogochukwu Okanigbe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Van Der Merwe, S.R., Okanigbe, D.O., Desai, D.A., Snedden, G.C. (2023). Aircraft Engine Fan Blade Design: Impact Tolerance Prediction of Partially Filled 3D Printed Aluminum, Titanium, and PEEK-Filled Waste Metal Dusts. In: Ogochukwu Okanigbe, D., Popoola, A.P. (eds) Resource Recovery and Recycling from Waste Metal Dust. Springer, Cham. https://doi.org/10.1007/978-3-031-22492-8_10

Download citation

Publish with us

Policies and ethics