Skip to main content

Computer-Assisted Interpretation of Cancer-Predisposing Variants

  • Chapter
  • First Online:
Hereditary Gastric and Breast Cancer Syndrome

Abstract

The increasing scope of genomic profiling in cancer care has led to a specific issue related to the interpretation of genetic variants as benign or pathogenic in clinical settings for adequate patient management. In the last few years, several bioinformatic tools have been developed in order to assist the decision-making process during the evaluation of mutations in cancer-predisposing genes and the actionability of druggable variants [1–3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zheng H et al (2020) Comprehensive review of web servers and bioinformatics tools for cancer prognosis analysis. Front Oncol 10. https://doi.org/10.3389/fonc.2020.00068

  2. Cusin I et al (2018) A new bioinformatics tool to help assess the significance of BRCA1 variants. Hum Genomics 12(1):36. https://doi.org/10.1186/s40246-018-0168-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rogers MF, Gaunt TR, Campbell C (2021) Prediction of driver variants in the cancer genome via machine learning methodologies. Brief Bioinform 22(4). https://doi.org/10.1093/bib/bbaa250

  4. Ng PC (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31(13):3812–3814. https://doi.org/10.1093/nar/gkg509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tang H, Thomas PD (2016) Tools for predicting the functional impact of nonsynonymous genetic variation. Genetics 203(2):635–647. https://doi.org/10.1534/genetics.116.190033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu X, Jian X, Boerwinkle E (2011) dbNSFP: A lightweight database of human nonsynonymous SNPs and their functional predictions. Hum Mutat 32(8):894–899. https://doi.org/10.1002/humu.21517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu X, Li C, Mou C, Dong Y, Tu Y (2020) dbNSFP v4: a comprehensive database of transcript-specific functional predictions and annotations for human nonsynonymous and splice-site SNVs. Genome Med 12(1):103. https://doi.org/10.1186/s13073-020-00803-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chiara M, Pavesi G (2017) Evaluation of quality assessment protocols for high throughput genome resequencing data. Front Genet 8:94. https://doi.org/10.3389/fgene.2017.00094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Auton A et al (2015) A global reference for human genetic variation. Nature 526(7571):68–74. https://doi.org/10.1038/nature15393

    Article  CAS  PubMed  Google Scholar 

  10. Karczewski KJ et al (2017) The ExAC browser: displaying reference data information from over 60 000 exomes. Nucleic Acids Res. 45(D1):D840–D845. https://doi.org/10.1093/nar/gkw971

    Article  CAS  PubMed  Google Scholar 

  11. Karczewski KJ et al (2020) The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581(7809):434–443. https://doi.org/10.1038/s41586-020-2308-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Miosge LA et al (2015) Comparison of predicted and actual consequences of missense mutations. Proc Natl Acad Sci 112(37). https://doi.org/10.1073/pnas.1511585112

  13. Stenson PD et al (2003) Human gene mutation database (HGMD ®): 2003 update. Hum Mutat 21(6):577–581. https://doi.org/10.1002/humu.10212

    Article  CAS  PubMed  Google Scholar 

  14. Krawczak M et al (2000) Human gene mutation database? A biomedical information and research resource. Hum Mutat 15(1):45–51. https://doi.org/10.1002/(SICI)1098-1004(200001)15:1<45::AID-HUMU10>3.0.CO;2-T

    Article  CAS  PubMed  Google Scholar 

  15. Cooper D (1998) The human gene mutation database. Nucleic Acids Res 26(1):285–287. https://doi.org/10.1093/nar/26.1.285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Krawczak M (1997) The human gene mutation database. Trends Genet 13(3):121–122. https://doi.org/10.1016/S0168-9525(97)01068-8

    Article  CAS  PubMed  Google Scholar 

  17. Landrum MJ et al (2014) ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res 42:D980–D985. https://doi.org/10.1093/nar/gkt1113

    Article  CAS  PubMed  Google Scholar 

  18. Favalli V et al (2021) Machine learning-based reclassification of germline variants of unknown significance: The RENOVO algorithm. Am J Hum Genet 108(4):682–695. https://doi.org/10.1016/j.ajhg.2021.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Richards S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424. https://doi.org/10.1038/gim.2015.30

    Article  PubMed  PubMed Central  Google Scholar 

  20. Richards CS et al (2008) ACMG recommendations for standards for interpretation and reporting of sequence variations: revisions 2007. Genet Med 10(4):294–300. https://doi.org/10.1097/GIM.0b013e31816b5cae

    Article  CAS  PubMed  Google Scholar 

  21. Kazazian HH, Boehm CD, Seltzer WK (2000) ACMG recommendations for standards for interpretation of sequence variations. Genet Med 2(5):302–303. https://doi.org/10.1097/00125817-200009000-00009

    Article  Google Scholar 

  22. Henrie A et al (2018) ClinVar Miner: demonstrating utility of a web-based tool for viewing and filtering ClinVar data. Hum Mutat 39(8):1051–1060. https://doi.org/10.1002/humu.23555

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li MM et al (2017) Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a joint consensus recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn 19(1):4–23. https://doi.org/10.1016/j.jmoldx.2016.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eilbeck K, Quinlan A, Yandell M (2017) Settling the score: variant prioritization and Mendelian disease. Nat Rev Genet 18(10):599–612. https://doi.org/10.1038/nrg.2017.52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sefid Dashti MJ, Gamieldien J (2017) A practical guide to filtering and prioritizing genetic variants. Biotechniques 62(1):18–30. https://doi.org/10.2144/000114492

    Article  CAS  Google Scholar 

  26. Roca I, Fernández-Marmiesse A, Gouveia S, Segovia M, Couce M (2018) Prioritization of variants detected by next generation sequencing according to the mutation tolerance and mutational architecture of the corresponding genes. Int J Mol Sci 19(6):1584. https://doi.org/10.3390/ijms19061584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li Q, Wang K (2017) InterVar: clinical interpretation of genetic variants by the 2015 ACMG-AMP guidelines. Am J Hum Genet 100(2):267–280. https://doi.org/10.1016/j.ajhg.2017.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li Q, Ren Z, Cao K, Li MM, Wang K, Zhou Y (2021) CancerVar: an Artificial Intelligence empowered platform for clinical interpretation of somatic mutations in cancer. bioRxiv 2020.10.06.323162. https://doi.org/10.1101/2020.10.06.323162.

  29. Lai C et al (2020) LEAP: using machine learning to support variant classification in a clinical setting. Hum Mutat 41(6):1079–1090. https://doi.org/10.1002/humu.24011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nicora G, Zucca S, Limongelli I, Bellazzi R, Magni P (2022) A machine learning approach based on ACMG/AMP guidelines for genomic variant classification and prioritization. Sci Rep 12(1):2517. https://doi.org/10.1038/s41598-022-06547-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Mazzarella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bonetti, E., Vozza, G., Mazzarella, L. (2023). Computer-Assisted Interpretation of Cancer-Predisposing Variants. In: Corso, G., Veronesi, P., Roviello, F. (eds) Hereditary Gastric and Breast Cancer Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-031-21317-5_8

Download citation

Publish with us

Policies and ethics