Skip to main content
Log in

Dose–response meta-analysis of silica and lung cancer

  • Original Paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Objective

To examine the association between occupational exposure to silica and lung cancer from a systematic review (and meta-analysis) of the epidemiologic literature, with special reference to the methodological quality of observational studies.

Methods

We searched Medline, Toxline, BIOSIS, and Embase (1966–December 2007) for original articles published in any language. Observational studies (cohort and case–control studies) were selected if they reported the result of dose–response analyses relating lung cancer to occupational exposure to silica after appropriate adjustment for smoking.

Results

Ten studies (4 cohort studies and 6 case–control studies) met the inclusion criteria of the meta-analysis, nine of which contributing to the main analysis (dose–response analysis, no lag time). We found increasing risk of lung cancer with increasing cumulative exposure to silica, with heterogeneity across studies however. Posthoc analyses identified a set of seven more homogeneous studies. Their meta-analysis resulted in a dose–response curve that was not different from that obtained in the main analysis.

Conclusion

Silica is a lung carcinogen. This increased risk is particularly apparent when the cumulative exposure to silica is well beyond that resulting from exposure to the recommended limit concentration for a prolonged period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lacasse Y, Martin S, Simard S, Desmeules M (2005) Meta-analysis of silicosis and lung cancer. Scand J Work Environ Health 31:450–458

    PubMed  CAS  Google Scholar 

  2. Koskela RS, Klockars M, Jarvinen E, Rossi A, Kolari PJ (1990) Cancer mortality of granite workers 1940–1985. IARC Sci Publ (97):43–53

  3. Hughes JM, Weill H (1991) Asbestosis as a precursor of asbestos related lung cancer: results of a prospective mortality study. Br J Ind Med 48:229–233

    PubMed  CAS  Google Scholar 

  4. Hubbard R, Venn A, Lewis S, Britton J (2000) Lung cancer and cryptogenic fibrosing alveolitis. A population-based cohort study. Am J Respir Crit Care Med 161:5–8

    PubMed  CAS  Google Scholar 

  5. International Agency for Research on Cancer (IARC) (1997) IARC monographs on the evaluation of carcinogenic risks to humans—silica, some silicates, coal dust and para-aramid fibrils. World Health Organization

  6. Weill H, McDonald JC (1996) Exposure to crystalline silica and risk of lung cancer: the epidemiological evidence. Thorax 51:97–102. doi:10.1136/thx.51.1.97

    Article  PubMed  CAS  Google Scholar 

  7. Stroup DF, Berlin JA, Morton SC et al (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 283:2008–2012. doi:10.1001/jama.283.15.2008

    Article  PubMed  CAS  Google Scholar 

  8. Gehanno JF, Paris C, Thirion B, Caillard JF (1998) Assessment of bibliographic databases performance in information retrieval for occupational and environmental toxicology. Occup Environ Med 55:562–566. doi:10.1136/oem.55.8.562

    Article  PubMed  CAS  Google Scholar 

  9. Hill AB (1965) The environment and disease: association or causation? Proc R Soc Med 58:295–300

    PubMed  CAS  Google Scholar 

  10. Lagiou P, Adami HO, Trichopoulos D (2005) Causality in cancer epidemiology. Eur J Epidemiol 20:565–574. doi:10.1007/s10654-005-7968-y

    Article  PubMed  Google Scholar 

  11. Steenland K, Mannetje A, Boffetta P et al (2001) Pooled exposure-response analyses and risk assessment for lung cancer in 10 cohorts of silica-exposed workers: An IARC multicentre study. Cancer Causes Control 12:773–784. doi:10.1023/A:1012214102061

    Article  PubMed  CAS  Google Scholar 

  12. Steenland K, Loomis D, Shy C, Simonsen N (1996) Review of occupational lung carcinogens. Am J Ind Med 29:474–490. doi:10.1002/(SICI)1097-0274(199605)29:5<474::AID-AJIM6>3.0.CO;2-M

    Article  PubMed  CAS  Google Scholar 

  13. Puntoni R, Goldsmith DF, Valerio F et al (1988) A cohort study of workers employed in a refractory brick plant. Tumori 74:27–33

    PubMed  CAS  Google Scholar 

  14. Kramer MS, Feinstein AR (1981) Clinical biostatistics. LIV. The biostatistics of concordance. Clin Pharmacol Ther 29:111–123

    PubMed  CAS  Google Scholar 

  15. Rothman KJ, Greenland S (1998) Modern epidemiology. Lippincott-Raven Publishers, Philadelphia

    Google Scholar 

  16. Il’yasova D, Hertz-Picciotto I, Peters U, Berlin JA, Poole C (2005) Choice of exposure scores for categorical regression in meta-analysis: a case study of a common problem. Cancer Causes Control 16:383–388. doi:10.1007/s10552-004-5025-x

    Article  PubMed  Google Scholar 

  17. Bagnardi V, Zambon A, Quatto P, Corrao G (2004) Flexible meta-regression functions for modeling aggregate dose-response data, with an application to alcohol and mortality. Am J Epidemiol 159:1077–1086. doi:10.1093/aje/kwh142

    Article  PubMed  Google Scholar 

  18. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188. doi:10.1016/0197-2456(86)90046-2

    Article  PubMed  CAS  Google Scholar 

  19. Stram DO (1996) Meta-analysis of published data using a linear mixed-effects model. Biometrics 52:536–544. doi:10.2307/2532893

    Article  PubMed  CAS  Google Scholar 

  20. Bonovas S, Filioussi K, Tsavaris N, Sitaras NM (2006) Statins and cancer risk: a literature-based meta-analysis and meta-regression analysis of 35 randomized controlled trials. J Clin Oncol 24:4808–4817. doi:10.1200/JCO.2006.06.3560

    Article  PubMed  CAS  Google Scholar 

  21. Hnizdo E, Murray J, Klempman S (1997) Lung cancer in relation to exposure to silica dust, silicosis and uranium production in South African gold miners. Thorax 52:271–275

    PubMed  CAS  Google Scholar 

  22. Checkoway H, Hughes JM, Weill H, Seixas NS, Demers PA (1999) Crystalline silica exposure, radiological silicosis, and lung cancer mortality in diatomaceous earth industry workers. Thorax 54:56–59

    PubMed  CAS  Google Scholar 

  23. Chen W, Chen J (2002) Nested case-control study of lung cancer in four Chinese tin mines. Occup Environ Med 59:113–118. doi:10.1136/oem.59.2.113

    Article  PubMed  CAS  Google Scholar 

  24. Calvert GM, Rice FL, Boiano JM, Sheehy JW, Sanderson WT (2003) Occupational silica exposure and risk of various diseases: an analysis using death certificates from 27 states of the United States. Occup Environ Med 60:122–129. doi:10.1136/oem.60.2.122

    Article  PubMed  CAS  Google Scholar 

  25. Kauppinen T, Heikkila P, Partanen T et al (2003) Mortality and cancer incidence of workers in Finnish road paving companies. Am J Ind Med 43:49–57. doi:10.1002/ajim.10161

    Article  PubMed  Google Scholar 

  26. Menvielle G, Luce D, Fevotte J et al (2003) Occupational exposures and lung cancer in New Caledonia. Occup Environ Med 60:584–589. doi:10.1136/oem.60.8.584

    Article  PubMed  CAS  Google Scholar 

  27. Attfield MD, Costello J (2004) Quantitative exposure-response for silica dust and lung cancer in Vermont granite workers. Am J Ind Med 45:129–138. doi:10.1002/ajim.10348

    Article  PubMed  CAS  Google Scholar 

  28. Smailyte G, Kurtinaitis J, Andersen A (2004) Mortality and cancer incidence among Lithuanian cement producing workers. Occup Environ Med 61:529–534. doi:10.1136/oem.2003.009936

    Article  PubMed  CAS  Google Scholar 

  29. L’Abbate N, Di Pierri C, Nuzzaco A, Caputo F, Carino M (2005) Radiological and functional progression in silicosis. Med Lav 96:212–221

    PubMed  Google Scholar 

  30. Baccarelli A, Khmelnitskii O, Tretiakova M et al (2006) Risk of lung cancer from exposure to dusts and fibers in Leningrad Province, Russia. Am J Ind Med 49:460–467. doi:10.1002/ajim.20316

    Article  PubMed  CAS  Google Scholar 

  31. Chen W, Yang J, Chen J, Bruch J (2006) Exposures to silica mixed dust and cohort mortality study in tin mines: exposure-response analysis and risk assessment of lung cancer. Am J Ind Med 49:67–76. doi:10.1002/ajim.20248

    Article  PubMed  CAS  Google Scholar 

  32. Zeka A, Mannetje A, Zaridze D et al (2006) Lung cancer and occupation in nonsmokers: a multicenter case-control study in Europe. Epidemiology 17:615–623. doi:10.1097/01.ede.0000239582.92495.b5

    Article  PubMed  Google Scholar 

  33. Yu ITS, Tse LA, Leung CC, Wong TW, Tam CM, Chan ACK (2007) Lung cancer mortality among silicotic workers in Hong Kong—no evidence for a link. Ann Oncol 18:1056–1063. doi:10.1093/annonc/mdm089

    Article  PubMed  CAS  Google Scholar 

  34. Checkoway H, Heyer NJ, Seixas NS et al (1997) Dose-response associations of silica with nonmalignant respiratory disease and lung cancer mortality in the diatomaceous earth industry. Am J Epidemiol 145:680–688

    PubMed  CAS  Google Scholar 

  35. Steenland K, Sanderson W (2001) Lung cancer among industrial sand workers exposed to crystalline silica. Am J Epidemiol 153:695–703. doi:10.1093/aje/153.7.695

    Article  PubMed  CAS  Google Scholar 

  36. Brown TP, Rushton L (2005) Mortality in the UK industrial silica sand industry: 2. A retrospective cohort study. Occup Environ Med 62:446–452. doi:10.1136/oem.2004.017731

    Article  PubMed  CAS  Google Scholar 

  37. Pukkala E, Guo J, Kyyronen P, Lindbohm ML, Sallmen M, Kauppinen T (2005) National job-exposure matrix in analyses of census-based estimates of occupational cancer risk. Scand J Work Environ Health 31:97–107

    PubMed  CAS  Google Scholar 

  38. Ulm K, Waschulzik B, Ehnes H et al (1999) Silica dust and lung cancer in the German stone, quarrying, and ceramics industries: results of a case-control study. Thorax 54:347–351

    Article  PubMed  CAS  Google Scholar 

  39. Bruske-Hohlfeld I, Mohner M, Pohlabeln H et al (2000) Occupational lung cancer risk for men in Germany: results from a pooled case-control study. Am J Epidemiol 151:384–395

    PubMed  CAS  Google Scholar 

  40. Cocco P, Rice CH, Chen JQ, McCawley MA, McLaughlin JK, Dosemeci M (2001) Lung cancer risk, silica exposure, and silicosis in Chinese mines and pottery factories: the modifying role of other workplace lung carcinogens. Am J Ind Med 40:674–682. doi:10.1002/ajim.10022

    Article  PubMed  CAS  Google Scholar 

  41. Hughes JM, Weill H, Rando RJ, Shi R, McDonald AD, McDonald JC (2001) Cohort mortality study of North American industrial sand workers. II. Case-referent analysis of lung cancer and silicosis deaths. Ann Occup Hyg 45:201–207

    PubMed  CAS  Google Scholar 

  42. Westberg HB, Bellander T (2003) Epidemiological adaptation of quartz exposure modeling in Swedish aluminum foundries: nested case-control study on lung cancer. Appl Occup Environ Hyg 18:1006–1013. doi:10.1080/10473220390244676

    Article  PubMed  CAS  Google Scholar 

  43. McDonald JC, McDonald AD, Hughes JM, Rando RJ, Weill H (2005) Mortality from lung and kidney disease in a cohort of North American industrial sand workers: an update. Ann Occup Hyg 49:367–373. doi:10.1093/annhyg/mei001

    Article  PubMed  Google Scholar 

  44. Cassidy A, Mannetje A, Van Tongeren M et al (2007) Occupational exposure to crystalline silica and risk of lung cancer: a multicenter case-control study in Europe. Epidemiology 18:36–43. doi:10.1097/01.ede.0000248515.28903.3c

    Article  PubMed  Google Scholar 

  45. Chen W, Bochmann F, Sun Y (2007) Effects of work related confounders on the association between silica exposure and lung cancer: a nested case–control study among Chinese miners and pottery workers. Int Arch Occup Environ Health 80:320–326. doi:10.1007/s00420-006-0137-0

    Article  PubMed  CAS  Google Scholar 

  46. Blettner M, Sauerbrei W, Schlehofer B, Scheuchenpflug T, Friedenreich C (1999) Traditional reviews, meta-analyses and pooled analyses in epidemiology. Int J Epidemiol 28:1–9. doi:10.1093/ije/28.1.1

    Article  PubMed  CAS  Google Scholar 

  47. Blair A, Burg J, Foran J et al (1995) Guidelines for application of meta-analysis in environmental epidemiology. ISLI Risk Science Institute. Regul Toxicol Pharmacol 22:189–197. doi:10.1006/rtph.1995.1084

    Article  PubMed  CAS  Google Scholar 

  48. Berlin JA (1995) Invited commentary: benefits of heterogeneity in meta-analysis of data from epidemiologic studies. Am J Epidemiol 142:383–387

    PubMed  CAS  Google Scholar 

  49. Colditz GA, Burdick E, Mosteller F (1995) Heterogeneity in meta-analysis of data from epidemiologic studies: a commentary. Am J Epidemiol 142:371–382

    PubMed  CAS  Google Scholar 

  50. Jurek AM, Maldonado G, Greenland S, Church TR (2006) Exposure-measurement error is frequently ignored when interpreting epidemiologic study results. Eur J Epidemiol 21:871–876. doi:10.1007/s10654-006-9083-0

    Article  PubMed  Google Scholar 

  51. Dahmann D, Taeger D, Kappler M et al (2007) Assessment of exposure in epidemiological studies: the example of silica dust. J Expo Sci Environ Epidemiol 18:452–461. doi:10.1038/sj.jes.7500636

    Article  PubMed  CAS  Google Scholar 

  52. Wang W (2004) Nonparametric estimation of the Sojourn time distributions for a multi-path model. J R Stat Soc Ser B 65:921–936

    Article  Google Scholar 

  53. Gordon I, Boffetta P, Demers PA (1998) A case study comparing a meta-analysis and a pooled analysis of studies of sinonasal cancer among wood workers. Epidemiology 9:518–524. doi:10.1097/00001648-199809000-00008

    Article  PubMed  CAS  Google Scholar 

  54. Department of Health and Human Services, Centers for Disease Control and Prevention. National Institute for Occupational Safety and Health (2002) NIOSH hazard review: HEALTH effects of occupational exposure to respirable crystalline silica. http://www.cdc.gov/niosh/02-129pd.html

Download references

Acknowledgments

We thank Dr. Marc Baril from the Quebec Research Institute for Occupational Health and Safety (Institut de recherche Robert-Sauvé en santé et en sécurité du travail—IRSST) for his support during all steps of this project. We also acknowledge the contributions of Hélène Girard and Jocelyne Bellemare, respectively, technician in documentation and librarian at Laval Hospital.

Source of funding:

Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), Grant 99-163.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Lacasse.

Appendices

Appendices

Appendix 1: statistical methods for meta-analysis

Let I = 1,…, I indexes independent studies and J = 1,…, n i indexes exposure levels within studies. Let Y ij  = log(RR ij ) be the estimated log risk ratio corresponding to exposure level x ij . The fixed-effects model is then written as

$$ Y_{ij} = f\left( {x_{ij} } \right) + \varepsilon_{ij} + e_{ij} ,\quad i = 1, \ldots ,I,\quad J = 1, \ldots ,n_{i} ,\quad {\text{model}}\;1 $$

where f is a smooth continuous function, describing the relationship between the exposure level and the log relative risk response. ε ij  → N(0, s 2 ij ) are the sampling errors in Y ij since the latter are estimated rather than observed. Estimated s 2 ij are given by individual studies. Finally, e ij  → N(0, σ2) are the overall error terms. It is assumed that ε ij and e ij are independent.

For the mixed-effects model, a random effect term γ i common to points of the same study is added. This yield

$$ Y_{ij} = f\left( {x_{ij} } \right) + \gamma_{i} + \varepsilon_{ij} + e_{ij} ,\quad i = 1, \ldots ,I,\quad J = 1, \ldots ,n_{i} , \quad {\text{model}}\;2 $$

where γ i  → N(0,τ2) and are independent from ε ij and e ij . Testing heterogeneity corresponds them to performing the following:

$$ {\text{H}}_{0} :\tau^{ 2} = 0\;\;\;\;{\text{vs}} .\;\;\;\;{\text{H}}_{ 1} :\tau^{ 2} > 0. $$

The null hypothesis H0 is rejected at level α if

$$ - 2\left\{ {{ \log }\left( {{\text{maximum}}\;{\text{likelihood}}\;{\text{model}}\; 1} \right) - { \log }\left( {{\text{maximum}}\;{\text{likelihood}}\;{\text{model}}\; 2} \right)} \right\} \ge \chi_{ 1,\alpha }^{2} , $$

where χ 21,α satisfies \( P\left( {\chi_{1}^{2} > \chi_{1,\alpha }^{2} } \right) = \alpha. \) In both models, f is left completely unspecified providing flexibility. It is nonparametically estimated by a spline of order 3 [17]:

$$ f\left( x \right) = \beta_{01} \,x + \beta_{02} \,x^{2} + \beta_{03} \,x^{3} + \Upsigma_{1 \le I \le C - 1} \beta_{i3} \left( {x - k_{i} } \right)_{ + }^{3} , $$

where (x − k i )+ = max(x − k i ,0) is the positive part and \( \left\{ {k_{i} ,\;i = 1, \ldots ,C - 1} \right\} \) are knots. We set C = 3. The models parameters \( \left\{ {\beta_{0 1} ,\beta_{0 2} ,\beta_{0 3} ,\beta_{ 1 3} ,\beta_{ 2 3,} \tau^{ 2} ,\sigma^{ 2} } \right\} \) are estimated by the algorithm given by Stram [19].

Appendix 2 Reasons for exclusion of observational studies with dose–response analysis of silica and lung cancer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lacasse, Y., Martin, S., Gagné, D. et al. Dose–response meta-analysis of silica and lung cancer. Cancer Causes Control 20, 925–933 (2009). https://doi.org/10.1007/s10552-009-9296-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-009-9296-0

Keywords

Navigation