Skip to main content

The Application of AI in Precision Oncology: Tailoring Diagnosis, Treatment, and the Monitoring of Disease Progression to the Patient

  • Chapter
  • First Online:
Artificial Intelligence and Precision Oncology
  • 635 Accesses

Abstract

Personalised oncology has long been the ideal when it comes to the management of cancer. The ability to tailor screening, diagnosis, therapy and monitoring to an individual patient or group of patients would vastly decrease the burden of cancer while ensuring higher rates of patient survival and treatments with less side effects and more success in controlling or eliminating the disease. Precision oncology requires that as much information regarding the patient or population group be known. In terms of the underlying molecular basis of the disease, this is now being realised further to the advent of high throughput technologies such as next-generation sequencing (NGS) and advances in mass spectrophotometry. This has led to an “omics” revolution, with large datasets of information regarding the molecular basis of cancer in individuals being generated. Artificial intelligence (AI) is the ideal technology to manage and interpret these large datasets. In conjunction with machine learning (ML) and deep learning (DL), AI can more accurately interpret not only omics data, but it can also integrate data from other sources such as patient reports and medical imaging to give a more precise view of the individual or population, allowing for better clinical decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alquraishi, M., & Sorger, P. K. (2021). Differentiable biology: Using deep learning for biophysics-based and data-driven modeling of molecular mechanisms. Nature Methods, 18, 1169–1180.

    Article  CAS  Google Scholar 

  • Andreoletti, G., Pal, L. R., Moult, J., & Brenner, S. E. (2019). Reports from the fifth edition of CAGI: The critical assessment of genome interpretation. Human Mutation, 40, 1197–1201.

    Article  Google Scholar 

  • Angus, L., Smid, M., Wilting, S. M., Van Riet, J., Van Hoeck, A., Nguyen, L., Nik-Zainal, S., Steenbruggen, T. G., Tjan-Heijnen, V. C. G., Labots, M., Van Riel, J., Bloemendal, H. J., Steeghs, N., Lolkema, M. P., Voest, E. E., Van de Werken, H. J. G., Jager, A., Cuppen, E., Sleijfer, S., & Martens, J. W. M. (2019). The genomic landscape of metastatic breast cancer highlights changes in mutation and signature frequencies. Nature Genetics, 51, 1450–1458.

    Article  CAS  Google Scholar 

  • Barabási, A. L., Gulbahce, N., & Loscalzo, J. (2011). Network medicine: A network-based approach to human disease. Nature Reviews. Genetics, 12, 56–68.

    Article  Google Scholar 

  • Basir, O., Zhu, H., & Karray, F. (2003). Fuzzy based image segmentation. In M. Nachtegael (Ed.), Fuzzy filters for image processing. Springer.

    Google Scholar 

  • Baskin, I. I., Winkler, D., & Tetko, I. V. (2016). A renaissance of neural networks in drug discovery. Expert Opinion on Drug Discovery, 11, 785–795.

    Article  CAS  Google Scholar 

  • Batch, K. E., Yue, J., Darcovich, A., Lupton, K., Liu, C. C., Woodlock, D. P., El Amine, M. A. K., Causa-Andrieu, P. I., Gazit, L., Nguyen, G. H., Zulkernine, F., Do, R. K. G., & Simpson, A. L. (2022). Developing a cancer digital twin: Supervised metastases detection from consecutive structured radiology reports. Frontiers in Artificial Intelligence, 5, 826402–826402.

    Article  Google Scholar 

  • Berger, M. F., & Mardis, E. R. (2018). The emerging clinical relevance of genomics in cancer medicine. Nature Reviews. Clinical Oncology, 15, 353–365.

    Article  CAS  Google Scholar 

  • Bertini, I., Calabrò, A., De Carli, V., Luchinat, C., Nepi, S., Porfirio, B., Renzi, D., Saccenti, E., & Tenori, L. (2009). The metabonomic signature of celiac disease. Journal of Proteome Research, 8, 170–177.

    Article  CAS  Google Scholar 

  • Bhargavi, K., & Jyothi, S. (2014). A survey on threshold based segmentation technique in image processing. International Journal of Innovative Research & Development, 3, 234–239.

    Google Scholar 

  • Bhasin, J. M., Lee, B. H., Matkin, L., Taylor, M. G., Hu, B., Xu, Y., Magi-Galluzzi, C., Klein, E. A., & Ting, A. H. (2015). Methylome-wide sequencing detects DNA hypermethylation distinguishing indolent from aggressive prostate cancer. Cell Reports, 13, 2135–2146.

    Article  CAS  Google Scholar 

  • Bi, W. L., Hosny, A., Schabath, M. B., Giger, M. L., Birkbak, N. J., Mehrtash, A., Allison, T., Arnaout, O., Abbosh, C., Dunn, I. F., Mak, R. H., Tamimi, R. M., Tempany, C. M., Swanton, C., Hoffmann, U., Schwartz, L. H., Gillies, R. J., Huang, R. Y., & Aerts, H. (2019). Artificial intelligence in cancer imaging: Clinical challenges and applications. CA: a Cancer Journal for Clinicians, 69, 127–157.

    Google Scholar 

  • Björnsson, B., Borrebaeck, C., Elander, N., Gasslander, T., Gawel, D. R., Gustafsson, M., Jörnsten, R., Lee, E. J., Li, X., Lilja, S., Martínez-Enguita, D., Matussek, A., Sandström, P., Schäfer, S., Stenmarker, M., Sun, X. F., Sysoev, O., Zhang, H., & Benson, M. (2019). Digital twins to personalize medicine. Genome Medicine, 12, 4.

    Article  Google Scholar 

  • Bodalal, Z., Trebeschi, S., Nguyen-Kim, T. D. L., Schats, W., & Beets-Tan, R. (2019). Radiogenomics: Bridging imaging and genomics. Abdominal Radiology (New York), 44, 1960–1984.

    Article  Google Scholar 

  • Bousselham, A., Bouattane, O., Youssfi, M., & Raihani, A. (2019). Towards reinforced brain tumor segmentation on MRI images based on temperature changes on pathologic area. International Journal of Biomedical Imaging, 3, 1758948.

    Google Scholar 

  • Brat, D. J., Verhaak, R. G., Aldape, K. D., Yung, W. K., Salama, S. R., Cooper, L. A., Rheinbay, E., Miller, C. R., Vitucci, M., Morozova, O., Robertson, A. G., Noushmehr, H., Laird, P. W., Cherniack, A. D., Akbani, R., Huse, J. T., Ciriello, G., Poisson, L. M., Barnholtz-Sloan, J. S., Berger, M. S., Brennan, C., Colen, R. R., Colman, H., Flanders, A. E., Giannini, C., Grifford, M., Iavarone, A., Jain, R., Joseph, I., Kim, J., Kasaian, K., Mikkelsen, T., Murray, B. A., O’Neill, B. P., Pachter, L., Parsons, D. W., Sougnez, C., Sulman, E. P., Vandenberg, S. R., Van Meir, E. G., Von Deimling, A., Zhang, H., Crain, D., Lau, K., Mallery, D., Morris, S., Paulauskis, J., Penny, R., Shelton, T., Sherman, M., Yena, P., Black, A., Bowen, J., Dicostanzo, K., Gastier-Foster, J., Leraas, K. M., Lichtenberg, T. M., Pierson, C. R., Ramirez, N. C., Taylor, C., Weaver, S., Wise, L., Zmuda, E., Davidsen, T., Demchok, J. A., Eley, G., Ferguson, M. L., Hutter, C. M., Mills Shaw, K. R., Ozenberger, B. A., Sheth, M., Sofia, H. J., Tarnuzzer, R., Wang, Z., Yang, L., Zenklusen, J. C., Ayala, B., Baboud, J., Chudamani, S., Jensen, M. A., Liu, J., Pihl, T., Raman, R., Wan, Y., Wu, Y., Ally, A., Auman, J. T., Balasundaram, M., Balu, S., Baylin, S. B., Beroukhim, R., Bootwalla, M. S., Bowlby, R., Bristow, C. A., Brooks, D., Butterfield, Y., Carlsen, R., Carter, S., Chin, L., Chu, A., et al. (2015). Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. The New England Journal of Medicine, 372, 2481–2498.

    Article  CAS  Google Scholar 

  • Cammarota, G., Ianiro, G., Ahern, A., Carbone, C., Temko, A., Claesson, M. J., & gasbarrini, A. & Tortora, G. (2020). Gut microbiome, big data and machine learning to promote precision medicine for cancer. Nature Reviews Gastroenterology & Hepatology, 17, 635–648.

    Article  Google Scholar 

  • Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. (2017). Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 834–848.

    Article  Google Scholar 

  • Cheng, D., Knox, C., Young, N., Stothard, P., Damaraju, S., & Wishart, D. S. (2008). PolySearch: A web-based text mining system for extracting relationships between human diseases, genes, mutations, drugs and metabolites. Nucleic Acids Research, 36, W399–W405.

    Article  CAS  Google Scholar 

  • Coudray, N., Ocampo, P. S., Sakellaropoulos, T., Narula, N., Snuderl, M., Fenyö, D., Moreira, A. L., Razavian, N., & Tsirigos, A. (2018). Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nature Medicine, 24, 1559–1567.

    Article  CAS  Google Scholar 

  • Dettmer, K., Aronov, P. A., & Hammock, B. D. (2007). Mass spectrometry-based metabolomics. Mass Spectrometry Reviews, 26, 51–78.

    Article  CAS  Google Scholar 

  • Doerr, A. (2019). Single-cell proteomics. Nature Methods, 16, 20.

    Article  CAS  Google Scholar 

  • Duan, K. B., Rajapakse, J. C., Wang, H., & Azuaje, F. (2005). Multiple SVM-RFE for gene selection in cancer classification with expression data. IEEE Transactions on Nanobioscience, 4, 228–234.

    Article  Google Scholar 

  • Dupond, S. (2019). A thorough review on the current advance of neural network structures. Annual Reviews in Control, 14, 200–230.

    Google Scholar 

  • Echle, A., Rindtorff, N. T., Brinker, T. J., Luedde, T., Pearson, A. T., & Kather, J. N. (2021). Deep learning in cancer pathology: A new generation of clinical biomarkers. British Journal of Cancer, 124, 686–696.

    Article  Google Scholar 

  • Falk, T., Mai, D., Bensch, R., Çiçek, Ö., Abdulkadir, A., Marrakchi, Y., Böhm, A., Deubner, J., Jäckel, Z., Seiwald, K., Dovzhenko, A., Tietz, O., Dal Bosco, C., Walsh, S., Saltukoglu, D., Tay, T. L., Prinz, M., Palme, K., Simons, M., Diester, I., Brox, T., & Ronneberger, O. (2019). U-Net: Deep learning for cell counting, detection, and morphometry. Nature Methods, 16, 67–70.

    Article  CAS  Google Scholar 

  • Farag, A. A. (1992). Edge-based image segmentation. Remote Sensing Reviews, 6, 95–121.

    Article  Google Scholar 

  • Faust, K., Sathirapongsasuti, J. F., Izard, J., Segata, N., Gevers, D., Raes, J., & Huttenhower, C. (2012). Microbial co-occurrence relationships in the human microbiome. PLoS Computational Biology, 8, e1002606.

    Article  CAS  Google Scholar 

  • Fleming, N. (2018). How artificial intelligence is changing drug discovery. Nature, 557, S55–s57.

    Article  CAS  Google Scholar 

  • Forbes, S. A., Beare, D., Gunasekaran, P., Leung, K., Bindal, N., Boutselakis, H., Ding, M., Bamford, S., Cole, C., Ward, S., Kok, C. Y., Jia, M., De, T., Teague, J. W., Stratton, M. R., Mcdermott, U., & Campbell, P. J. (2015). COSMIC: Exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Research, 43, D805–D811.

    Article  CAS  Google Scholar 

  • Friedman, J., & Alm, E. J. (2012). Inferring correlation networks from genomic survey data. PLoS Computational Biology, 8, e1002687.

    Article  CAS  Google Scholar 

  • Fujishima, H., Fumoto, S., Shibata, T., Nishiki, K., Tsukamoto, Y., Etoh, T., Moriyama, M., Shiraishi, N., & Inomata, M. (2017). A 17-molecule set as a predictor of complete response to neoadjuvant chemotherapy with docetaxel, cisplatin, and 5-fluorouracil in esophageal cancer. PLoS One, 12, e0188098.

    Article  Google Scholar 

  • Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O., Sun, Y., Jacobsen, A., Sinha, R., Larsson, E., Cerami, E., Sander, C., & Schultz, N. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Science Signaling, 6, 11.

    Article  Google Scholar 

  • García Márquez, F. P., Segovia Ramírez, I., & Pliego Marugán, A. (2019). Decision making using logical decision tree and binary decision diagrams: A real case study of wind turbine manufacturing. Energies, 12, 1753.

    Article  Google Scholar 

  • Gawehn, E., Hiss, J. A., & Schneider, G. (2016). Deep learning in drug discovery. Molecular Informatics, 35, 3–14.

    Article  CAS  Google Scholar 

  • Goldman, M., Craft, B., Swatloski, T., Ellrott, K., Cline, M., Diekhans, M., Ma, S., Wilks, C., Stuart, J., Haussler, D., & Zhu, J. (2013). The UCSC cancer genomics browser: Update 2013. Nucleic Acids Research, 41, D949–D954.

    Article  CAS  Google Scholar 

  • Govindarajan, R., Duraiyan, J., Kaliyappan, K., & Palanisamy, M. (2012). Microarray and its applications. Journal of Pharmacy & Bioallied Sciences, 4, S310–S312.

    Article  Google Scholar 

  • Guo, Z., Liu, H., Ni, H., Wang, X., Su, M., Guo, W., Wang, K., Jiang, T., & Qian, Y. J. S. R. (2019). A fast and refined cancer regions segmentation framework in whole-slide breast pathological images. Scientific Reports, 9, 1–10.

    Google Scholar 

  • Hakenberg, J., Voronov, D., Nguyên, V. H., Liang, S., Anwar, S., Lumpkin, B., Leaman, R., Tari, L., & Baral, C. (2012). A SNPshot of PubMed to associate genetic variants with drugs, diseases, and adverse reactions. Journal of Biomedical Informatics, 45, 842–850.

    Article  CAS  Google Scholar 

  • He, X., Chang, S., Zhang, J., Zhao, Q., Xiang, H., Kusonmano, K., Yang, L., Sun, Z. S., Yang, H., & Wang, J. (2008). MethyCancer: The database of human DNA methylation and cancer. Nucleic Acids Research, 36, D836–D841.

    Article  CAS  Google Scholar 

  • Ho, T. K. (1995). Random decision forests. In Proceedings of 3rd international conference on document analysis and recognition (pp. 278–282). IEEE.

    Google Scholar 

  • Hsu, E. R., Klemm, J. D., Kerlavage, A. R., Kusnezov, D., & Kibbe, W. A. (2017). Cancer Moonshot data and technology team: enabling a national learning healthcare system for cancer to unleash the power of data. Clinical Pharmacology and Therapeutics, 101, 613–615.

    Article  CAS  Google Scholar 

  • Huang, S., Yang, J., Fong, S., & Zhao, Q. (2020). Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges. Cancer Letters, 471, 61–71.

    Article  CAS  Google Scholar 

  • Huber, K., Feuchtinger, A., Borgmann, D. M., Li, Z., Aichler, M., Hauck, S. M., Zitzelsberger, H., Schwaiger, M., Keller, U., & Walch, A. (2014). Novel approach of MALDI drug imaging, immunohistochemistry, and digital image analysis for drug distribution studies in tissues. Analytical Chemistry, 86, 10568–10575.

    Article  CAS  Google Scholar 

  • Hull, R., Lolas, G., Makrogkikas, S., Jensen, L. D., Syrigos, K. N., Evangelou, G., Padayachy, L., Egbor, C., Mehrotra, R., Makhafola, T. J., Oyomno, M., & Dlamini, Z. (2021). Microbiomics in collusion with the nervous system in carcinogenesis: Diagnosis, pathogenesis and treatment. Microorganisms, 9, 2129.

    Article  CAS  Google Scholar 

  • Hussein, S., Green, A., Watane, A., Reiter, D., Chen, X., Papadakis, G. Z., Wood, B., Cypess, A., Osman, M., & Bagci, U. (2017). Automatic segmentation and quantification of white and Brown adipose tissues from PET/CT scans. IEEE Transactions on Medical Imaging, 36, 734–744.

    Article  Google Scholar 

  • Ibrahim, A., Gamble, P., Jaroensri, R., Abdelsamea, M. M., Mermel, C. H., Chen, P. C., & Rakha, E. A. (2020). Artificial intelligence in digital breast pathology: Techniques and applications. Breast, 49, 267–273.

    Article  Google Scholar 

  • Ikeda, A., Nishiumi, S., Shinohara, M., Yoshie, T., Hatano, N., Okuno, T., Bamba, T., Fukusaki, E., Takenawa, T., Azuma, T., & Yoshida, M. (2012). Serum metabolomics as a novel diagnostic approach for gastrointestinal cancer. Biomedical Chromatography, 26, 548–558.

    Article  CAS  Google Scholar 

  • Inglese, J., Auld, D. S., Jadhav, A., Johnson, R. L., Simeonov, A., Yasgar, A., Zheng, W., & Austin, C. P. (2006). Quantitative high-throughput screening: A titration-based approach that efficiently identifies biological activities in large chemical libraries. Proceedings of the National Academy of Sciences of the United States of America, 103, 11473–11478.

    Article  CAS  Google Scholar 

  • Jansen, R. W., Van Amstel, P., Martens, R. M., Kooi, I. E., Wesseling, P., De Langen, A. J., Der Houven, M.-V., Van Oordt, C. W., Jansen, B. H. E., Moll, A. C., Dorsman, J. C., Castelijns, J. A., De Graaf, P., & De Jong, M. C. (2018). Non-invasive tumor genotyping using radiogenomic biomarkers, a systematic review and oncology-wide pathway analysis. Oncotarget, 9, 20134–20155.

    Article  Google Scholar 

  • Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang, Y., Dong, Q., Shen, H., & Wang, Y. (2017). Artificial intelligence in healthcare: Past, present and future. Stroke and Vascular Neurology, 2, 230–243.

    Article  Google Scholar 

  • Joshi, S., Vibhute, G., Ayachit, A., & Ayachit, G. (2021). Big data and artificial intelligence - tools to be future ready? Indian Journal of Ophthalmology, 69, 1652–1653.

    Article  Google Scholar 

  • Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey. Journal of Artificial Intelligence Research, 4, 237–285.

    Article  Google Scholar 

  • Kamiński, B., Jakubczyk, M., & Szufel, P. (2018). A framework for sensitivity analysis of decision trees. Central European Journal of Operations Research, 26, 135–159.

    Article  Google Scholar 

  • Kaur, J., Rahat, B., Thakur, S., Verma, M., & Barh, D. (2017). Progress and challenges in precision medicine. Academic Press.

    Google Scholar 

  • Kehl, K. L., Xu, W., Gusev, A., Bakouny, Z., Choueiri, T. K., Riaz, I. B., Elmarakeby, H., Van Allen, E. M., & Schrag, D. (2021). Artificial intelligence-aided clinical annotation of a large multi-cancer genomic dataset. Nature Communications, 12, 7304.

    Article  CAS  Google Scholar 

  • Kelley, D. Z., Flam, E. L., Izumchenko, E., Danilova, L. V., Wulf, H. A., Guo, T., Singman, D. A., Afsari, B., Skaist, A. M., Considine, M., Welch, J. A., Stavrovskaya, E., Bishop, J. A., Westra, W. H., Khan, Z., Koch, W. M., Sidransky, D., Wheelan, S. J., Califano, J. A., Favorov, A. V., Fertig, E. J., & Gaykalova, D. A. (2017). Integrated analysis of whole-genome ChIP-Seq and RNA-Seq data of primary head and neck tumor samples associates HPV integration sites with open chromatin marks. Cancer Research, 77, 6538–6550.

    Article  CAS  Google Scholar 

  • Kelly, R. S., Vander Heiden, M. G., Giovannucci, E., & Mucci, L. A. (2016). Metabolomic biomarkers of prostate cancer: Prediction, diagnosis, progression, prognosis, and recurrence. Cancer Epidemiology, Biomarkers & Prevention, 25, 887–906.

    Article  CAS  Google Scholar 

  • Keyl, P., Bockmayr, M., Heim, D., Dernbach, G., Montavon, G., Müller, K. R., & Klauschen, F. (2022). Patient-level proteomic network prediction by explainable artificial intelligence. NPJ Precision Oncology, 6, 35.

    Article  CAS  Google Scholar 

  • Kulak, N. A., Geyer, P. E., & Mann, M. (2017). Loss-less Nano-fractionator for high sensitivity, high coverage proteomics. Molecular & Cellular Proteomics, 16, 694–705.

    Article  CAS  Google Scholar 

  • Kumar, R., Sharma, A., Siddiqui, M. H., & Tiwari, R. K. (2017). Prediction of human intestinal absorption of compounds using artificial intelligence techniques. Current Drug Discovery Technologies, 14, 244–254.

    Article  CAS  Google Scholar 

  • Kuwahara, T., Hara, K., Mizuno, N., Haba, S., Okuno, N., Koda, H., Miyano, A., & Fumihara, D. (2021). Current status of artificial intelligence analysis for endoscopic ultrasonography. Digestive Endoscopy, 33, 298–305.

    Article  Google Scholar 

  • Li, L., Zheng, X., Zhou, Q., Villanueva, N., Nian, W., Liu, X., & Huan, T. (2020). Metabolomics-based discovery of molecular signatures for triple negative breast cancer in Asian female population. Scientific Reports, 10, 370.

    Article  CAS  Google Scholar 

  • Lin, X., Wang, Q., Yin, P., Tang, L., Tan, Y., Li, H., Yan, K., & Xu, G. J. M. (2011). A method for handling metabonomics data from liquid chromatography/mass spectrometry: Combinational use of support vector machine recursive feature elimination, genetic algorithm and random forest for feature selection. Metabolomics, 7, 549–558.

    Article  CAS  Google Scholar 

  • Liu, Y., Gonzàlez-Porta, M., Santos, S., Brazma, A., Marioni, J. C., Aebersold, R., Venkitaraman, A. R., & Wickramasinghe, V. O. (2017). Impact of alternative splicing on the human proteome. Cell Reports, 20, 1229–1241.

    Article  CAS  Google Scholar 

  • López de Maturana, E., Alonso, L., Alarcón, P., Martín-Antoniano, I. A., Pineda, S., Piorno, L., Calle, M. L., & Malats, N. (2019). Challenges in the integration of omics and non-omics data. Genes (Basel), 10, 238.

    Article  Google Scholar 

  • Magadza, T., & Viriri, S. (2021). Deep learning for brain tumor segmentation: a survey of state-of-the-art. Journal of Imaging, 7, 19.

    Article  Google Scholar 

  • Mangani, D., Weller, M., & Roth, P. (2017). The network of immunosuppressive pathways in glioblastoma. Biochemical Pharmacology, 130, 1–9.

    Article  CAS  Google Scholar 

  • Meng, C., Zeleznik, O. A., Thallinger, G. G., Kuster, B., Gholami, A. M., & Culhane, A. C. (2016). Dimension reduction techniques for the integrative analysis of multi-omics data. Briefings in Bioinformatics, 17, 628–641.

    Article  CAS  Google Scholar 

  • Menze, B. H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., & Wiest, R. (2014). The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Transactions on Medical Imaging, 34, 1993–2024.

    Article  Google Scholar 

  • Mertins, P., Mani, D. R., Ruggles, K. V., Gillette, M. A., Clauser, K. R., Wang, P., Wang, X., Qiao, J. W., Cao, S., Petralia, F., Kawaler, E., Mundt, F., Krug, K., Tu, Z., Lei, J. T., Gatza, M. L., Wilkerson, M., Perou, C. M., Yellapantula, V., Huang, K. L., Lin, C., Mclellan, M. D., Yan, P., Davies, S. R., Townsend, R. R., Skates, S. J., Wang, J., Zhang, B., Kinsinger, C. R., Mesri, M., Rodriguez, H., Ding, L., Paulovich, A. G., Fenyö, D., Ellis, M. J., & Carr, S. A. (2016). Proteogenomics connects somatic mutations to signalling in breast cancer. Nature, 534, 55–62.

    Article  CAS  Google Scholar 

  • Merz, A. L., & Serkova, N. J. (2009). Use of nuclear magnetic resonance-based metabolomics in detecting drug resistance in cancer. Biomarkers in Medicine, 3, 289–306.

    Article  CAS  Google Scholar 

  • Morin, O., Vallières, M., Braunstein, S., Ginart, J. B., Upadhaya, T., Woodruff, H. C., Zwanenburg, A., Chatterjee, A., Villanueva-Meyer, J. E., Valdes, G., Chen, W., Hong, J. C., Yom, S. S., Solberg, T. D., Löck, S., Seuntjens, J., Park, C., & Lambin, P. (2021). An artificial intelligence framework integrating longitudinal electronic health records with real-world data enables continuous pan-cancer prognostication. Nature Cancer, 2, 709–722.

    Article  Google Scholar 

  • Muhammad, K., Khan, S., Del Ser, J., & De Albuquerque, V. H. C. (2020). Deep learning for multigrade brain tumor classification in smart healthcare systems: A prospective survey. IEEE Transactions on Neural Networks and Learning Systems, 32, 507–522.

    Article  Google Scholar 

  • O’shea, R. J., Sharkey, A. R., Cook, G. J. R., & Goh, V. (2021). Systematic review of research design and reporting of imaging studies applying convolutional neural networks for radiological cancer diagnosis. European Radiology, 31, 7969–7983.

    Article  Google Scholar 

  • Öztürk, H., Özgür, A., & Ozkirimli, E. (2018). DeepDTA: Deep drug-target binding affinity prediction. Bioinformatics, 34, i821–i829.

    Article  Google Scholar 

  • Pan, Y. (2007). Image segmentation using PDE, variational, morphological and probabilistic methods. University of Tennessee.

    Google Scholar 

  • Paolillo, C., Londin, E., & Fortina, P. (2016). Next generation sequencing in cancer: Opportunities and challenges for precision cancer medicine. Scandinavian Journal of Clinical and Laboratory Investigation. Supplementum, 245, S84–S91.

    Article  Google Scholar 

  • Park, J. W., Jeong, J. M., Cho, K. S., Cho, S. Y., Cheon, J. H., Choi, D. H., Park, S. J., & Kim, H. K. (2021). MiR-30a and miR-200c differentiate cholangiocarcinomas from gastrointestinal cancer liver metastases. PLoS One, 16, e0250083.

    Article  CAS  Google Scholar 

  • Pezoulas, V. C., Hazapis, O., Lagopati, N., Exarchos, T. P., Goules, A. V., Tzioufas, A. G., Fotiadis, D. I., Stratis, I. G., Yannacopoulos, A. N., & Gorgoulis, V. G. (2021). Machine learning approaches on high throughput NGS data to unveil mechanisms of function in biology and disease. Cancer Genomics Proteomics, 18, 605–626.

    Article  CAS  Google Scholar 

  • Pös, O., Biró, O., Szemes, T., & Nagy, B. (2018). Circulating cell-free nucleic acids: Characteristics and applications. European Journal of Human Genetics, 26, 937–945.

    Article  Google Scholar 

  • Punitha, S., Amuthan, A., & Joseph, K. S. (2018). Benign and malignant breast cancer segmentation using optimized region growing technique. Future Computing and Informatics Journal, 3, 348–358.

    Article  Google Scholar 

  • Robinson, D., Van Allen, E. M., Wu, Y. M., Schultz, N., Lonigro, R. J., Mosquera, J. M., Montgomery, B., Taplin, M. E., Pritchard, C. C., Attard, G., Beltran, H., Abida, W., Bradley, R. K., Vinson, J., Cao, X., Vats, P., Kunju, L. P., Hussain, M., Feng, F. Y., Tomlins, S. A., Cooney, K. A., Smith, D. C., Brennan, C., Siddiqui, J., Mehra, R., Chen, Y., Rathkopf, D. E., Morris, M. J., Solomon, S. B., Durack, J. C., Reuter, V. E., Gopalan, A., Gao, J., Loda, M., Lis, R. T., Bowden, M., Balk, S. P., Gaviola, G., Sougnez, C., Gupta, M., Yu, E. Y., Mostaghel, E. A., Cheng, H. H., Mulcahy, H., True, L. D., Plymate, S. R., Dvinge, H., Ferraldeschi, R., Flohr, P., Miranda, S., Zafeiriou, Z., Tunariu, N., Mateo, J., Perez-Lopez, R., Demichelis, F., Robinson, B. D., Schiffman, M., Nanus, D. M., Tagawa, S. T., Sigaras, A., Eng, K. W., Elemento, O., Sboner, A., Heath, E. I., Scher, H. I., Pienta, K. J., Kantoff, P., De Bono, J. S., Rubin, M. A., Nelson, P. S., Garraway, L. A., Sawyers, C. L., & Chinnaiyan, A. M. (2015). Integrative clinical genomics of advanced prostate cancer. Cell, 161, 1215–1228.

    Article  CAS  Google Scholar 

  • Robinson, D. R., Wu, Y. M., Lonigro, R. J., Vats, P., Cobain, E., Everett, J., Cao, X., Rabban, E., Kumar-Sinha, C., Raymond, V., Schuetze, S., Alva, A., Siddiqui, J., Chugh, R., Worden, F., Zalupski, M. M., Innis, J., Mody, R. J., Tomlins, S. A., Lucas, D., Baker, L. H., Ramnath, N., Schott, A. F., Hayes, D. F., Vijai, J., Offit, K., Stoffel, E. M., Roberts, J. S., Smith, D. C., Kunju, L. P., Talpaz, M., Cieślik, M., & Chinnaiyan, A. M. (2017). Integrative clinical genomics of metastatic cancer. Nature, 548, 297–303.

    Article  CAS  Google Scholar 

  • Romo-Bucheli, D., Janowczyk, A., Gilmore, H., Romero, E., & Madabhushi, A. (2017). A deep learning based strategy for identifying and associating mitotic activity with gene expression derived risk categories in estrogen receptor positive breast cancers. Cytometry. Part A, 91, 566–573.

    Article  CAS  Google Scholar 

  • Roy, K., & Pratim Roy, P. (2009). Comparative chemometric modeling of cytochrome 3A4 inhibitory activity of structurally diverse compounds using stepwise MLR, FA-MLR, PLS, GFA, G/PLS and ANN techniques. European Journal of Medicinal Chemistry, 44, 2913–2922.

    Article  CAS  Google Scholar 

  • Rutman, A. M., & Kuo, M. D. (2009). Radiogenomics: Creating a link between molecular diagnostics and diagnostic imaging. European Journal of Radiology, 70, 232–241.

    Article  Google Scholar 

  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

    CAS  Google Scholar 

  • Saltz, J., Gupta, R., Hou, L., Kurc, T., Singh, P., Nguyen, V., Samaras, D., Shroyer, K. R., Zhao, T., Batiste, R., Van Arnam, J., Shmulevich, I., Rao, A. U. K., Lazar, A. J., Sharma, A., & Thorsson, V. (2018). Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images. Cell Reports, 23, 181–193.e7.

    Article  CAS  Google Scholar 

  • Santus, E., Li, C., Yala, A., Peck, D., Soomro, R., Faridi, N., Mamshad, I., Tang, R., Lanahan, C. R., Barzilay, R., & Hughes, K. (2019). Do neural information extraction algorithms generalize across institutions? JCO Clinical Cancer Informatics, 3, 1–8.

    Article  Google Scholar 

  • Schoof, E. M., Furtwängler, B., Üresin, N., Rapin, N., Savickas, S., Gentil, C., Lechman, E., Auf Dem Keller, U., Dick, J. E., & Porse, B. T. (2021a). Quantitative single-cell proteomics as a tool to characterize cellular hierarchies. Nature Communications, 12, 745679.

    Article  Google Scholar 

  • Schoof, E. M., Furtwängler, B., Üresin, N., Rapin, N., Savickas, S., Gentil, C., Lechman, E., Auf Dem Keller, U., Dick, J. E., & Porse, B. T. (2021b). Quantitative single-cell proteomics as a tool to characterize cellular hierarchies. bioRxiv, 12, 745679.

    Google Scholar 

  • Sender, R., Fuchs, S., & Milo, R. (2016). Revised estimates for the number of human and bacteria cells in the body. PLoS Biology, 14, e1002533.

    Article  Google Scholar 

  • Sepich-Poore, G. D., Zitvogel, L., Straussman, R., Hasty, J., Wargo, J. A., & Knight, R. (2021). The microbiome and human cancer. Science, 371, eabc4552.

    Article  CAS  Google Scholar 

  • Sirinukunwattana, K., Ahmed Raza, S. E., Yee-Wah, T., Snead, D. R., Cree, I. A., & Rajpoot, N. M. (2016). Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Transactions on Medical Imaging, 35, 1196–1206.

    Article  Google Scholar 

  • Sliž, J. & Mikulka, J. (2016). Advanced image segmentation methods using partial differential equations: A concise comparison. In 2016 Progress in Electromagnetic Research Symposium (PIERS) (pp. 1809–1812). IEEE.

    Google Scholar 

  • Thierry, A. R., El Messaoudi, S., Gahan, P. B., Anker, P., & Stroun, M. (2016). Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Reviews, 35, 347–376.

    Article  CAS  Google Scholar 

  • Trivizakis, E., Manikis, G. C., Nikiforaki, K., Drevelegas, K., Constantinides, M., Drevelegas, A., & Marias, K. (2019). Extending 2-D convolutional neural networks to 3-D for advancing deep learning cancer classification with application to MRI liver tumor differentiation. IEEE Journal of Biomedical and Health Informatics, 23, 923–930.

    Article  Google Scholar 

  • Varambally, S., Dhanasekaran, S. M., Zhou, M., Barrette, T. R., Kumar-Sinha, C., Sanda, M. G., Ghosh, D., Pienta, K. J., Sewalt, R. G., Otte, A. P., Rubin, M. A., & Chinnaiyan, A. M. (2002). The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature, 419, 624–629.

    Article  CAS  Google Scholar 

  • Veselkov, K. A., Vingara, L. K., Masson, P., Robinette, S. L., Want, E., Li, J. V., Barton, R. H., Boursier-Neyret, C., Walther, B., Ebbels, T. M., Pelczer, I., Holmes, E., Lindon, J. C., & Nicholson, J. K. (2011). Optimized preprocessing of ultra-performance liquid chromatography/mass spectrometry urinary metabolic profiles for improved information recovery. Analytical Chemistry, 83, 5864–5872.

    Article  CAS  Google Scholar 

  • Vita, G. M., De Simone, G., De Marinis, E., Nervi, C., Ascenzi, P., & Di Masi, A. (2022). Serum albumin and nucleic acids biodistribution: From molecular aspects to biotechnological applications. IUBMB Life.

    Google Scholar 

  • Wang, M., Carver, J. J., Phelan, V. V., Sanchez, L. M., Garg, N., Peng, Y., Nguyen, D. D., Watrous, J., Kapono, C. A., Luzzatto-Knaan, T., Porto, C., Bouslimani, A., Melnik, A. V., Meehan, M. J., Liu, W. T., Crüsemann, M., Boudreau, P. D., Esquenazi, E., Sandoval-Calderón, M., Kersten, R. D., Pace, L. A., Quinn, R. A., Duncan, K. R., Hsu, C. C., Floros, D. J., Gavilan, R. G., Kleigrewe, K., Northen, T., Dutton, R. J., Parrot, D., Carlson, E. E., Aigle, B., Michelsen, C. F., Jelsbak, L., Sohlenkamp, C., Pevzner, P., Edlund, A., Mclean, J., Piel, J., Murphy, B. T., Gerwick, L., Liaw, C. C., Yang, Y. L., Humpf, H. U., Maansson, M., Keyzers, R. A., Sims, A. C., Johnson, A. R., Sidebottom, A. M., Sedio, B. E., Klitgaard, A., Larson, C. B., Torres-Mendoza, D., Gonzalez, D. J., Silva, D. B., Marques, L. M., Demarque, D. P., Pociute, E., O’Neill, E. C., Briand, E., Helfrich, E. J. N., Granatosky, E. A., Glukhov, E., Ryffel, F., Houson, H., Mohimani, H., Kharbush, J. J., Zeng, Y., Vorholt, J. A., Kurita, K. L., Charusanti, P., Mcphail, K. L., Nielsen, K. F., Vuong, L., Elfeki, M., Traxler, M. F., Engene, N., Koyama, N., Vining, O. B., Baric, R., Silva, R. R., Mascuch, S. J., Tomasi, S., Jenkins, S., Macherla, V., Hoffman, T., Agarwal, V., Williams, P. G., Dai, J., Neupane, R., Gurr, J., Rodríguez, A. M. C., Lamsa, A., Zhang, C., Dorrestein, K., Duggan, B. M., Almaliti, J., Allard, P. M., Phapale, P., et al. (2016). Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nature Biotechnology, 34, 828–837.

    Article  CAS  Google Scholar 

  • Wang, Z., Jensen, M. A., & Zenklusen, J. C. (2016). A practical guide to the cancer genome atlas (TCGA). Methods in Molecular Biology, 1418, 111–141.

    Article  Google Scholar 

  • Waring, M. J., Arrowsmith, J., Leach, A. R., Leeson, P. D., Mandrell, S., Owen, R. M., Pairaudeau, G., Pennie, W. D., Pickett, S. D., Wang, J., Wallace, O., & Weir, A. (2015). An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nature Reviews. Drug Discovery, 14, 475–486.

    Article  CAS  Google Scholar 

  • Xu, J., Xiang, L., Liu, Q., Gilmore, H., Wu, J., Tang, J., & Madabhushi, A. (2016). Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Transactions on Medical Imaging, 35, 119–130.

    Article  Google Scholar 

  • Yamazaki, Y. (2015). Metabolome analysis of human serum: Implications for early detection of colorectal cancer. Rinsho Byori, 63, 328–335.

    CAS  Google Scholar 

  • Ypsilantis, P. P., Siddique, M., Sohn, H. M., Davies, A., Cook, G., Goh, V., & Montana, G. (2015). Predicting response to neoadjuvant chemotherapy with PET imaging using convolutional neural networks. PLoS One, 10, e0137036.

    Article  Google Scholar 

  • Yu, K. H., Zhang, C., Berry, G. J., Altman, R. B., Ré, C., Rubin, D. L., & Snyder, M. (2016). Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nature Communications, 7, 12474.

    Article  CAS  Google Scholar 

  • Yuan, Y., Failmezger, H., Rueda, O. M., Ali, H. R., Gräf, S., Chin, S. F., Schwarz, R. F., Curtis, C., Dunning, M. J., Bardwell, H., Johnson, N., Doyle, S., Turashvili, G., Provenzano, E., Aparicio, S., Caldas, C., & Markowetz, F. (2012). Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling. Science Translational Medicine, 4, 157ra143.

    Article  Google Scholar 

  • Zang, Q., Mansouri, K., Williams, A. J., Judson, R. S., Allen, D. G., Casey, W. M., & Kleinstreuer, N. C. (2017). In silico prediction of physicochemical properties of environmental chemicals using molecular fingerprints and machine learning. Journal of Chemical Information and Modeling, 57, 36–49.

    Article  CAS  Google Scholar 

  • Zhang, J., Bajari, R., Andric, D., Gerthoffert, F., Lepsa, A., Nahal-Bose, H., Stein, L. D., & Ferretti, V. (2019). The international cancer genome consortium data portal. Nature Biotechnology, 37, 367–369.

    Article  CAS  Google Scholar 

  • Zhang, L., Jin, H., Guo, X., Yang, Z., Zhao, L., Tang, S., Mo, P., Wu, K., Nie, Y., Pan, Y., & Fan, D. (2012). Distinguishing pancreatic cancer from chronic pancreatitis and healthy individuals by (1)H nuclear magnetic resonance-based metabonomic profiles. Clinical Biochemistry, 45, 1064–1069.

    Article  CAS  Google Scholar 

  • Zhang, T., Wu, X., Ke, C., Yin, M., Li, Z., Fan, L., Zhang, W., Zhang, H., Zhao, F., Zhou, X., Lou, G., & Li, K. (2013). Identification of potential biomarkers for ovarian cancer by urinary metabolomic profiling. Journal of Proteome Research, 12, 505–512.

    Article  CAS  Google Scholar 

  • Zhao, L., Wang, W., Sedykh, A., & ZHU, H. (2017). Experimental errors in QSAR Modeling sets: What we can do and what we cannot do. ACS Omega, 2, 2805–2812.

    Article  CAS  Google Scholar 

  • Zheng, G., Han, G., Soomro, N. Q., Ma, L., Zhang, F., Zhao, Y., Zhao, X., & Zhou, C. (2019). A novel computer-aided diagnosis scheme on small annotated set: G2C-CAD. BioMed Research International, 2019, 6425963.

    Article  Google Scholar 

  • Zhou, X., Menche, J., Barabási, A. L., & Sharma, A. (2014). Human symptoms-disease network. Nature Communications, 5, 4212.

    Article  CAS  Google Scholar 

  • Zhu, X. W., Xin, Y. J., & Chen, Q. H. (2016). Chemical and in vitro biological information to predict mouse liver toxicity using recursive random forests. SAR and QSAR in Environmental Research, 27, 559–572.

    Article  CAS  Google Scholar 

  • Zhuang, J., Tang, X., Du, Z., Yang, M., & Zhou, Y. (2016). Prediction of biomarkers of therapeutic effects of patients with lung adenocarcinoma treated with gefitinib based on progression-free-survival by metabolomic fingerprinting. Talanta, 160, 636–644.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zodwa Dlamini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dlamini, Z., Hull, R. (2023). The Application of AI in Precision Oncology: Tailoring Diagnosis, Treatment, and the Monitoring of Disease Progression to the Patient. In: Dlamini, Z. (eds) Artificial Intelligence and Precision Oncology. Springer, Cham. https://doi.org/10.1007/978-3-031-21506-3_1

Download citation

Publish with us

Policies and ethics