Skip to main content

Non-Small Cell Carcinoma

  • Chapter
  • First Online:
The Thorax

Abstract

Lung cancer is the leading cause of cancer death in the world, with over two million new cases and over 1.7 million deaths reported in 2018. In the United States alone lung cancer is responsible for more deaths than colon, breast, and prostate cancer combined. Most patients with lung cancer present with advanced disease, and prognosis is poor. Non-small cell lung carcinomas (NSCLC) account for approximately 80% of primary lung cancers. Tobacco use is responsible for 85–90% of cases of lung cancer in countries where smoking is common. Cough is the most common symptom present in patients with lung cancer, occurring in 45–75% of patients. Other common presenting symptoms include weight loss, dyspnea, hemoptysis, and chest pain. NSCLC is staged using the tumor-node-metastasis (TNM) classification system as developed by the International Association for the Study of Lung Cancer, which has undergone periodic revisions based on metadata. The use of immunohistochemical studies and molecular analysis plays an important role in the diagnosis and treatment alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30.

    Article  PubMed  Google Scholar 

  3. Collaborators GBDT. Smoking prevalence and attributable disease burden in 195 countries and territories, 1990-2015: a systematic analysis from the Global Burden of Disease Study 2015. Lancet. 2017;389(10082):1885–906.

    Article  Google Scholar 

  4. Alberg AJ, Brock MV, Ford JG, Samet JM, Spivack SD. Epidemiology of lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5 Suppl):e1S–e29S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. de Groot PM, Wu CC, Carter BW, Munden RF. The epidemiology of lung cancer. Transl Lung Cancer Res. 2018;7(3):220–33.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.

    Article  PubMed  Google Scholar 

  7. Wakelee HA, Chang ET, Gomez SL, et al. Lung cancer incidence in never smokers. J Clin Oncol. 2007;25(5):472–8.

    Article  PubMed  Google Scholar 

  8. Patel JD. Lung cancer in women. J Clin Oncol. 2005;23(14):3212–8.

    Article  CAS  PubMed  Google Scholar 

  9. Planchard D, Loriot Y, Goubar A, Commo F, Soria JC. Differential expression of biomarkers in men and women. Semin Oncol. 2009;36(6):553–65.

    Article  CAS  PubMed  Google Scholar 

  10. Detterbeck FC, Boffa DJ, Kim AW, Tanoue LT. The eighth edition lung cancer stage classification. Chest. 2017;151(1):193–203.

    Article  PubMed  Google Scholar 

  11. Boffetta P, Pershagen G, Jockel KH, et al. Cigar and pipe smoking and lung cancer risk: a multicenter study from Europe. J Natl Cancer Inst. 1999;91(8):697–701.

    Article  CAS  PubMed  Google Scholar 

  12. Hackshaw AK, Law MR, Wald NJ. The accumulated evidence on lung cancer and environmental tobacco smoke. BMJ. 1997;315(7114):980–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hackshaw AK. Lung cancer and passive smoking. Stat Methods Med Res. 1998;7(2):119–36.

    Article  CAS  PubMed  Google Scholar 

  14. Oberg M, Jaakkola MS, Woodward A, Peruga A, Pruss-Ustun A. Worldwide burden of disease from exposure to second-hand smoke: a retrospective analysis of data from 192 countries. Lancet. 2011;377(9760):139–46.

    Article  PubMed  Google Scholar 

  15. Peto R, Darby S, Deo H, Silcocks P, Whitley E, Doll R. Smoking, smoking cessation, and lung cancer in the UK since 1950: combination of national statistics with two case-control studies. BMJ. 2000;321(7257):323–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Godtfredsen NS, Prescott E, Osler M. Effect of smoking reduction on lung cancer risk. JAMA. 2005;294(12):1505–10.

    Article  CAS  PubMed  Google Scholar 

  17. Krewski D, Lubin JH, Zielinski JM, et al. Residential radon and risk of lung cancer: a combined analysis of 7 North American case-control studies. Epidemiology. 2005;16(2):137–45.

    Article  PubMed  Google Scholar 

  18. McCormack V, Peto J, Byrnes G, Straif K, Boffetta P. Estimating the asbestos-related lung cancer burden from mesothelioma mortality. Br J Cancer. 2012;106(3):575–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Doll R, Peto R. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst. 1981;66(6):1191–308.

    Article  CAS  PubMed  Google Scholar 

  20. Consonni D, De Matteis S, Lubin JH, et al. Lung cancer and occupation in a population-based case-control study. Am J Epidemiol. 2010;171(3):323–33.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lacasse Y, Martin S, Simard S, Desmeules M. Meta-analysis of silicosis and lung cancer. Scand J Work Environ Health. 2005;31(6):450–8.

    Article  CAS  PubMed  Google Scholar 

  22. Erren TC, Glende CB, Morfeld P, Piekarski C. Is exposure to silica associated with lung cancer in the absence of silicosis? A meta-analytical approach to an important public health question. Int Arch Occup Environ Health. 2009;82(8):997–1004.

    Article  CAS  PubMed  Google Scholar 

  23. Lacasse Y, Martin S, Gagne D, Lakhal L. Dose-response meta-analysis of silica and lung cancer. Cancer Causes Control. 2009;20(6):925–33.

    Article  PubMed  Google Scholar 

  24. Chen BH, Hong CJ, Pandey MR, Smith KR. Indoor air pollution in developing countries. World Health Stat Q. 1990;43(3):127–38.

    CAS  PubMed  Google Scholar 

  25. Lan Q, Chapman RS, Schreinemachers DM, Tian L, He X. Household stove improvement and risk of lung cancer in Xuanwei, China. J Natl Cancer Inst. 2002;94(11):826–35.

    Article  PubMed  Google Scholar 

  26. Hosgood HD 3rd, Chapman R, Shen M, et al. Portable stove use is associated with lower lung cancer mortality risk in lifetime smoky coal users. Br J Cancer. 2008;99(11):1934–9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fontana RS, Sanderson DR, Taylor WF, et al. Early lung cancer detection: results of the initial (prevalence) radiologic and cytologic screening in the Mayo Clinic study. Am Rev Respir Dis. 1984;130(4):561–5.

    CAS  PubMed  Google Scholar 

  28. Buccheri G, Ferrigno D. Lung cancer: clinical presentation and specialist referral time. Eur Respir J. 2004;24(6):898–904.

    Article  CAS  PubMed  Google Scholar 

  29. Hamilton W, Peters TJ, Round A, Sharp D. What are the clinical features of lung cancer before the diagnosis is made? A population based case-control study. Thorax. 2005;60(12):1059–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Silvestri GA, Pastis N, Tanner NT, Jett JR. Clinical aspects of lung cancer. In: Broaddus VC, Mason RJ, Ernst JD, et al., editors. Murray and Nadel’s textbook of respiratory medicine, vol. 2. 6th ed. Philadelphia: Elsevier Saunders; 2016. p. 940–64.

    Chapter  Google Scholar 

  31. Pennes DR, Glazer GM, Wimbish KJ, Gross BH, Long RW, Orringer MB. Chest wall invasion by lung cancer: limitations of CT evaluation. AJR Am J Roentgenol. 1985;144:507–11.

    Article  CAS  PubMed  Google Scholar 

  32. Panagopoulos N, Leivaditis V, Koletsis E, et al. Pancoast tumors: characteristics and preoperative assessment. J Thorac Dis. 2014;6(Suppl 1):S108–15.

    PubMed  PubMed Central  Google Scholar 

  33. Purandare NC, Rangarajan V. Imaging of lung cancer: implications on staging and management. Indian J Radiol Imaging. 2015;25:109–20.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hollings N, Shaw P. Diagnostic imaging of lung cancer. Eur Respir J. 2002;19:722–42.

    Article  CAS  PubMed  Google Scholar 

  35. Hyer JD, Silvestri G. Diagnosis and staging of lung cancer. Clin Chest Med. 2000;21:95–106, viii–ix.

    Article  CAS  PubMed  Google Scholar 

  36. Garcia-Garrigos E, Arenas-Jimenez JJ, Sanchez-Paya J. Best protocol for combined contrast-enhanced thoracic and abdominal CT for lung cancer: a single-institution randomized crossover clinical trial. AJR Am J Roentgenol. 2018;210:1226–34.

    Article  PubMed  Google Scholar 

  37. Gefter WB. Magnetic resonance imaging in the evaluation of lung cancer. Semin Roentgenol. 1990;25:73–84.

    Article  CAS  PubMed  Google Scholar 

  38. Padovani B, Mouroux J, Seksik L, et al. Chest wall invasion by bronchogenic carcinoma: evaluation with MR imaging. Radiology. 1993;187:33–8.

    Article  CAS  PubMed  Google Scholar 

  39. Bruzzi JF, Komaki R, Walsh GL, et al. Imaging of non-small cell lung cancer of the superior sulcus: part 2: initial staging and assessment of resectability and therapeutic response. Radiographics. 2008;28:561–72.

    Article  PubMed  Google Scholar 

  40. Pearlberg JL, Sandler MA, Beute GH, Lewis JW Jr, Madrazo BL. Limitations of CT in evaluation of neoplasms involving chest wall. J Comput Assist Tomogr. 1987;11:290–3.

    Article  CAS  PubMed  Google Scholar 

  41. Akata S, Kajiwara N, Park J, et al. Evaluation of chest wall invasion by lung cancer using respiratory dynamic MRI. J Med Imaging Radiat Oncol. 2008;52:36–9.

    Article  CAS  PubMed  Google Scholar 

  42. van Baardwijk A, Baumert BG, Bosmans G, et al. The current status of FDG-PET in tumour volume definition in radiotherapy treatment planning. Cancer Treat Rev. 2006;32:245–60.

    Article  PubMed  Google Scholar 

  43. Purandare NC, Kulkarni AV, Kulkarni SS, et al. 18F-FDG PET/CT-directed biopsy: does it offer incremental benefit? Nucl Med Commun. 2013;34:203–10.

    Article  CAS  PubMed  Google Scholar 

  44. Birim O, Kappetein AP, Stijnen T, Bogers AJ. Meta-analysis of positron emission tomographic and computed tomographic imaging in detecting mediastinal lymph node metastases in nonsmall cell lung cancer. Ann Thorac Surg. 2005;79:375–82.

    Article  PubMed  Google Scholar 

  45. Gould MK, Kuschner WG, Rydzak CE, et al. Test performance of positron emission tomography and computed tomography for mediastinal staging in patients with non-small-cell lung cancer: a meta-analysis. Ann Intern Med. 2003;139:879–92.

    Article  PubMed  Google Scholar 

  46. Fischer B, Lassen U, Mortensen J, et al. Preoperative staging of lung cancer with combined PET-CT. N Engl J Med. 2009;361:32–9.

    Article  CAS  PubMed  Google Scholar 

  47. van Tinteren H, Hoekstra OS, Smit EF, et al. Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer: the PLUS multicentre randomised trial. Lancet. 2002;359:1388–93.

    Article  PubMed  Google Scholar 

  48. Carter BW, Glisson BS, Truong MT, Erasmus JJ. Small cell lung carcinoma: staging, imaging, and treatment considerations. Radiographics. 2014;34:1707–21.

    Article  PubMed  Google Scholar 

  49. Zelen M. Keynote address on biostatistics and data retrieval. Cancer Chemother Rep. 1973;3(4):31–42.

    Google Scholar 

  50. Darling GE. Staging of the patient with small cell lung cancer. Chest Surg Clin N Am. 1997;7:81–94.

    CAS  PubMed  Google Scholar 

  51. Nicholson SA, Beasley MB, Brambilla E, et al. Small cell lung carcinoma (SCLC): a clinicopathologic study of 100 cases with surgical specimens. Am J Surg Pathol. 2002;26:1184–97.

    Article  PubMed  Google Scholar 

  52. Vallieres E, Shepherd FA, Crowley J, et al. The IASLC Lung Cancer Staging Project: proposals regarding the relevance of TNM in the pathologic staging of small cell lung cancer in the forthcoming (seventh) edition of the TNM classification for lung cancer. J Thorac Oncol. 2009;4:1049–59.

    Article  PubMed  Google Scholar 

  53. Shepherd FA, Crowley J, Van Houtte P, et al. The International Association for the Study of Lung Cancer lung cancer staging project: proposals regarding the clinical staging of small cell lung cancer in the forthcoming (seventh) edition of the tumor, node, metastasis classification for lung cancer. J Thorac Oncol. 2007;2:1067–77.

    Article  PubMed  Google Scholar 

  54. Shirasawa M, Fukui T, Kusuhara S, et al. Prognostic significance of the 8th edition of the TNM classification for patients with extensive disease small cell lung cancer. Cancer Manag Res. 2018;10:6039–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ignatius Ou SH, Zell JA. The applicability of the proposed IASLC staging revisions to small cell lung cancer (SCLC) with comparison to the current UICC 6th TNM Edition. J Thorac Oncol. 2009;4:300–10.

    Article  PubMed  Google Scholar 

  56. Kalemkerian GP, Akerley W, Bogner P, et al. Small cell lung cancer. J Natl Compr Canc Netw. 2013;11:78–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rami-Porta R, Bolejack V, Giroux DJ, et al. The IASLC lung cancer staging project: the new database to inform the eighth edition of the TNM classification of lung cancer. J Thorac Oncol. 2014;9:1618–24.

    Article  CAS  PubMed  Google Scholar 

  58. Detterbeck FC, Boffa DJ, Kim AW, Tanoue LT. The eighth edition lung cancer stage classification. Chest. 2017;151:193–203.

    Article  PubMed  Google Scholar 

  59. Carter BW, Lichtenberger JP 3rd, Benveniste MK, et al. Revisions to the TNM staging of lung cancer: rationale, significance, and clinical application. Radiographics. 2018;38:374–91.

    Article  PubMed  Google Scholar 

  60. Rami-Porta R, Bolejack V, Crowley J, et al. The IASLC Lung Cancer Staging Project: proposals for the revisions of the T descriptors in the forthcoming eighth edition of the TNM classification for lung cancer. J Thorac Oncol. 2015;10:990–1003.

    Article  PubMed  Google Scholar 

  61. Rusch VW, Asamura H, Watanabe H, et al. The IASLC lung cancer staging project: a proposal for a new international lymph node map in the forthcoming seventh edition of the TNM classification for lung cancer. J Thorac Oncol. 2009;4:568–77.

    Article  PubMed  Google Scholar 

  62. Detterbeck FC, Franklin WA, Nicholson AG, et al. The IASLC Lung Cancer Staging Project: background data and proposed criteria to distinguish separate primary lung cancers from metastatic foci in patients with two lung tumors in the forthcoming eighth edition of the TNM classification for lung cancer. J Thorac Oncol. 2016;11:651–65.

    Article  PubMed  Google Scholar 

  63. Detterbeck FC, Nicholson AG, Franklin WA, et al. The IASLC Lung Cancer Staging Project: summary of proposals for revisions of the classification of lung cancers with multiple pulmonary sites of involvement in the forthcoming eighth edition of the TNM classification. J Thorac Oncol. 2016;11:639–50.

    Article  PubMed  Google Scholar 

  64. Detterbeck FC, Bolejack V, Arenberg DA, et al. The IASLC Lung Cancer Staging Project: background data and proposals for the classification of lung cancer with separate tumor nodules in the forthcoming eighth edition of the TNM classification for lung cancer. J Thorac Oncol. 2016;11:681–92.

    Article  PubMed  Google Scholar 

  65. Travis WD, Asamura H, Bankier AA, et al. The IASLC Lung Cancer Staging Project: proposals for coding T categories for subsolid nodules and assessment of tumor size in part-solid tumors in the forthcoming eighth edition of the TNM classification of lung cancer. J Thorac Oncol. 2016;11:1204–23.

    Article  PubMed  Google Scholar 

  66. Akira M, Atagi S, Kawahara M, Iuchi K, Johkoh T. High-resolution CT findings of diffuse bronchioloalveolar carcinoma in 38 patients. AJR Am J Roentgenol. 1999;173:1623–9.

    Article  CAS  PubMed  Google Scholar 

  67. Battafarano RJ, Meyers BF, Guthrie TJ, Cooper JD, Patterson GA. Surgical resection of multifocal non-small cell lung cancer is associated with prolonged survival. Ann Thorac Surg. 2002;74:988–93; discussion 993–4.

    Article  PubMed  Google Scholar 

  68. Wislez M, Massiani MA, Milleron B, et al. Clinical characteristics of pneumonic-type adenocarcinoma of the lung. Chest. 2003;123:1868–77.

    Article  PubMed  Google Scholar 

  69. Ahmad U, Wang Z, Bryant AS, et al. Outcomes for lung transplantation for lung cancer in the United Network for Organ Sharing Registry. Ann Thorac Surg. 2012;94:935–40; discussion 940–1.

    Article  PubMed  Google Scholar 

  70. Barlesi F, Doddoli C, Gimenez C, et al. Bronchioloalveolar carcinoma: myths and realities in the surgical management. Eur J Cardiothorac Surg. 2003;24:159–64.

    Article  PubMed  Google Scholar 

  71. de Perrot M, Chernenko S, Waddell TK, et al. Role of lung transplantation in the treatment of bronchogenic carcinomas for patients with end-stage pulmonary disease. J Clin Oncol. 2004;22:4351–6.

    Article  PubMed  Google Scholar 

  72. Koenigkam Santos M, Muley T, Warth A, et al. Morphological computed tomography features of surgically resectable pulmonary squamous cell carcinomas: impact on prognosis and comparison with adenocarcinomas. Eur J Radiol. 2014;83:1275–81.

    Article  PubMed  Google Scholar 

  73. Byrd RB, Miller WE, Carr DT, Payne WS, Woolner LB. The roentgenographic appearance of squamous cell carcinoma of the bronchus. Mayo Clin Proc. 1968;43:327–32.

    CAS  PubMed  Google Scholar 

  74. Chaudhuri MR. Primary pulmonary cavitating carcinomas. Thorax. 1973;28:354–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yue JY, Chen J, Zhou FM, et al. CT-pathologic correlation in lung adenocarcinoma and squamous cell carcinoma. Medicine (Baltimore). 2018;97:e13362.

    Article  PubMed  Google Scholar 

  76. Quinn D, Gianlupi A, Broste S. The changing radiographic presentation of bronchogenic carcinoma with reference to cell types. Chest. 1996;110:1474–9.

    Article  CAS  PubMed  Google Scholar 

  77. Funai K, Yokose T, Ishii G, et al. Clinicopathologic characteristics of peripheral squamous cell carcinoma of the lung. Am J Surg Pathol. 2003;27:978–84.

    Article  PubMed  Google Scholar 

  78. Onn A, Choe DH, Herbst RS, et al. Tumor cavitation in stage I non-small cell lung cancer: epidermal growth factor receptor expression and prediction of poor outcome. Radiology. 2005;237:342–7.

    Article  PubMed  Google Scholar 

  79. Kolodziejski LS, Dyczek S, Duda K, Goralczyk J, Wysocki WM, Lobaziewicz W. Cavitated tumor as a clinical subentity in squamous cell lung cancer patients. Neoplasma. 2003;50:66–73.

    CAS  PubMed  Google Scholar 

  80. Quint LE, Francis IR. Radiologic staging of lung cancer. J Thorac Imaging. 1999;14:235–46.

    Article  CAS  PubMed  Google Scholar 

  81. Webb WR, Gatsonis C, Zerhouni EA, et al. CT and MR imaging in staging non-small cell bronchogenic carcinoma: report of the Radiologic Diagnostic Oncology Group. Radiology. 1991;178:705–13.

    Article  CAS  PubMed  Google Scholar 

  82. Mitchell DG, Crovello M, Matteucci T, Petersen RO, Miettinen MM. Benign adrenocortical masses: diagnosis with chemical shift MR imaging. Radiology. 1992;185:345–51.

    Article  CAS  PubMed  Google Scholar 

  83. Reinig JW, Stutley JE, Leonhardt CM, Spicer KM, Margolis M, Caldwell CB. Differentiation of adrenal masses with MR imaging: comparison of techniques. Radiology. 1994;192:41–6.

    Article  CAS  PubMed  Google Scholar 

  84. Schellinger PD, Meinck HM, Thron A. Diagnostic accuracy of MRI compared to CCT in patients with brain metastases. J Neurooncol. 1999;44:275–81.

    Article  CAS  PubMed  Google Scholar 

  85. Suzuki K, Yamamoto M, Hasegawa Y, et al. Magnetic resonance imaging and computed tomography in the diagnoses of brain metastases of lung cancer. Lung Cancer. 2004;46:357–60.

    Article  CAS  PubMed  Google Scholar 

  86. Wu Y, Li P, Zhang H, et al. Diagnostic value of fluorine 18 fluorodeoxyglucose positron emission tomography/computed tomography for the detection of metastases in non-small-cell lung cancer patients. Int J Cancer. 2013;132:E37–47.

    Article  CAS  PubMed  Google Scholar 

  87. Li X, Zhang H, Xing L, et al. Mediastinal lymph nodes staging by 18F-FDG PET/CT for early stage non-small cell lung cancer: a multicenter study. Radiother Oncol. 2012;102:246–50.

    Article  PubMed  Google Scholar 

  88. De Leyn P, Lardinois D, Van Schil PE, et al. ESTS guidelines for preoperative lymph node staging for non-small cell lung cancer. Eur J Cardiothorac Surg. 2007;32:1–8.

    Article  PubMed  Google Scholar 

  89. Boland GW, Dwamena BA, Jagtiani Sangwaiya M, et al. Characterization of adrenal masses by using FDG PET: a systematic review and meta-analysis of diagnostic test performance. Radiology. 2011;259:117–26.

    Article  PubMed  Google Scholar 

  90. Bury T, Barreto A, Daenen F, Barthelemy N, Ghaye B, Rigo P. Fluorine-18 deoxyglucose positron emission tomography for the detection of bone metastases in patients with non-small cell lung cancer. Eur J Nucl Med. 1998;25:1244–7.

    Article  CAS  PubMed  Google Scholar 

  91. Qu X, Huang X, Yan W, Wu L, Dai K. A meta-analysis of (1)(8)FDG-PET-CT, (1)(8)FDG-PET, MRI and bone scintigraphy for diagnosis of bone metastases in patients with lung cancer. Eur J Radiol. 2012;81:1007–15.

    Article  PubMed  Google Scholar 

  92. Iwata H. Adenocarcinoma containing lepidic growth. J Thorac Dis. 2016;8:E1050–E2.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Gardiner N, Jogai S, Wallis A. The revised lung adenocarcinoma classification-an imaging guide. J Thorac Dis. 2014;6:S537–46.

    PubMed  PubMed Central  Google Scholar 

  94. Trigaux JP, Gevenois PA, Goncette L, Gouat F, Schumaker A, Weynants P. Bronchioloalveolar carcinoma: computed tomography findings. Eur Respir J. 1996;9:11–6.

    Article  CAS  PubMed  Google Scholar 

  95. Ikeda K, Awai K, Mori T, Kawanaka K, Yamashita Y, Nomori H. Differential diagnosis of ground-glass opacity nodules: CT number analysis by three-dimensional computerized quantification. Chest. 2007;132:984–90.

    Article  PubMed  Google Scholar 

  96. Lim HJ, Ahn S, Lee KS, et al. Persistent pure ground-glass opacity lung nodules >/= 10 mm in diameter at CT scan: histopathologic comparisons and prognostic implications. Chest. 2013;144:1291–9.

    Article  PubMed  Google Scholar 

  97. Cohen JG, Reymond E, Jankowski A, et al. Lung adenocarcinomas: correlation of computed tomography and pathology findings. Diagn Interv Imaging. 2016;97:955–63.

    Article  CAS  PubMed  Google Scholar 

  98. Asamura H, Suzuki K, Watanabe S, Matsuno Y, Maeshima A, Tsuchiya R. A clinicopathological study of resected subcentimeter lung cancers: a favorable prognosis for ground glass opacity lesions. Ann Thorac Surg. 2003;76:1016–22.

    Article  PubMed  Google Scholar 

  99. Suzuki K, Kusumoto M, Watanabe S, Tsuchiya R, Asamura H. Radiologic classification of small adenocarcinoma of the lung: radiologic-pathologic correlation and its prognostic impact. Ann Thorac Surg. 2006;81:413–9.

    Article  PubMed  Google Scholar 

  100. Hattori A, Matsunaga T, Takamochi K, Oh S, Suzuki K. Neither maximum tumor size nor solid component size is prognostic in part-solid lung cancer: impact of tumor size should be applied exclusively to solid lung cancer. Ann Thorac Surg. 2016;102:407–15.

    Article  PubMed  Google Scholar 

  101. Tsutani Y, Miyata Y, Nakayama H, et al. Prognostic significance of using solid versus whole tumor size on high-resolution computed tomography for predicting pathologic malignant grade of tumors in clinical stage IA lung adenocarcinoma: a multicenter study. J Thorac Cardiovasc Surg. 2012;143:607–12.

    Article  PubMed  Google Scholar 

  102. Sakao Y, Miyamoto H, Sakuraba M, et al. Prognostic significance of a histologic subtype in small adenocarcinoma of the lung: the impact of nonbronchioloalveolar carcinoma components. Ann Thorac Surg. 2007;83:209–14.

    Article  PubMed  Google Scholar 

  103. Kim H, Goo JM, Suh YJ, Hwang EJ, Park CM, Kim YT. Measurement of multiple solid portions in part-solid nodules for T categorization: evaluation of prognostic implication. J Thorac Oncol. 2018;13:1864–72.

    Article  PubMed  Google Scholar 

  104. Lee HJ, Goo JM, Lee CH, et al. Predictive CT findings of malignancy in ground-glass nodules on thin-section chest CT: the effects on radiologist performance. Eur Radiol. 2009;19:552–60.

    Article  PubMed  Google Scholar 

  105. Lee SM, Park CM, Goo JM, et al. Transient part-solid nodules detected at screening thin-section CT for lung cancer: comparison with persistent part-solid nodules. Radiology. 2010;255:242–51.

    Article  PubMed  Google Scholar 

  106. Lee SM, Park CM, Goo JM, Lee HJ, Wi JY, Kang CH. Invasive pulmonary adenocarcinomas versus preinvasive lesions appearing as ground-glass nodules: differentiation by using CT features. Radiology. 2013;268:265–73.

    Article  PubMed  Google Scholar 

  107. Lee HY, Jeong JY, Lee KS, et al. Histopathology of lung adenocarcinoma based on new IASLC/ATS/ERS classification: prognostic stratification with functional and metabolic imaging biomarkers. J Magn Reson Imaging. 2013;38:905–13.

    Article  PubMed  Google Scholar 

  108. Okada M, Nakayama H, Okumura S, et al. Multicenter analysis of high-resolution computed tomography and positron emission tomography/computed tomography findings to choose therapeutic strategies for clinical stage IA lung adenocarcinoma. J Thorac Cardiovasc Surg. 2011;141:1384–91.

    Article  PubMed  Google Scholar 

  109. Ichinose J, Kohno T, Fujimori S, Harano T, Suzuki S, Fujii T. Invasiveness and malignant potential of pulmonary lesions presenting as pure ground-glass opacities. Ann Thorac Cardiovasc Surg. 2014;20:347–52.

    Article  PubMed  Google Scholar 

  110. Mendoza DP, Stowell J, Muzikansky A, Shepard JO, Shaw AT, Digumarthy SR. Computed tomography imaging characteristics of non-small-cell lung cancer with anaplastic lymphoma kinase rearrangements: a systematic review and meta-analysis. Clin Lung Cancer. 2019;20:339–49.

    Article  PubMed  Google Scholar 

  111. Cohen JG, Reymond E, Lederlin M, et al. Differentiating pre- and minimally invasive from invasive adenocarcinoma using CT-features in persistent pulmonary part-solid nodules in Caucasian patients. Eur J Radiol. 2015;84:738–44.

    Article  PubMed  Google Scholar 

  112. Lee KH, Goo JM, Park SJ, et al. Correlation between the size of the solid component on thin-section CT and the invasive component on pathology in small lung adenocarcinomas manifesting as ground-glass nodules. J Thorac Oncol. 2014;9:74–82.

    Article  PubMed  Google Scholar 

  113. Aoki T, Tomoda Y, Watanabe H, et al. Peripheral lung adenocarcinoma: correlation of thin-section CT findings with histologic prognostic factors and survival. Radiology. 2001;220:803–9.

    Article  CAS  PubMed  Google Scholar 

  114. Gaeta M, Vinci S, Minutoli F, et al. CT and MRI findings of mucin-containing tumors and pseudotumors of the thorax: pictorial review. Eur Radiol. 2002;12:181–9.

    Article  PubMed  Google Scholar 

  115. Lee HY, Lee KS, Han J, et al. Mucinous versus nonmucinous solitary pulmonary nodular bronchioloalveolar carcinoma: CT and FDG PET findings and pathologic comparisons. Lung Cancer. 2009;65:170–5.

    Article  PubMed  Google Scholar 

  116. Zhou F, Hou L, Ding T, et al. Distinct clinicopathologic features, genomic characteristics and survival of central and peripheral pulmonary large cell neuroendocrine carcinoma: From different origin cells? Lung Cancer. 2018;116:30–7.

    Article  PubMed  Google Scholar 

  117. Lederlin M, Puderbach M, Muley T, et al. Correlation of radio- and histomorphological pattern of pulmonary adenocarcinoma. Eur Respir J. 2013;41:943–51.

    Article  PubMed  Google Scholar 

  118. Hwang JH, Lee KS, Han J, Kim TS, Lee JY, Kim J. Papillary adenocarcinoma of the lung: radiologic and pathologic findings. J Comput Assist Tomogr. 1999;23:114–7.

    Article  CAS  PubMed  Google Scholar 

  119. Sawada E, Nambu A, Motosugi U, et al. Localized mucinous bronchioloalveolar carcinoma of the lung: thin-section computed tomography and fluorodeoxyglucose positron emission tomography findings. Jpn J Radiol. 2010;28:251–8.

    Article  PubMed  Google Scholar 

  120. Bai Y, Qiu J, Shang X, et al. Differential diagnosis and cancer staging of a unique case with multiple nodules in the lung - lung adenocarcinoma, metastasis of colon adenocarcinoma, and colon adenocarcinoma metastasizing to lung adenocarcinoma. Thorac Cancer. 2015;6:363–7.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Kyung C, Kim SY, Lim BJ, et al. A case of locally advanced well-differentiated fetal adenocarcinoma of the lung treated with concurrent chemoradiation therapy. Tuberc Respir Dis (Seoul). 2013;74:226–30.

    Article  PubMed  Google Scholar 

  122. Yamakawa T, Nambu A, Kato S, et al. Well differentiated fetal adenocarcinoma of the lung in a 38-year-old woman: dynamic computed tomography findings. Jpn J Radiol. 2013;31:143–7.

    Article  PubMed  Google Scholar 

  123. Mujoomdar A, Austin JH, Malhotra R, et al. Clinical predictors of metastatic disease to the brain from non-small cell lung carcinoma: primary tumor size, cell type, and lymph node metastases. Radiology. 2007;242:882–8.

    Article  PubMed  Google Scholar 

  124. Benson RE, Rosado-de-Christenson ML, Martinez-Jimenez S, Kunin JR, Pettavel PP. Spectrum of pulmonary neuroendocrine proliferations and neoplasms. Radiographics. 2013;33:1631–49.

    Article  PubMed  Google Scholar 

  125. Takamori S, Noguchi M, Morinaga S, et al. Clinicopathologic characteristics of adenosquamous carcinoma of the lung. Cancer. 1991;67:649–54.

    Article  CAS  PubMed  Google Scholar 

  126. Travis WD, Travis LB, Devesa SS. Lung cancer. Cancer. 1995;75:191–202.

    Article  CAS  PubMed  Google Scholar 

  127. Yu JQ, Yang ZG, Austin JH, Guo YK, Zhang SF. Adenosquamous carcinoma of the lung: CT-pathological correlation. Clin Radiol. 2005;60:364–9.

    Article  PubMed  Google Scholar 

  128. Huang CJ, Chan KY, Lee MY, et al. Computed tomography characteristics of primary pulmonary lymphoepithelioma-like carcinoma. Br J Radiol. 2007;80:803–6.

    Article  PubMed  Google Scholar 

  129. Ooi GC, Ho JC, Khong PL, Wong MP, Lam WK, Tsang KW. Computed tomography characteristics of advanced primary pulmonary lymphoepithelioma-like carcinoma. Eur Radiol. 2003;13:522–6.

    Article  CAS  PubMed  Google Scholar 

  130. Hoxworth JM, Hanks DK, Araoz PA, et al. Lymphoepithelioma-like carcinoma of the lung: radiologic features of an uncommon primary pulmonary neoplasm. AJR Am J Roentgenol. 2006;186:1294–9.

    Article  PubMed  Google Scholar 

  131. Rossi G, Cavazza A, Sturm N, et al. Pulmonary carcinomas with pleomorphic, sarcomatoid, or sarcomatous elements: a clinicopathologic and immunohistochemical study of 75 cases. Am J Surg Pathol. 2003;27:311–24.

    Article  PubMed  Google Scholar 

  132. Kim TH, Kim SJ, Ryu YH, et al. Pleomorphic carcinoma of lung: comparison of CT features and pathologic findings. Radiology. 2004;232:554–9.

    Article  PubMed  Google Scholar 

  133. Kim TS, Han J, Lee KS, et al. CT findings of surgically resected pleomorphic carcinoma of the lung in 30 patients. AJR Am J Roentgenol. 2005;185:120–5.

    Article  PubMed  Google Scholar 

  134. Sherwin RP, Laforet EG, Strieder JW. Exophytic endobronchial carcinoma. J Thorac Cardiovasc Surg. 1962;43:716–30.

    Article  CAS  PubMed  Google Scholar 

  135. Dulmet-Brender E, Jaubert F, Huchon G. Exophytic endobronchial epidermoid carcinoma. Cancer. 1986;57:1358–64.

    Article  CAS  PubMed  Google Scholar 

  136. Copper L, Hagenschneider JK, Banky S, et al. Papillary endobronchial squamous cell carcinoma. Ann Diagn Pathol. 2005;9:284–8.

    Article  Google Scholar 

  137. Suster S, Huszar M, Herczeg E. Spindle cell squamous cell carcinoma of the lung. Immunohistochemical and ultrastructural study of a case. Histopathology. 1987;11:871–8.

    Article  CAS  PubMed  Google Scholar 

  138. Weissferdt A, Moran CA. Microcystic squamous cell carcinoma of the lung: a clinicopathologic study of 3 cases. Am J Clin Pathol. 2011;136:436–41.

    Article  PubMed  Google Scholar 

  139. Vignaud JM. Squamous cell carcinoma, basaloid squamous cell carcinoma, and adenosquamous carcinoma of the lung. Ann Pathol. 2016;36:15–23.

    Article  PubMed  Google Scholar 

  140. Miller RR, Nelems B, Evans KG, et al. Glandular neoplasia of the lung: a proposed analogy to colonic tumors. Cancer. 1988;61:1009–14.

    Article  CAS  PubMed  Google Scholar 

  141. Borczuk AC, Qian F, Kazeros A, et al. Invasive size is an independent predictor of survival in pulmonary adenocarcinoma. Am J Surg Pathol. 2009;33:462–9.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Weichert W, Warth A. Early lung cancer with lepidic growth pattern: adenocarcinoma in situ, minimally invasive adenocarcinoma, and lepidic predominant adenocarcinoma. Curr Opin Pulm Med. 2014;20:309–16.

    Article  CAS  PubMed  Google Scholar 

  143. Klebe S, Henderson DW. Factors and fiction: premalignant lesions of lung tissues. Pathology. 2013;45:305–15.

    Article  CAS  PubMed  Google Scholar 

  144. Noguchi M, Morikawa A, Kawasaki M, et al. Small adenocarcinoma of the lung: histologic characteristics and prognosis. Cancer. 1995;75:2844–52.

    Article  CAS  PubMed  Google Scholar 

  145. Warth A, Muley T, Meister M, et al. The novel histologic International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society Classification System of Lung Adenocarcinoma is a stage independent predictor of survival. J Clin Oncol. 2012;30:1438–46.

    Article  PubMed  Google Scholar 

  146. Birin O, Kappetein AP, Takkenberg JJM, et al. Survival after pathological stage IA non-small cell lung cancer: tumor size matters. Ann Thorac Surg. 2005;79:1137–41.

    Article  Google Scholar 

  147. Tsuta K, Kawago M, Inoue E, et al. The utility of the proposed IASLC/ATS/ERS lung adenocarcinoma subtypes for disease prognosis and correlation of driver gene algterations. Lung Cancer. 2013;81:371–6.

    Article  PubMed  Google Scholar 

  148. Van Schil PE, Asamura H, Rusch VW, et al. Surgical implications of the new IASLC/ATS/ERS adenocarcinoma classification. Eur Respir J. 2012;39:478–86.

    Article  PubMed  Google Scholar 

  149. Travis WD, Brambilla E, Noguchi M, et al. Diagnosis of lung adenocarcinoma in resected specimens. Arch Pathol Lab Med. 2013;137:685–705.

    Article  PubMed  Google Scholar 

  150. Yoshizawa A, Sumiyoshi S, Sonobe M, et al. Validation of the IASLC/ATS/ERS lung adenocarcinoma classification for prognosis and association with EGFR and KRAS gene mutations: analysis of 440 Japanese patients. J Thoracic Oncol. 2013;8:52–61.

    Article  CAS  Google Scholar 

  151. Weissferdt A, Kalhor N, Moran CA. Well-differentiated adenocarcinoma-bronchioloalveolar carcinoma-in situ adenocarcinoma: a conundrum. Adv Anat Pathol. 2013;20:347–51.

    Article  PubMed  Google Scholar 

  152. Mori M, Rao S, Popper HH, et al. Atypical adenomatous hyperplasia of the lung: a probable forerunner in the development of adenocarcinoma of the lung. Mod Pathol. 2001;14:72–84.

    Article  CAS  PubMed  Google Scholar 

  153. McIntire MG, Santagata S, Ligon K, et al. Epidermal growth factor receptor gene amplification in atypical adenomatous hyperplasia of the lung. Am J Transl Res. 2010;10:309–15.

    Google Scholar 

  154. Gu B, Burt BM, Merritt RE, et al. A dominant adenocarcinoma with multifocal ground glass lesions does not behave as advanced disease. Ann Thorac Surg. 2013;96:411–8.

    Article  PubMed  Google Scholar 

  155. Kobayashi Y, Mitsudomi T, Sakao Y, et al. Genetic features of pulmonary adenocarcinoma presenting with ground-glass nodules: the differences between nodules with growth and without growth. Ann Oncol. 2015;26:156–61.

    Article  CAS  PubMed  Google Scholar 

  156. Liu M, He WX, Song N, et al. Discrepancy of epidermal growth factor receptor mutation in lung adenocarcinoma presenting as multiple ground-glass opacities. Eur J Cardiothorac Surg. 2016;50:909–13.

    Article  PubMed  Google Scholar 

  157. Sivakumar S, San Lucas FA, McDowell TL, et al. Genomic landscape of atypical adenomatous hyperplasia reveals divergent modes to lung adenocarcinoma. Cancer Res. 2017;77:6119. https://doi.org/10.1158/0008-5472.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Weissferdt A, Klahor N, Marom E, et al. Early pulmonary adenocarcinoma (T1N0M0): a clinical, radiological, surgical, and pathological correlation of 104 cases. The M D Anderson Cancer Center Experience. Mod Pathol. 2013;26:1065–75.

    Article  PubMed  Google Scholar 

  159. Weissferdt A, Moran CA. Reclassification of early stage pulmonary adenocarcinoma and its consequences. J Thorac Dis. 2014;6(Suppl 5):S581–8.

    PubMed  PubMed Central  Google Scholar 

  160. Weissferdt A, Walsh G, Kaiser L, Moran CA. Pulmonary adenocarcinoma T1N0M0 and its classification. Semin Diagn Pathol. 2014;31:260–4.

    Article  PubMed  Google Scholar 

  161. Takizawa T, Terashima M, Koike T, et al. Lymph node metastasis in small peripheral adenocarcinoma of the lung. J Thorac Cardiovasc Surg. 1998;116:276–80.

    Article  CAS  PubMed  Google Scholar 

  162. Konaka C, Ikeda N, Hiyoshi T, et al. Peripheral non-small lung cancers 2.0 cm or less in diameter: proposed criteria for limited pulmonary resection based upon clinicopathological presentation. Lung Cancer. 1998;21:185–91.

    Article  CAS  PubMed  Google Scholar 

  163. Liebow AA. Bronchiolo-alveolar carcinoma. Adv Intern Med. 1960;10:329–58.

    CAS  PubMed  Google Scholar 

  164. Malassez L. Examen histologique d’um cas de cancer encephaloide du poumon (epithelioma). Arch Physiologie Normale et Pathologique. 1876;3:352–72.

    Google Scholar 

  165. Musser JH. Primary cancer of the lung. Univ Penn Med Bull. 1903;16:289–96.

    Google Scholar 

  166. Overholt RH, Meissner WA, Delmonico E. Favorable bronchiolar carcinoma. Chest. 1955;27:403–13.

    CAS  Google Scholar 

  167. Ebright MI, Zakoski MF, Martin J, et al. Clinical pattern and pathologic stage but not histologic features predict outcome for bronchioloalveolar carcinoma. Ann Thorac Surg. 2002;74:1640–7.

    Article  PubMed  Google Scholar 

  168. Kragel PJ, Devaney KO, Meth BM, et al. Mucinous cystadenoma of the lung: a report of two cases with immunohistochemical and ultrastructural analysis. Arch Pathol Lab Med. 1990;114:1053–6.

    CAS  PubMed  Google Scholar 

  169. Davison AM, Lowe JW, Da Costa P. Adenocarcinoma arising in a mucinous cystoadenoma of the lung. Thorax. 1992;47:129–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Traub B. Mucinous cystadenoma of the lung [Letter]. Arch Pathol Lab Med. 1991;115:740.

    CAS  PubMed  Google Scholar 

  171. Dixon AY, Moran JF, Wesselius L, et al. Pulmonary mucinous cystic tumor: case report with review of the literature. Am J Surg Pathol. 1993;17:722–8.

    Article  CAS  PubMed  Google Scholar 

  172. Gao ZH, Urbanski SJ. The spectrum of pulmonary mucinous cystic neoplasia: a clinicopathologic and immunohistochemical study of ten cases and review of literature. Am J Clin Pathol. 2005;124(1):62–70.

    Article  PubMed  Google Scholar 

  173. Bacha D, et al. A pulmonary mucinous cystic tumor of borderline malignancy. Pathologica. 2008;100(3):189–91.

    CAS  PubMed  Google Scholar 

  174. Higashiyama M, Doi O, Kodama K, et al. Cystic mucinous adenocarcinoma of the lung: two cases of cystic variant of mucus-producing lung adenocarcinoma. Chest. 1992;101:763–6.

    Article  CAS  PubMed  Google Scholar 

  175. Graeme-Cook F, Mark EJ. Pulmonary mucinous cystic tumors of borderline malignancy. Hum Pathol. 1991;22:185–90.

    Article  CAS  PubMed  Google Scholar 

  176. Moran CA, Hochholzer L, Fishback N, et al. Mucinous (so-called colloid) carcinomas of the lung. Mod Pathol. 1992;5:634–8.

    CAS  PubMed  Google Scholar 

  177. Moran CA. Review article-mucin-rich tumors of the lung. Adv Anat Pathol. 1995;2(5):299–305.

    Article  Google Scholar 

  178. Zenali MJ, Weissferdt A, Solis LM, et al. An update on clinicopathological, immunohistochemical, and molecular profiles of colloid carcinoma of the lung. Hum Pathol. 2015;46:836–42.

    Article  CAS  PubMed  Google Scholar 

  179. Sarma DP, Hoffmann EO. Primary signet-ring cell carcinoma of the lung. Hum Pathol. 1990;21:459–60.

    Article  CAS  PubMed  Google Scholar 

  180. Hayashi H, Kitamura H, Nakatani Y, et al. Primary signet-ring cell carcinoma of the lung: histochemical and immunohistochemical characterization. Hum Pathol. 1999;30:378–83.

    Article  CAS  PubMed  Google Scholar 

  181. Castro CY, Moran CA, Flieder DG, Suster S. Primary signet-ring cell adenocarcinoma of the lung: a clinicopathological study of 15 cases. Histopathology. 2001;39:397–401.

    Article  CAS  PubMed  Google Scholar 

  182. Silver SA, Askin FB. True papillary carcinoma of the lung: a distinct clinicopathoogic entity. Am J Surg Pathol. 1997;21:43–51.

    Article  CAS  PubMed  Google Scholar 

  183. Moran CA, Jagirdar J, Suster S. Papillary lung adenocarcinoma with prominent “morular” component. Am J Clin Pathol. 2004;122:106–9.

    Article  PubMed  Google Scholar 

  184. Amin MB, Tamboli P, Merchant SH, et al. Micropapillary component in lung adenocarcinoma: a distinctive histologic feature with possible prognostic significance. Am J Surg Pathol. 2002;26:358–64.

    Article  PubMed  Google Scholar 

  185. Kuroda N, Hamaguchi N, Takeuchi E, et al. Lung adenocarcinoma with micropapillary pattern: a clinciopathological study of 25 cases. APMIS. 2006;114:381–5.

    Article  CAS  PubMed  Google Scholar 

  186. Steinhauer JR, Moran CA, Suster S. “Secretory endometrioid-like” adenocarcinoma of the lung. Histopathology. 2005;47:219–20.

    Article  CAS  PubMed  Google Scholar 

  187. Ishikura H, Kanda M, Ito M, et al. Hepatoid adenocarcinoma: a distinctive histological subtype of alpha-feto protein-producing lung adenocarcinoma. Virchow Arch A Pathol Anat Histopathol. 1990;417:73–80.

    Article  CAS  Google Scholar 

  188. Arnould L, Drouot F, Fargeot P, et al. Hepatoid adenocarcinoma of the lung: report of a case of an unusual alpha-fetoprotein-producing lung tumor. Am J Surg Pathol. 1997;21:1113–8.

    Article  CAS  PubMed  Google Scholar 

  189. Gawrychowski J, Brulinski K, Malinowski E, et al. Prognosis and survival after radical resection of primary adenosquamous lung carcinoma of the lung. Eur J Cardiothorac Surg. 2005;27:686–92.

    Article  PubMed  Google Scholar 

  190. Nakagawa K, Yasumitsu T, Fukuhara K, et al. Poor prognosis after lung resection for patients with adenosquamous carcinoma of the lung. Ann Thorac Surg. 2003;75:1740–4.

    Article  PubMed  Google Scholar 

  191. Hsia JY, Chen CY, Hsu CP, et al. Adenosquamous carcinoma of the lung. Surgical results compared with squamous cell and adenocarcinoma. Scand Cardiovasc J. 1999;33:29–32.

    Article  CAS  PubMed  Google Scholar 

  192. Hofmann HS, Knolle J, Neef H. The adenosquamous lung carcinoma. Clinical and pathological characteristics. J Cardiovasc Surg (Torino). 1994;35:543–7.

    CAS  PubMed  Google Scholar 

  193. Ghandur-Mnaymneh L, Raub WA Jr, Sridhar KS, et al. The accuracy of the histological classification of lung carcinoma and tis reproducibility: a study of 75 archival cases of adenosquamous carcinoma. Cancer Invest. 1993;11:641–51.

    Article  CAS  PubMed  Google Scholar 

  194. Fitzgibbons PL, Kern WH. Adenosquamous carcinoma of the lung: a clinical and pathologic study of seven cases. Hum Pathol. 1985;16:463–6.

    Article  CAS  PubMed  Google Scholar 

  195. Naunheim KS, Taylor JR, Skosey C, et al. Adenosquamous lung carcinoma: clinical characteristics, treatment, and prognosis. Ann Thorac Surg. 1987;44:462–6.

    Article  CAS  PubMed  Google Scholar 

  196. Takamori S, Noguchi M, Morinaga S, et al. Clinicopathologic characteristics of adenosquaous carcinoma of the lung. Cancer. 1991;67:649–54.

    Article  CAS  PubMed  Google Scholar 

  197. Han AJ, Xiong M, Gu YY, et al. Lymphoepithelioma-like carcinoma of the lung with a better prognosis: a clinicopathologic study of 32 cases. Am J Clin Pathol. 2001;115:841–50.

    Article  CAS  PubMed  Google Scholar 

  198. Chan JK, Hui PK, Tsang WY, et al. Primary lymphoepithelioma-like carcinoma of the lung. A clinicopathologic study of 11 cases. Cancer. 1995;76:413–22.

    Article  CAS  PubMed  Google Scholar 

  199. Gal AA, Unger ER, Koss MN, et al. Detection of Epstein Barr virus in lymphoepithelioma-like carcinoma of the lung. Mod Pathol. 1991;4:264–8.

    CAS  PubMed  Google Scholar 

  200. Castro CY, Ostrowski ML, Barrios R, et al. Relationship between Epstein Barr virus and lymphoepitheloma-like carcinoma of the lung: a clinicopathologic study of 6 cases and review of the literature. Hum Pathol. 2001;32:863–72.

    Article  CAS  PubMed  Google Scholar 

  201. Cavazza A, Colby TV, Tsokos M, et al. Lung tumors with rhabdoid phenoptype. Am J Clin Pathol. 1996;105:182–8.

    Article  CAS  PubMed  Google Scholar 

  202. Chetty R, Bhana B, Batitang S, et al. Lung carcinomas composed of rhabdoid cells. Eur J Surg Oncol. 1997;23:432–4.

    Article  CAS  PubMed  Google Scholar 

  203. Tamboli P, Tropani TH, Amin MB, et al. Carcinoma of lung with rhabdoid features. Hum Pathol. 2004;35:8–13.

    Article  CAS  PubMed  Google Scholar 

  204. Falconieri G, Moran CA, Pizzolitto S, et al. Intrathoracic rhabdoid carcinoma: a clinicopathological, immunohistochemical and ultrastructural study of 6 cases. Ann Diagn Pathol. 2005;9:279–83.

    Article  PubMed  Google Scholar 

  205. Lindholm KE, Moran CA. Primary mammary-like carcinoma of the lung: a case report of a distinct type of primary lung carcinoma. Int J Surg Pathol. 2020;28:663.

    Article  PubMed  Google Scholar 

  206. Weissferdt A. Large cell carcinoma of lung: on the verge of extinction. Semin Diagn Pathol. 2014;31:278–88.

    Article  PubMed  Google Scholar 

  207. Churg A. The fine structure of large cell undifferentiated carcinoma of the lung. Evidence for its relation to squamous cell carcinoma and adenocarcinoma. Hum Pathol. 1978;9:143–56.

    Article  CAS  PubMed  Google Scholar 

  208. Yesner R. Large cell carcinoma of the lung. Semin Diagn Pathol. 1985;2:255–69.

    CAS  PubMed  Google Scholar 

  209. Cooper WA, Tran T, Vilain RE, et al. PD-L1 expression is a favorable prognostic factor in early stage non-small cell carcinoma. Lung Cancer. 2015;89:181–8.

    Article  PubMed  Google Scholar 

  210. Scheel AH, Baenfer G, Baretton G, et al. Interlaboratory concordance of PD-L1 immunohistochemistry for non-small cell carcinoma. Histopathology. 2018;72:449. https://doi.org/10.1111/his.13375.

    Article  PubMed  Google Scholar 

  211. Pyo JS, Kang G, Cho WJ, Choi SB. Clinicopathological significance and concordance analysis of c-MET immunohistochemistry in non-small cell lung cancers: a meta-analysis. Pathol Res Pract. 2016;212:710–6.

    Article  CAS  PubMed  Google Scholar 

  212. Li N, Niu FY, Han JF, et al. Predictive and prognostic value of de novo MET expression in patients with advance non-small cell lung cancer. Lung Cancer. 2015;90:375–80.

    Article  PubMed  Google Scholar 

  213. Park S, Koh J, Kim DW, et al. MET amplification, protein expression, and mutations in pulmonary adenocarcinoma. Lung Cancer. 2015;90:381–7.

    Article  PubMed  Google Scholar 

  214. Luk PP, Selinger CS, Mahar A, Cooper WA. Biomarkers for ALK and ROS1 in lung cancer: immunohistochemistry and fluorescent in situ hybridization. Arch Pathol Lab Med. 2018;142:922–8.

    Article  CAS  PubMed  Google Scholar 

  215. Huang RSP, Smith D, Le CH, et al. Correlation of ROS1 immunohistochemistry with ROS1 fusion status determined by fluorescence in situ hybridization. Arch Pathol Lab Med. 2020;144:735–41.

    Article  CAS  PubMed  Google Scholar 

  216. Bobbio A, Alifano M. Immune therapy of non-small cell lung cancer. The future. Pharmacol Res. 2015;99:217–22.

    Article  CAS  PubMed  Google Scholar 

  217. Bittar T, Luvison A, Miller C, Dacic S. A comparison of ALK gene rearrangement and ALK protein expression in primary lung carcinoma and matched metastasis. Histopathology. 2017;71:269–77.

    Article  Google Scholar 

  218. Humphrey PA, Scroggs MW, Roggli VL, Shelburne JD. Pulmonary carcinoma with sarcomatoid element: an immunohistochemical and ultrastructural analysis. Hum Pathol. 1988;19:155–65.

    Article  CAS  PubMed  Google Scholar 

  219. Ro J, Chen JL, Lee JS, Sahin AA, Ordonez NG, Ayala AG. Sarcomatoid carcinoma of the lung. Immunohistochemical and ultrastructural studies of 14 cases. Cancer. 1992;69:376–86.

    Article  CAS  PubMed  Google Scholar 

  220. Fishback NF, Travis WD, Moran CA, et al. Pleomorphic (spindle/giant cell) carcinoma of the lung. Cancer. 1994;73:2936–45.

    Article  CAS  PubMed  Google Scholar 

  221. Weissferdt A, Kalhor N, Rodriguez-Canales J, et al. Spindle cell and pleomorphic (“sarcomatoid”) carcinomas of the lung: an Immunohistochemical analysis of 86 cases. Hum Pathol. 2017;59:1–9.

    Article  CAS  PubMed  Google Scholar 

  222. Lindholm KE, Kalhor N, Moran CA. Osteoclast-like giant cell-rich carcinomas of the lung: a clinicopathological, immunohistochemical, and molecular study of 3 cases. Hum Pathol. 2019;85:168–73.

    Article  CAS  PubMed  Google Scholar 

  223. Weissferdt A, Moran CA. Primary giant cell carcinomas of the lung: a clinicopathological and immunohistochemical analysis of seven cases. Histopathology. 2016;68:680–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mylene T. Truong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lazarus, D.R. et al. (2023). Non-Small Cell Carcinoma. In: Moran, C.A., Truong, M.T., de Groot, P.M. (eds) The Thorax. Springer, Cham. https://doi.org/10.1007/978-3-031-21040-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21040-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21039-6

  • Online ISBN: 978-3-031-21040-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics