Skip to main content

Role of Biosurfactants in Promoting Biodegradation in Waste Treatment

  • Chapter
  • First Online:
Advancements in Biosurfactants Research

Abstract

Globally, societal demand and governmental regulations have increasingly required the refusing, reducing, reusing, recycling/repurposing and degrading of waste. Biodegradation and bioremediation are of utmost importance in achieving sustainable waste management as envisaged in the 5 Rs of waste management. Biodegradation is enhanced by bioremediation where nutrients and culture microorganisms are applied to treat waste without causing environmental degradation. Bioremediation ensures that the organic pollutants are transformed or mineralized into water and carbon dioxide. However, some recalcitrant and complex organic wastes such as PAHs are highly hydrophobic and have low bioavailability. Low bioavailability inhibits degradation due to insufficient access of the pollutants to the microorganisms. Therefore, microorganisms produce secondary metabolites such as biosurfactants that grow on water-insoluble substrates to enhance degradation. Biosurfactants are either produced as intracellular molecules bound on the cells or as extracellular substances. Cell-bound biosurfactants aid in the passage of substrates through the membrane to aid in biodegradation, whilst extracellular biosurfactants emulsify the substrates to increase their bioavailability. The application of biosurfactants increases the availability of the pollutants to the microbes when the surface area of the pollutants is increased due to the reduction in the interfacial and surface tension of the mixtures. This chapter discusses the unique role of biosurfactants in environmental protection and the clean-up of the environment through improved biodegradation of organic waste.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abalos A, Viñas M, Sabaté J, Manresa MA, Solanas AM (2004) Enhanced biodegradation of Casablanca crude oil by a microbial consortium in presence of a rhamnolipid produced by pseudomonas aeruginosa AT10. Biodegradation 15(4):249–260

    Article  CAS  Google Scholar 

  • Abdelhafeez I, El-Tohamy S, Abdel-Raheem S, El-Dars F (2022) A review on green remediation techniques for hydrocarbons and heavy metals contaminated soil. Curr Chem Lett 11(1):43–62

    Article  Google Scholar 

  • Al-Hawash AB, Alkooranee JT, Abbood HA, Zhang J, Sun J, Zhang X, Ma F (2018) Isolation and characterization of two crude oil-degrading fungi strains from Rumaila oil field, Iraq. Biotechnol Rep 17:104–109

    Article  Google Scholar 

  • Atakpa EO, Zhou H, Jiang L, Ma Y, Liang Y, Li Y, Zhang D, Zhang C (2022) Improved degradation of petroleum hydrocarbons by co-culture of fungi and biosurfactant-producing bacteria. Chemosphere 290:133337

    Article  CAS  Google Scholar 

  • Avona A, Capodici M, Di Trapani D, Giustra MG, Greco Lucchina P, Lumia L, Di Bella G, Viviani G (2022) Preliminary insights about the treatment of contaminated marine sediments by means of bioslurry reactor: process evaluation and microbiological characterization. Sci Total Environ 806:150708

    Article  CAS  Google Scholar 

  • Ayilara MS, Olanrewaju OS, Babalola OO, Odeyemi O (2022) Waste management through composting: challenges and potentials. Sustainability 12(11):4456

    Article  Google Scholar 

  • Bezza FA, Chirwa EMN (2015) Biosurfactant from Paenibacillus dendritiformis and its application in assisting polycyclic aromatic hydrocarbon (PAH) and motor oil sludge removal from contaminated soil and sand media. Process Saf Environ Prot 98:354–364

    Article  CAS  Google Scholar 

  • Bezza FA, Chirwa EMN (2017) Bezza pyrene biodegradation enhancement potential of lipopeptide biosurfactant produced by Paenibacillus dendritiformis CN5 strain. J Hazard Mater 321:218–227

    Article  CAS  Google Scholar 

  • Bhattacharyya JK, Shekdar AV (2003) Treatment and disposal of refinery sludges: Indian scenario. Waste Manag Res 21(3):249–261

    Article  CAS  Google Scholar 

  • Bisht S, Pandey P, Bhargava B, Sharma S, Kumar V, Sharma KD (2015) Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Braz J Microbiol 46(1):7–21

    Article  CAS  Google Scholar 

  • Boulakradeche MO, Akretche DE, Cameselle C, Hamidi N (2015) Enhanced Electrokinetic remediation of hydrophobic organics contaminated soils by the combination of non-ionic and ionic surfactants. Electrochim Acta 174:1057–1066

    Article  CAS  Google Scholar 

  • Cameotra SS, Singh P (2008) Bioremediation of oil sludge using crude biosurfactants. Int Biodeterior Biodegradation 62(3):274–280

    Article  CAS  Google Scholar 

  • Chauhan A, Fazlurrahman, Oakeshott JG, Jain RK (2008) Bacterial metabolism of polycyclic aromatic hydrocarbons strategies for bioremediation. Indian J Microbiol 48:95–113

    Article  CAS  Google Scholar 

  • Cipullo S, Snapir B, Tardif S, Campo P, Prpich G, Coulon F (2018) Insights into mixed contaminants interactions and its implication for heavy metals and metalloids mobility, bioavailability and risk assessment. Sci Total Environ 645:662–673

    Article  CAS  Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:13

    Article  Google Scholar 

  • Ebadi A, Sima NAK, Olamaee M, Hashemi M, Nasrabadi RG (2017) Effective bioremediation of a petroleum-polluted saline soil by a surfactant-producing Pseudomonas aeruginosa consortium. J Adv Res 8(6):627–633

    Article  CAS  Google Scholar 

  • Free ML (2016) Chapter 13 - the use of surfactants to enhance particle removal from surfaces. In: Kohli R, Mittal KL (eds) Developments in surface contamination and cleaning, 2nd edn. William Andrew Publishing, Oxford, pp 595–626

    Chapter  Google Scholar 

  • Gidudu B, Chirwa EMN (2020a) Biosurfactants as demulsification enhancers in bio-electrokinetic remediation of petroleum contaminated soil. Process Saf Environ Prot 143:332–339

    Article  CAS  Google Scholar 

  • Gidudu B, Chirwa EMN (2020b) The combined application of a high voltage, low electrode spacing, and biosurfactants enhances the bio-electrokinetic remediation of petroleum contaminated soil. J Clean Prod 276:122745

    Article  CAS  Google Scholar 

  • Gudina EJ, Rodrigues AI, Alves E, Domingues MR, Teixeira JA, Rodrigues LR (2015) Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation. Bioresour Technol 177:87–93

    Article  CAS  Google Scholar 

  • Gupta S, Pathak B (2020) Chapter 6 - Mycoremediation of polycyclic aromatic hydrocarbons. In: Singh P, Kumar A, Borthakur A (eds) Abatement of environmental pollutants. Elsevier, pp 127–149

    Chapter  Google Scholar 

  • Haritash A (2020) A comprehensive review of metabolic and genomic aspects of PAH-degradation. Arch Microbiol 202(8):2033–2058

    Article  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): a review. J Hazard Mater 169(1–3):1–15

    Article  CAS  Google Scholar 

  • Hassanshahian M (2014) Isolation and characterization of biosurfactant producing bacteria from Persian gulf (Bushehr provenance). Mar Pollut Bull 86(1):361–366

    Article  CAS  Google Scholar 

  • Hejazi RF, Husain T, Khan FI (2003) Landfarming operation of oily sludge in arid region—human health risk assessment. J Hazard Mater 99(3):287–302

    Article  CAS  Google Scholar 

  • Hu G, Li J, Zeng G (2013) Recent development in the treatment of oily sludge from petroleum industry: a review. J Hazard Mater 261:470–490

    Article  CAS  Google Scholar 

  • Husain Khan A, Sharholy M, Alam P, Al-Mansour AI, Ahmad K, Amin Kamal M, Alam S, Nahid Pervez M, Naddeo V (2022) Evaluation of cost benefit analysis of municipal solid waste management systems. J King Saud Univ Sci 34:101997

    Article  Google Scholar 

  • Imam A, Kumar Suman S, Kanaujia PK, Ray A (2022) Biological machinery for polycyclic aromatic hydrocarbons degradation: a review. Bioresour Technol 343:126121

    Article  CAS  Google Scholar 

  • Islam B (2015) Petroleum sludge, its treatment and disposal: a review. Int J Chem Sci 13(4):1584–1602

    CAS  Google Scholar 

  • Ismail NA, Kasmuri N, Hamzah N (2022) Microbial bioremediation techniques for polycyclic aromatic hydrocarbon (PAHs)—a review. Water Air Soil Pollut 233(4):124

    Article  CAS  Google Scholar 

  • Kalantary RR, Mohseni-Bandpi A, Esrafili A, Nasseri S, Ashmagh FR, Jorfi S, Ja’fari, M. (2014) Effectiveness of biostimulation through nutrient content on the bioremediation of phenanthrene contaminated soil. J Environ Health Sci Eng 12(1):1–9

    Article  Google Scholar 

  • Kayastha V, Patel J, Kathrani N, Varjani S, Bilal M, Show PL, Kim S-H, Bontempi E, Bhatia SK, Bui X-T (2022) New insights in factors affecting ground water quality with focus on health risk assessment and remediation techniques. Environ Res 212:113171

    Article  CAS  Google Scholar 

  • Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manag 71(2):95–122

    Article  Google Scholar 

  • Kreling N, Zaparoli M, Margarites A, Friedrich M, Thomé A, Colla L (2020) Extracellular biosurfactants from yeast and soil–biodiesel interactions during bioremediation. Int J Environ Sci Technol 17(1):395–408

    Article  CAS  Google Scholar 

  • Kubicki S, Bollinger A, Katzke N, Jaeger K-E, Loeschcke A, Thies S (2019) Marine biosurfactants: biosynthesis, structural diversity and biotechnological applications. Mar Drugs 17(7):408

    Article  CAS  Google Scholar 

  • Lawal AT (2017) Polycyclic aromatic hydrocarbons. A review. Cogent Environ Sci 3(1):1339841

    Article  Google Scholar 

  • Leili M, Farjadfard S, Sorial GA, Ramavandi B (2017) Simultaneous biofiltration of BTEX and hg from a petrochemical waste stream. J Environ Manag 204:531–539

    Article  CAS  Google Scholar 

  • Lima TM, Procopio LC, Brandao FD, Leao BA, Totola MR, Borges AC (2011) Evaluation of bacterial surfactant toxicity towards petroleum degrading microorganisms. Bioresour Technol 102(3):2957–2964

    Article  CAS  Google Scholar 

  • Ludang Y, Jaya HP, Mangkoedihardjo S (2022) Potential applications of land treatment Systems for Disinfectant-Rich Wastewater in response to the COVID-19 health protocol: a narrative review. J Environ Health Sustain Develop 7(1):1525–1535

    CAS  Google Scholar 

  • Ma S, Zhou C, Pan J, Yang G, Sun C, Liu Y, Chen X, Zhao Z (2022) Leachate from municipal solid waste landfills in a global perspective: characteristics, influential factors and environmental risks. J Clean Prod 333:130234

    Article  CAS  Google Scholar 

  • Makkar RS, Rockne KJ (2003) Comparison of synthetic surfactants and biosurfactants in enhancing biodegradation of polycyclic aromatic hydrocarbons. Environ Toxicol Chem 22(10):2280–2292

    Article  CAS  Google Scholar 

  • Martínez-Toledo Á, del Carmen Cuevas-Díaz M, Guzmán-López O, López-Luna J, Ilizaliturri-Hernández C (2022) Evaluation of in situ biosurfactant production by inoculum of P. putida and nutrient addition for the removal of polycyclic aromatic hydrocarbons from aged oil-polluted soil. Biodegradation 33(2):135–155

    Article  Google Scholar 

  • Moldes AB, Paradelo R, Rubinos D, Devesa-Rey R, Cruz JM, Barral MT (2011) Ex situ treatment of hydrocarbon-contaminated soil using biosurfactants from lactobacillus pentosus. J Agric Food Chem 59(17):9443–9447

    Article  CAS  Google Scholar 

  • Mondal M, Halder G, Oinam G, Indrama T, Tiwari ON (2019) Chapter 17 - bioremediation of organic and inorganic pollutants using microalgae. In: Gupta VK, Pandey A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 223–235

    Chapter  Google Scholar 

  • Mulligan CN (2009) Recent advances in the environmental applications of biosurfactants. Curr Opin Colloid Interface Sci 14:372–378

    Article  CAS  Google Scholar 

  • Mulligan CN (2021) Sustainable remediation of contaminated soil using biosurfactants. Front Bioeng Biotechnol 9:635196

    Article  Google Scholar 

  • Nakama Y (2017) Chapter 15 - surfactants. In: Sakamoto K, Lochhead RY, Maibach HI, Yamashita Y (eds) Cosmetic science and technology. Elsevier, Amsterdam, pp 231–244

    Chapter  Google Scholar 

  • Patel AB, Shaikh S, Jain KR, Desai C, Madamwar D (2020) Polycyclic aromatic hydrocarbons: sources, toxicity, and remediation approaches. Front Microbiol 11:562813

    Article  Google Scholar 

  • Pazoki M, Hasanidarabadi B (2017) Management of toxic and hazardous contents of oil sludge in Siri Island. Global J Environ Sci Manag 3(1):33–42

    CAS  Google Scholar 

  • Popoola LT, Yusuff AS, Adeyi AA, Omotara OO (2022) Bioaugmentation and biostimulation of crude oil contaminated soil: process parameters influence. South Afr J Chem Eng 39:12–18

    Article  Google Scholar 

  • Pourfadakari S, Ahmadi M, Jaafarzadeh N, Takdastan A, Neisi AA, Ghafari S, Jorfi S (2019) Remediation of PAHs contaminated soil using a sequence of soil washing with biosurfactant produced by Pseudomonas aeruginosa strain PF2 and electrokinetic oxidation of desorbed solution, effect of electrode modification with Fe3O4 nanoparticles. J Hazard Mater 379:120839

    Article  CAS  Google Scholar 

  • Premnath N, Mohanrasu K, Guru Raj Rao R, Dinesh GH, Prakash GS, Ananthi V, Ponnuchamy K, Muthusamy G, Arun A (2021) A crucial review on polycyclic aromatic hydrocarbons - environmental occurrence and strategies for microbial degradation. Chemosphere 280:130608

    Article  CAS  Google Scholar 

  • Pugazhendi A, Jamal MT, Al-Mur BA, Jeyakumar RB (2022) Bioaugmentation of electrogenic halophiles in the treatment of pharmaceutical industrial wastewater and energy production in microbial fuel cell under saline condition. Chemosphere 288:132515

    Article  CAS  Google Scholar 

  • Qin X, Tang J, Li D, Zhang Q (2012) Effect of salinity on the bioremediation of petroleum hydrocarbons in a saline-alkaline soil. Lett Appl Microbiol 55(3):210–217

    Article  CAS  Google Scholar 

  • Rabani MS, Sharma R, Singh R, Gupta MK (2020) Characterization and identification of naphthalene degrading bacteria isolated from petroleum contaminated sites and their possible use in bioremediation. Polycycl Aromat Compd 42(3):978–989

    Article  Google Scholar 

  • Rahman K, Street G, Lord R, Kane G, Banat I (2004) Bioremediation of hydrocarbon contaminated gasoline station soil by a bacterial consortium. WIT Trans Ecol Environ 68:7

    Google Scholar 

  • Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13(3):249–252

    Article  CAS  Google Scholar 

  • Sajadi Bami M, Raeisi Estabragh MA, Ohadi M, Banat IM, Dehghannoudeh G (2022) Biosurfactants aided bioremediation mechanisms: a mini-review. Soil and sediment contamination: an. Int J 31:1–17

    Google Scholar 

  • Santos DKF, Meirab HM, Rufino RD, Lunab JM, Sarubbob LA (2017) Biosurfactant production from Candida lipolytica in bioreactor andevaluation of its toxicity for application as a bioremediation agent. Process Biochem 54:20–27

    Article  CAS  Google Scholar 

  • Sarubbo LA, Sobrinho HBS, Luna JM, Rufino RD, Porto ALF (2013) Assessment of toxicity of a biosurfactant from Candida sphaerica UCP 0995 cultivated with industrial residues in a bioreactor. Electron J Biotechnol 16(4):4

    Article  Google Scholar 

  • Scopetani C, Chelazzi D, Cincinelli A, Martellini T, Leiniö V, Pellinen J (2022) Hazardous contaminants in plastics contained in compost and agricultural soil. Chemosphere 293:133645

    Article  CAS  Google Scholar 

  • Sharuddin SSN, Abdullah SRS, Hasan HA, Othman AR, Ismail NI (2021) Potential bifunctional rhizobacteria from crude oil sludge for hydrocarbon degradation and biosurfactant production. Process Saf Environ Prot 155:108–121

    Article  CAS  Google Scholar 

  • Singh P, Jain R, Srivastava N, Borthakur A, Pal D, Singh R, Madhav S, Srivastava P, Tiwary D, Mishra PK (2017) Current and emerging trends in bioremediation of petrochemical waste: a review. Crit Rev Environ Sci Technol 47(3):155–201

    Article  Google Scholar 

  • Snyder SM, Pulster EL, Wetzel DL, Murawski SA (2015) PAH exposure in Gulf of Mexico demersal fishes, post-Deepwater horizon. Environ Sci Technol 49(14):8786–8795

    Article  CAS  Google Scholar 

  • Souza EC, Vessoni-Penna TC, de Souza Oliveira RP (2014) Biosurfactant-enhanced hydrocarbon bioremediation: an overview. Int Biodeterior Biodegradation 89:88–94

    Article  CAS  Google Scholar 

  • Subashchandrabose SR, Venkateswarlu K, Naidu R, Megharaj M (2019) Biodegradation of high-molecular weight PAHs by Rhodococcus wratislaviensis strain 9: overexpression of amidohydrolase induced by pyrene and BaP. Sci Total Environ 651:813–821

    Article  CAS  Google Scholar 

  • Uzoigwe C, Burgess JG, Ennis CJ, Rahman PK (2015) Bioemulsifiers are not biosurfactants and require different screening approaches. Front Microbiol 6:245

    Article  Google Scholar 

  • Wang Q, Guo S, Ali M, Song X, Tang Z, Zhang Z, Zhang M, Luo Y (2022a) Thermally enhanced bioremediation: a review of the fundamentals and applications in soil and groundwater remediation. J Hazard Mater 433:128749

    Article  CAS  Google Scholar 

  • Wang M, Li X, Lei M, Duan L, Chen H (2022b) Human health risk identification of petrochemical sites based on extreme gradient boosting. Ecotoxicol Environ Saf 233:113332

    Article  CAS  Google Scholar 

  • Wang N, Ren L, Zhang J, Kumar Awasthi M, Yan B, Zhang L, Wan F, Luo L, Huang H, Zhao K (2022c) Activities of functional enzymes involved in C, N, and P conversion and their stoichiometry during agricultural waste composting with biochar and biogas residue amendments. Bioresour Technol 345:126489

    Article  CAS  Google Scholar 

  • Wang Q, Fang X, Bai B, Liang X, Shuler PJ, Goddard WA 3rd, Tang Y (2007) Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery. Biotechnol Bioeng 98(4):842–853

    Article  CAS  Google Scholar 

  • Waszak I, Jonko-Sobuś K, Ożarowska A, Zaniewicz G (2021) Estimation of native and alkylated polycyclic aromatic hydrocarbons (PAHs) in seabirds from the south coast of the Baltic Sea. Environ Sci Pollut Res 28(4):4366–4376

    Article  CAS  Google Scholar 

  • Wei Z, Van Le Q, Peng W, Yang Y, Yang H, Gu H, Lam SS, Sonne C (2021) A review on phytoremediation of contaminants in air, water and soil. J Hazard Mater 403:123658

    Article  CAS  Google Scholar 

  • Wu D, Wei Z, Mohamed TA, Zheng G, Qu F, Wang F, Zhao Y, Song C (2022) Lignocellulose biomass bioconversion during composting: mechanism of action of lignocellulase, pretreatment methods and future perspectives. Chemosphere 286:131635

    Article  CAS  Google Scholar 

  • Wu M, Dick WA, Li W, Wang X, Yang Q, Wang T, Xu L, Zhang M, Chen L (2016) Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil. Int Biodeterior Biodegradation 107:158–164

    Article  CAS  Google Scholar 

  • Xia M, Fu D, Chakraborty R, Singh RP, Terry N (2019) Enhanced crude oil depletion by constructed bacterial consortium comprising bioemulsifier producer and petroleum hydrocarbon degraders. Bioresour Technol 282:456–463

    Article  CAS  Google Scholar 

  • Zafra G, Absalón AE, Cortés-Espinosa DV (2015) Morphological changes and growth of filamentous fungi in the presence of high concentrations of PAHs. Braz J Microbiol 46:937–941

    Article  CAS  Google Scholar 

  • Zheng Y, Zheng M, Ma Z, Xin B, Guo R, Xu X (2015) 8 - sugar fatty acid esters. In: Ahmad MU, Xu X (eds) Polar lipids. Elsevier, pp 215–243

    Chapter  Google Scholar 

Download references

Acknowledgments

We acknowledge the National Research Foundation (NRF) of South Africa (https://www.nrf.ac.za/), University of Pretoria (https://www.up.ac.za/), Rand Water (https://www.randwater.co.za/Pages/Home.aspx) and the Water Research Commission (http://www.wrc.org.za/) as our funders and partners.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gidudu, B., Chirwa, E.M.N. (2023). Role of Biosurfactants in Promoting Biodegradation in Waste Treatment. In: Aslam, R., Mobin, M., Aslam, J., Zehra, S. (eds) Advancements in Biosurfactants Research. Springer, Cham. https://doi.org/10.1007/978-3-031-21682-4_14

Download citation

Publish with us

Policies and ethics