Skip to main content

Helicon Volume Production of H and D Using a Resonant Birdcage Antenna on RAID

  • Chapter
  • First Online:
Physics and Applications of Hydrogen Negative Ion Sources

Abstract

Negative ion production by volumetric processes is investigated in the RAID linear device using experiments and modeling. Measurements by optical emission spectroscopy, cavity ring-down spectroscopy, and Langmuir probe assisted laser photodetachment are combined and reveal that H and D ions are distributed in a halo around the plasma column with densities of 2 × 1016 m−3 for only a few kilowatts of RF power in a Cs-free plasma. A hydrogen transport fluid code shows that RAID plasmas have a hot electron core favorable to ro-vibrational excitation and dissociation of H2 molecules. Dissociative attachment to ro-vibrationally excited H2 molecules is the only significant source of H anywhere in the RAID volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • R. Agnello, Negative Hydrogen Ions In a Helicon Plasma Source. PhD thesis (EPFL, Switzerland, 2020)

    Google Scholar 

  • R. Agnello, Y. Andrebe, H. Arnichand, P. Blanchard, T.D. Kerchove, I. Furno, A.A. Howling, R. Jacquier, A. Sublet, Application of Thomson scattering to helicon plasma sources. J. Plasma Phys. 86, 905860306 (2020)

    Article  Google Scholar 

  • R. Agnello, M. Barbisan, I. Furno, P. Guittienne, A.A. Howling, R. Jacquier, R. Pasqualotto, G. Plyushchev, Y. Andrebe, S. Béchu, I. Morgal, A. Simonin, Cavity ring-down spectroscopy to measure negative ion density in a helicon plasma source for fusion neutral beams. Rev. Sci. Instrum. 89, 103504 (2018)

    Article  ADS  Google Scholar 

  • R. Agnello, S. Béchu, I. Furno, P. Guittienne, A.A. Howling, R. Jacquier, G. Plyushchev, M. Barbisan, R. Pasqualotto, I. Morgal, A. Simonin, Negative ion characterization in a helicon plasma source for fusion neutral beams by cavity ring-down spectroscopy and Langmuir probe laser photodetachment. Nucl. Fusion 60, 026007 (2020)

    Article  ADS  Google Scholar 

  • R. Agnello, G. Fubiani, I. Furno, P. Guittienne, A. Howling, R. Jacquier, F. Taccogna, A 1.5D fluid—Monte Carlo model of a hydrogen helicon plasma Plasma Phys. Control. Fusion 64, 055012 (2022)

    Google Scholar 

  • S. Aleiferis, Experimental Study of HNegative ion Productionby Electron Cyclotron Resonance Plasmas, PhD thesis (Université Grenoble-Aples, Grenoble, 2016)

    Google Scholar 

  • M. Bacal, Photodetachment diagnostic techniques for measuring negative ion densities and temperatures in plasmas. Rev. Sci. Instrum. 71, 3981 (2001)

    Article  ADS  Google Scholar 

  • M. Bacal, Physics aspects of negative ion sources. Nucl. Fusion 46, S250–S259 (2006)

    Article  ADS  Google Scholar 

  • M. Bacal, M. Sasao, M. Wada, Negative ion sources. J. Appl. Phys. 129, 221101 (2021)

    Article  ADS  Google Scholar 

  • F.E. Baghiti-Sube, F. Basht, M. Bacal, Photodetachment diagnostics of plasma with a high nne ratio. Rev. Sci. Instrum. 67, 2221 (1996)

    Article  ADS  Google Scholar 

  • S. Béchu, A. Soum-Glaude, A. Bès, A. Lacoste, P. Svarnas, S. Aleiferis, A.A. Ivanov, M. Bacal, Multi-dipolar microwave plasmas and their application to negative ion production. Phys. Plasmas 20, 101601 (2013)

    Article  ADS  Google Scholar 

  • M. Berger, U. Fantz, S. Christ-Koch, NNBI Team, Cavity ring-down spectroscopy on a high power RF driven source for negative hydrogen ions. Plasma Sources Sci. Technol. 18(2), 025004 (2009)

    Google Scholar 

  • G.D. Billing, M. Cacciatore, Recombination coefficient and final state vibrational distribution for the reaction: H+Had+Cu(111)=H2(v)+Cu(111), in 7th International Symposium on Production and Neutralization of Negative Ions and Beams, AIP Conference Proceedings, vol. 380(118) (1995)

    Google Scholar 

  • R.W. Boswell, Plasma production using a standing helicon wave. Phys. Lett. 33A(7), 457–458 (1970)

    Article  ADS  Google Scholar 

  • A.M. Bruneteau, C. Courteille, R. Leroy, M. Bacal, Investigation of two negative hydrogen and deuterium ion sources: Effect of the volume. Rev. Sci. Intrum. 67, 3827 (1996)

    Article  ADS  Google Scholar 

  • R. Celiberto, R.K. Janev, A. Laricchiuta, M. Capitelli, J.M. Wadehra, D.E. Atems, Cross section data for electron-impact in elastic processes of vibrationally excited molecules of hydrogen and its isotopes. At. Data Nucl. Data Tables 77, 161 (2001)

    Article  ADS  Google Scholar 

  • P. Chabert, N. Braithwaite, Physics of Radio-Frequency Plasmas (Cambridge University Press, Cambridge, 2011)

    Book  Google Scholar 

  • S. Christ-Koch, U. Fantz, M. Berger, NNBI Team, Laser photodetachment on a high power, low pressure rf-driven negative hydrogen ion source. Plasma Sources Sci. Technol. 18(2), 025003 (2009)

    Google Scholar 

  • COMSOL, Multiphysics v. 5.6. (2018)

    Google Scholar 

  • P. Devynck, J. Auvray, M. Bacal, P. Berlemont, J. Bruneteau, R. Leroy, R.A. Stern, photodetachment technique for measuring H- velocities in a hydrogen plasma. Rev. Sci. Intrum. 50, 2944 (1989)

    Google Scholar 

  • M.J. Druyvesteyn, Der Niedervoltbogen. ZS. f. Phys. 69, 781 (1930)

    Article  Google Scholar 

  • U. Fantz, H. Falter, P. Franzen, D. Wünderlich, M. Berger, A. Lorenz, W. Kraus, P. McNeely, R. Riedl, E. Speth, Spectroscopy—a powerful diagnostic tool in source development. Nucl. Fusion 46(6), S297–S306 (2006)

    Article  ADS  Google Scholar 

  • L. Friedland, C.I. Ciubotariu, M. Bacal, Dynamic plasma response in laser-photodetachment experiments in hydrogen plasmas. Phys. Rev. E 49, 4353 (1994)

    Article  ADS  Google Scholar 

  • G. Fubiani, R. Agnello, I. Furno, L. Garrigues, P. Guittienne, G. Hagelaar, A. Howling, R. Jacquier, B. Reman, A. Simonin, F. Taccogna, Negative hydrogen ion dynamics inside the plasma volume of a linear device: Estimates from particle-in-cell calculations. Phys. Plasmas 28, 063503 (2021)

    Article  ADS  Google Scholar 

  • G. Fubiani, L. Garrigues, G. Hagelaar, N. Kohen, J.P. Boeuf, Modeling of plasma transport and negative ion extraction in a magnetized radio-frequency plasma source. New J. Phys. 19(1), 015002 (2017)

    Google Scholar 

  • O. Fukumasa, K. Yoshino, Isotope effect and cesium dependence of negative ion production in volume and ion sources. Rev. Sci. Intrum. 69, 941 (1998)

    Article  ADS  Google Scholar 

  • I. Furno, R. Agnello, U. Fantz, A. Howling, R. Jacquier, C. Marini, G. Plyushchev, P. Guittienne, A. Simonin, Helicon wave-generated plasmas for negative ion beams for fusion. EPJ Web of Conferences 157, 03014 (2017)

    Article  Google Scholar 

  • P. Guittienne, E. Chevalier, C. Hollenstein, Towards an optimal antenna for helicon wave excitation. J. Appl. Phys. 98, 083304 (2005)

    Article  ADS  Google Scholar 

  • P. Guittienne, R. Jacquier, B.P. Duteil, A.A. Howling, R. Agnello, I. Furno, Helicon wave plasma generated by a resonant birdcage antenna: magnetic field measurements and analysis in the RAID linear device. Plasma Sources Sci. Technol. 30, 075023 (2021)

    Article  ADS  Google Scholar 

  • G.J.M. Hagelaar, N. Oudini, Plasma transport across magnetic field lines in low-temperature plasma sources. Plasma Phys. Control. Fusion 53, 124032 (2011)

    Article  ADS  Google Scholar 

  • R.S. Hemsworth, D. Boilson, P. Blatchford, M.D. Palma, G. Chitarin, H.P.L. de Esch, F. Geli, M. Dremel, J. Graceffa, D. Marcuzzi, G. Serianni, D. Shah, M. Singh, M. Urbani, P. Zaccaria, Overview of the design of the ITER heating neutral beam injectors. New J. Phys. 19(2), 025005 (2017)

    Google Scholar 

  • J.R. Hiskes, A.M. Karo, Analysis of the h2 vibrational distribution in a hydrogen discharge. Appl. Phys. Lett. 54, 508 (1989)

    Article  ADS  Google Scholar 

  • A.T. Hjartarson, E.G. Thorsteinsson, J.T. Gudmundsson, Low pressure hydrogen discharges diluted with argon explored using a global model. Plasma Sources Sci. Technol. 19(6), 065008 (2010)

    Google Scholar 

  • M.B. Hopkins, K.N. Mellon, Enhanced production of negative ions in low-pressure hydrogen and deuterium discharges. Phys. Rev. Lett. 67, 449 (1991)

    Article  ADS  Google Scholar 

  • G. Hunter, M. Kuriyant, Proton collisions with hydrogen atoms at low energies: Quantum theory and integrated cross-sections proton collisions with hydrogen atoms at low energies: Quantum theory and integrated cross-sections, in Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 353 (1977), pp. 575–588

    Google Scholar 

  • R. Jacquier, R. Agnello, B.P. Duteil, P. Guittienne, A. Howling, G. Plyushchev, C. Marini, A. Simonin, I. Morgal, S. Bechu, I. Furno, First B-dot measurements in the RAID device, an alternative negative ion source for DEMO neutral beams. Fusion Eng. Des. 146, 1140–1144 (2019)

    Article  Google Scholar 

  • R.K. Janev, D. Reiter, U. Samm, Collision Processes in Low-Temperature Hydrogen Plasmas. FZ-Jülich Report No. 4105 (2003)

    Google Scholar 

  • Y. Kim, J. Ree, H. Shin, Formation of vibrationally excited hydrogen molecules on a graphite surface. Chem. Phys. Lett. 314, 1 (1999)

    Article  ADS  Google Scholar 

  • P.S. Krstic, D.R. Schultz, Elastic processes involving vibrationally excited molecules in cold hydrogen plasmas. J. Phys. B: At. Mol. Opt. Phys. 36, 385 (2003)

    Article  ADS  Google Scholar 

  • V. Laporta, R. Agnello, G. Fubiani, I. Furno, C. Hill, D. Reiter, F. Taccogna, Vibrational excitation and dissociation of deuterium molecule by electron impact. Plasma Phys. Control. Fusion 63, 085006 (2021)

    Article  ADS  Google Scholar 

  • C. Marini, R. Agnello, B.P. Duval, I. Furno, A.A. Howling, R. Jacquier, A.N. Karpushov, G. Plyushchev, K. Verhaegh, P. Guittienne, Spectroscopic characterization of H2 and D2 helicon plasmas generated by a resonant antenna for neutral beam applications in fusion. Nucl. Fusion 57, 036024 (2017)

    Article  ADS  Google Scholar 

  • S.H. Müller, A. Diallo, A. Fasoli, I. Furno, B. Labit, M. Podestà, Plasma blobs in a basic toroidal experiment: Origin, dynamics, and induced transport. Phys. Plasmas 14, 110704 (2007)

    Article  ADS  Google Scholar 

  • H. Nakano, K. Tsumori, M. Shibuya, S. Geng, M. Kisaki, K. Ikeda, K. Nagaoka, M. Osakabe, Y. Takeiri, O. Kaneko, Cavity ringdown technique for negative-hydrogen-ion measurement in ion source for neutral beam injector. J. Instrum. 11(03), C03018–C03018 (2016)

    Article  Google Scholar 

  • A. O’Keefe, D.G. Deacon, Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources. Rev. Sci. Intrum. 59, 2544 (1988)

    Article  ADS  Google Scholar 

  • N. Oudini, A. Bendib, R. Agnello, I. Furno, F. Taccogna, Laser photo-detachment combined with Langmuir probe in magnetized electronegative plasma: how the probe size affects the plasma dynamic? Plasma Sources Sci. Technol. 30, 115005 (2021)

    Google Scholar 

  • A. Pigarov, S. Krasheninnikov, Application of the collisional-radiative, atomic-molecular model to the recombining divertor plasma. Phys. Lett. A 222, 251–257 (1996)

    Article  ADS  Google Scholar 

  • T.K. Popov, M. Mitov, A. Bankova, P. Ivanova, M. Dimitrova, S. Rupnik, J. Kovačič, T. Gyergyek, M. Cerček, F.M. Dias, Langmuir probe method for precise evaluation of negative-ion density in electronegative gas discharge magnetized plasma. Contrib. Plasma Phys. 53, 51–56 (2013)

    Article  ADS  Google Scholar 

  • M. Rutigliano, P. Gamallo, R. Sayos, S. Orlandini, M. Cacciatore, A molecular dynamics simulation of hydrogen atoms collisions on an H-preadsorbed silica surface. Plasma Sources Sci. Technol. 23, 045016 (2014)

    Article  ADS  Google Scholar 

  • J.S. Santoso, Production of Negative Hydrogen Ions in a High-Powered Helicon Plasma Source. PhD thesis (Australian National University, Canberra, 2018)

    Google Scholar 

  • S. Shinohara, N. Kaneda, Y. Kawai, Effects of antenna wavenumber spectrum and metal end plate on plasma characteristics excited by helicon wave. Thin Solid Films 316, 139–147 (1998)

    Article  ADS  Google Scholar 

  • D.A. Skinner, A.M. Bruneteau, P. Berlemont, C. Courteille, R. Leroy, M. Bacal, Isotope effect and electron-temperature dependence in volume h and d ion sources. Phys. Rev. E 48, 2122 (1993)

    Article  ADS  Google Scholar 

  • F. Taccogna, R. Schneider, S. Longo, M. Capitelli, Modeling of a negative ion source. I. Gas kinetics and dynamics in the expansion region. Phys. Plasmas 14, 073503 (2007)

    Google Scholar 

  • K. Takahashi, S. Takayama, A. Komuro, A. Ando, Standing helicon wave induced by a rapidly bent magnetic field in plasmas. Phys. Rev. Lett. 116, 135001 (2016)

    Article  ADS  Google Scholar 

  • D. Thompson, R. Agnello, I. Furno, A. Howling, R. Jacquier, G. Plyushchev, E. Scime, Ion heating and flows in a high power helicon source. Phys. Plasmas 24, 063517 (2017)

    Article  ADS  Google Scholar 

  • D. Wünderlich, D. Dietrich, U. Fantz, Application of a collisional radiative mode to atomic hydrogen for diagnostic purposes. J. Quant. Spectrosc. Radiat. Transf. 110(1), 62–71 (2006)

    ADS  Google Scholar 

Download references

Acknowledgements

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training program 2014–2018 and 2019–2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. This work was supported in part by the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Taccogna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Furno, I. et al. (2023). Helicon Volume Production of H and D Using a Resonant Birdcage Antenna on RAID. In: Bacal, M. (eds) Physics and Applications of Hydrogen Negative Ion Sources. Springer Series on Atomic, Optical, and Plasma Physics, vol 124. Springer, Cham. https://doi.org/10.1007/978-3-031-21476-9_9

Download citation

Publish with us

Policies and ethics