Skip to main content

All Power Structures are Achievable in Basic Weighted Games

  • Chapter
  • First Online:
Advances in Collective Decision Making

Part of the book series: Studies in Choice and Welfare ((WELFARE))

  • 194 Accesses

Abstract

A major problem in decision-making is designing voting systems that are as simple as possible and able to reflect a given hierarchy of power of its members. It is known that in the class of weighted games, all hierarchies are achievable except two of them. However, many weighted games are either improper or do not admit a minimum representation in integers or do not assign a minimum weight of 1 to the weakest non-null players. These factors prevent obtaining a good representation. The purpose of the paper is to prove that for each achievable hierarchy for weighted games, there is a handy weighted game fulfilling these three desirable properties. A representation of this type is ideal for the design of a weighted game with a given hierarchy. Moreover, the subclass of weighted games with these properties is considerably smaller than the class of weighted games.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banzhaf, J. F. (1965). Weighted voting doesn’t work: A mathematical analysis. Rutgers Law Review, 19, 317–343.

    Google Scholar 

  • Bean, D. (2012). Proportional quota weighted voting system hierarchies II. Social Choice and Welfare, 39, 907–918.

    Article  Google Scholar 

  • Bean, D., Friedman, J., & Parker, C. (2008). Simple majority achievable hierarchies. Theory and Decision, 65, 285–302.

    Article  Google Scholar 

  • Bean, D., Friedman, J., & Parker, C. (2010). Proportional quota weighted voting system hierarchies. Social Choice and Welfare, 34, 397–410.

    Article  Google Scholar 

  • Bishnu, M., & Roy, S. (2012). Hierarchy of players in swap robust voting games. Social Choice and Welfare, 38, 11–22.

    Article  Google Scholar 

  • Carreras, F., & Freixas, J. (1996). Complete simple games. Mathematical Social Sciences, 32, 139–155.

    Article  Google Scholar 

  • Coleman, J. S. (1971). Control of collectivities and the power of a collectivity to act. In B. Lieberman (Ed.), Social choice (pp. 269–300). Gordon and Breach.

    Google Scholar 

  • Diffo Lambo, L., & Moulen, J. (2002). Ordinal equivalence of power notions in voting games. Theory and Decision, 53, 313–325.

    Article  Google Scholar 

  • Dubey, P., & Shapley, L. S. (1979). Mathematical properties of the Banzhaf power index. Mathematics of Operations Research, 4, 99–131.

    Article  Google Scholar 

  • Fragnelli, V., Gambarelli, G., Gnocchi, N., Pressacco, F., & Ziani, L. (2016). Fibonacci representations of homogeneous weighted majority games. In N. Nguyen, R. Kowalczyk, & J. Mercik (Eds.), Transactions in computational collective intelligence XXIII, Lecture Notes in Computer Science (Vol. 9760, pp. 162–171). Springer

    Google Scholar 

  • Freixas, J., & Kurz, S. (2014). On minimum integer representations of weighted games. Mathematical Social Sciences, 67, 9–22.

    Article  Google Scholar 

  • Freixas, J., Marciniak, D., & Pons, M. (2012). On the ordinal equivalence of the Johnston, Banzhaf and Shapley power indices. European Journal of Operational Research, 216, 367–375.

    Article  Google Scholar 

  • Freixas, J., & Molinero, X. (2009). On the existence of a minimum integer representation for weighted voting systems. Annals of Operations Research, 166, 243–260.

    Article  Google Scholar 

  • Freixas, J., & Molinero, X. (2010). Weighted games without a unique minimal representation in integers. Optimization Methods and Software, 25, 203–215.

    Article  Google Scholar 

  • Freixas, J., & Pons, M. (2010). Hierarchies achievable in simple games. Theory and Decision, 68, 393–404.

    Article  Google Scholar 

  • Freixas, J., Tchantcho, B., & Tedjeugang, N. (2014). Achievable hierarchies in voting games with abstention. European Journal of Operational Research, 36, 254–260.

    Article  Google Scholar 

  • Freixas, J., & Zwicker, W. S. (2003). Weighted voting, abstention, and multiple levels of approval. Social Choice and Welfare, 21, 399–431.

    Article  Google Scholar 

  • Friedman, J. (2016). A note on hierarchies in weighted voting games and partitions. The Ramanujan Journal, 41, 305–310.

    Article  Google Scholar 

  • Friedman, J., McGrath, L., & Parker, C. (2006). Achievable hierarchies in voting games. Theory and Decision, 61, 305–318.

    Article  Google Scholar 

  • Friedman, J., & Parker, C. (2009). Can an asymmetric power structure always be achieved? In T. Y. Chow, J. A. Gallian, & D. C. Isaksen (Eds.), Communicating mathematics (pp. 87–98). American Mathematical Society.

    Google Scholar 

  • Isbell, J. R. (1956). A class of majority games. Quarterly Journal of Mathematics, 7, 183–187.

    Article  Google Scholar 

  • Isbell, J. R. (1958). A class of simple games. Duke Mathematics Journal, 25, 423–439.

    Article  Google Scholar 

  • Johnston, R. J. (1978). On the measurement of power: Some reactions to Laver. Environment and Planning A, 10, 907–914.

    Article  Google Scholar 

  • Kurz, S. (2012). On minimum sum representation for weighted voting games. Annals of Operations Research, 196, 361–369.

    Article  Google Scholar 

  • Kurz, S., Maaser, N., & Napel, S. (2017). On the democratic weights of nations. Journal of Political Economy, 125, 1599–1634.

    Article  Google Scholar 

  • Kurz, S., Mayer, A., & Napel, S. (2020). Weighted committee games. European Journal of Operational Research, 282, 972–979.

    Article  Google Scholar 

  • Kurz, S., & Tautenhahn, N. (2013). On Dedekind’s problem for complete simple games. International Journal of Game Theory, 42, 411–437.

    Article  Google Scholar 

  • Muroga, S., Tsuboi, T., & Baugh, R. (1970). Enumeration of threshold functions of eight variables. IEEE Transactions on Computers, C-19, 818–825

    Google Scholar 

  • Ostmann, A. (1987). On the minimal representation of homogeneous games. International Journal of Game Theory, 16, 69–81.

    Article  Google Scholar 

  • Parker, C. (2012). The influence relation for ternary voting games. Games and Economic Behavior, 75, 867–881.

    Article  Google Scholar 

  • Penrose, L. S. (1946). The elementary statistics of majority voting. Journal of the Royal Statistical Society, 109, 53–57.

    Article  Google Scholar 

  • Pressacco, F., & Ziani, L. (2015). A Fibonacci approach to weighted majority games. Journal of Game Theory, 4, 36–44.

    Google Scholar 

  • Pressacco, F., & Ziani, L. (2018). Proper strong-Fibonacci games. Decisions in Economics and Finance, 41, 489–529.

    Article  Google Scholar 

  • Shapley, L. S. (1953). A value for n-person games. In A. W. Tucker & H. W. Kuhn (Eds.), Contributions to the theory of games II (pp. 307–317). Princeton University Press.

    Google Scholar 

  • Shapley, L. S., & Shubik, M. (1954). A method for evaluating the distribution of power in a committee system. American Political Science Review, 48, 787–792.

    Article  Google Scholar 

  • Taylor, A. D., & Zwicker, W. S. (1999). Simple games: Desirability relations, trading, and pseudoweightings. Princeton University Press.

    Google Scholar 

  • Tchantcho, B., Diffo Lambo, L., Pongou, R., & Mbama Engoulou, B. (2008). Voters’ power in voting games with abstention: Influence relation and ordinal equivalence of power theories. Games and Economic Behavior, 64, 335–350.

    Article  Google Scholar 

  • Von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton University Press.

    Google Scholar 

Download references

Acknowledgements

This publication is part of the I+D+i project / PID2019-104987GB-I00, financed by MCIN/ AEI/10.13039/501100011033/

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep Freixas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Freixas, J., Pons, M. (2023). All Power Structures are Achievable in Basic Weighted Games. In: Kurz, S., Maaser, N., Mayer, A. (eds) Advances in Collective Decision Making. Studies in Choice and Welfare. Springer, Cham. https://doi.org/10.1007/978-3-031-21696-1_9

Download citation

Publish with us

Policies and ethics