Skip to main content

Pharmaceutically Active Compounds in Water Bodies—Occurrence, Fate, and Toxicity

  • Chapter
  • First Online:
Advanced Wastewater Treatment Technologies for the Removal of Pharmaceutically Active Compounds

Abstract

The presence of pharmaceutically active compounds (PhACs) in water bodies has been considered an issue of global concern due to their high consumption and release into the environment, especially under pandemic conditions such as current COVID-19 situations. Additionally, the appearance of antibiotic-resistant bacteria (ARBs) and antibiotic resistance genes (ARGs) threatens the effectiveness of the pharmaceuticals developed to treat certain diseases. To address this problem, there have been efforts to develop efficient and cost-effective (waste)water treatment methods or to upgrade the existing facilities to regenerate clean water resources. According to the reports available in the literature, the effectiveness of these methods is highly dependent on the applied technology and the type and concentration of the PhACs. The efficiency of these systems can also determine the environmental and ecotoxicological effects expected from the release of these compounds. This chapter aims to summarize and discuss the available literature on the occurrence, environmental concentrations, fate, and possible effects of typical PhACs when introduced into receiving environments. The existing research gaps have also been discussed, and recommendations have been provided for further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Escherichia coli strains.

  2. 2.

    6.4 × 104, 4.2 × 104, and 3.1 × 103 CFU/mL, respectively.

  3. 3.

    For example, the gene intI1 and all ARGs, except blaCTX-M in influent samples in the municipal wastewater treatment plants utilizing activated sludge process [92].

  4. 4.

    Especially sulfonamide resistance.

  5. 5.

    Such as blaOXA-48 [95].

References

  1. Manisalidis I et al (2020) Environmental and health impacts of air pollution: a review. Front Public Health 8:1–13. https://doi.org/10.3389/fpubh.2020.00014

    Article  Google Scholar 

  2. Kamali M, Khodaparast Z (2015) Review on recent developments on pulp and paper mill wastewater treatment. Ecotoxicol Environ Safety 114:326–342. https://doi.org/10.1016/j.ecoenv.2014.05.005

    Article  CAS  PubMed  Google Scholar 

  3. Kamali M et al (2021) Biochar in water and wastewater treatment—a sustainability assessment. Chem Eng J 420:129946. https://doi.org/10.1016/j.cej.2021.129946

  4. Wang Q, Yang Z (2016) Industrial water pollution, water environment treatment, and health risks in China. Environ Poll 218:358–365. https://doi.org/10.1016/j.envpol.2016.07.011

    Article  CAS  Google Scholar 

  5. Han D, Currell MJ, Cao G (2016) Deep challenges for China’s war on water pollution. Environ Poll 218:1222–1233. https://doi.org/10.1016/j.envpol.2016.08.078

    Article  CAS  Google Scholar 

  6. Azizullah A et al (2011) Water pollution in Pakistan and its impact on public health—a review. Environ Int 37:479–497. https://doi.org/10.1016/j.envint.2010.10.007

    Article  CAS  PubMed  Google Scholar 

  7. Kim S et al (2018) Removal of contaminants of emerging concern by membranes in water and wastewater: a review. Chem Eng J 335(Nov 2017):896–914. https://doi.org/10.1016/j.cej.2017.11.044

  8. Quesada HB et al (2019) Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: a review. Chemosphere 222:766–780. https://doi.org/10.1016/j.chemosphere.2019.02.009

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Bilal M et al (2019) Emerging contaminants of high concern and their enzyme-assisted biodegradation—a review. Environ Int 124:336–353. https://doi.org/10.1016/j.envint.2019.01.011

    Article  CAS  PubMed  Google Scholar 

  10. Lee BCY et al (2021) Emerging contaminants: an overview of recent trends for their treatment and management using light-driven processes. Water (Switzerland) 13:2340. https://doi.org/10.3390/w13172340

    Article  CAS  Google Scholar 

  11. Rasheed T et al (2019) Environmentally-related contaminants of high concern: potential sources and analytical modalities for detection, quantification, and treatment. Environ Int 122:52–66. https://doi.org/10.1016/j.envint.2018.11.038

    Article  CAS  PubMed  Google Scholar 

  12. Kamali M et al (2019) Enhanced biodegradation of phenolic wastewaters with acclimatized activated sludge—a kinetic study. Chem Eng J 378. https://doi.org/10.1016/j.cej.2019.122186

  13. Xin X et al (2019) An integrated approach for waste activated sludge management towards electric energy production/resource reuse. Bioresour Technol 274:225–231. https://doi.org/10.1016/j.biortech.2018.11.092

    Article  CAS  PubMed  Google Scholar 

  14. Müller B et al (2012) Pharmaceuticals as indictors of sewage-influenced groundwater. Hydrogeol J 20:1117–1129. https://doi.org/10.1007/s10040-012-0852-4

    Article  CAS  ADS  Google Scholar 

  15. Zhang Z, Grover DP, Zhou JL (2009) Monitoring of pharmaceutical residues in sewage effluents. In: Handbook of water purity and quality. Elsevier Inc. https://doi.org/10.1016/B978-0-12-374192-9.00014-5

  16. Daughton CG (2016) Pharmaceuticals and the Environment (PiE): evolution and impact of the published literature revealed by bibliometric analysis. Sci Tot Environ 562:391–426. https://doi.org/10.1016/j.scitotenv.2016.03.109

  17. European Commission (EC) (2015) DECISION (EU) 2015/495. Official J Eur Union L78/40(C(2015) 1756):20–30

    Google Scholar 

  18. European Medicines Agency (2006) Guideline No. 4447/00 on the environmental risk assessment of medicinal products for human use. Committee for Medicinal Products for Human Use (June), pp 1–12. Available at: http://www.emea.eu.int

  19. Patel M et al (2021) Ciprofloxacin and acetaminophen sorption onto banana peel biochars: environmental and process parameter influences. Environ Res 201:111218. https://doi.org/10.1016/j.envres.2021.111218

  20. aus der Beek T et al (2016) Pharmaceuticals in the environment: global occurrence and potential cooperative action under the Strategic Approach to International Chemicals Management (SAICM), German Environment Agency. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed18a&NEWS=N&AN=72198002

  21. Balakrishna K et al (2017) A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies. Ecotoxicol Environ Safety 137(Oct 2016):113–120. https://doi.org/10.1016/j.ecoenv.2016.11.014

  22. Kleywegt S et al (2019) Environmental loadings of active pharmaceutical ingredients from manufacturing facilities in Canada. Sci Tot Environ 646:257–264. https://doi.org/10.1016/j.scitotenv.2018.07.240

  23. Costa D et al (2006) Inhibition of human neutrophil oxidative burst by pyrazolone derivatives. Free Radical Biol Med 40:632–640. https://doi.org/10.1016/j.freeradbiomed.2005.09.017

    Article  CAS  Google Scholar 

  24. Koutsouba V et al (2003) Determination of polar pharmaceuticals in sewage water of Greece by gas chromatography-mass spectrometry. Chemosphere 51:69–75. https://doi.org/10.1016/S0045-6535(02)00819-6

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Reddersen K, Heberer T, Dünnbier U (2002) Identification and significance of phenazone drugs and their metabolites in ground- and drinking water. Chemosphere 49:539–544. https://doi.org/10.1016/S0045-6535(02)00387-9

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Zuehlke S, Duennbier U, Heberer T (2007) Investigation of the behavior and metabolism of pharmaceutical residues during purification of contaminated ground water used for drinking water supply. Chemosphere 69:1673–1680. https://doi.org/10.1016/j.chemosphere.2007.06.020

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Zühlke S, Dünnbier U, Heberer T (2004) Detection and identification of phenazone-type drugs and their microbial metabolites in ground and drinking water applying solid-phase extraction and gas chromatography with mass spectrometric detection. J Chromatogr A 1050(2):201–209. https://doi.org/10.1016/j.chroma.2004.08.051

    Article  CAS  PubMed  Google Scholar 

  28. Tauxe-Wuersch A et al (2005) Occurrence of several acidic drugs in sewage treatment plants in Switzerland and risk assessment. Water Res 39:1761–1772. https://doi.org/10.1016/j.watres.2005.03.003

    Article  CAS  PubMed  Google Scholar 

  29. Salgado R et al (2011) Assessing the diurnal variability of pharmaceutical and personal care products in a full-scale activated sludge plant. Environ Poll 159:2359–2367. https://doi.org/10.1016/j.envpol.2011.07.004

    Article  CAS  Google Scholar 

  30. Ma J et al (2016) Photodegradation of gemfibrozil in aqueous solution under UV irradiation: kinetics, mechanism, toxicity, and degradation pathways. Environ Sci Pollut Res 23:14294–14306. https://doi.org/10.1007/s11356-016-6451-5

    Article  CAS  Google Scholar 

  31. Fang Y et al (2012) Occurrence, fate, and persistence of gemfibrozil in water and soil. Environ Toxicol Chem 31:550–555. https://doi.org/10.1002/etc.1725

    Article  CAS  PubMed  Google Scholar 

  32. Heberer T (2002) Tracking persistent pharmaceutical residues from municipal sewage to drinking water. J Hydrol 266:175–189. https://doi.org/10.1016/S0022-1694(02)00165-8

    Article  CAS  Google Scholar 

  33. Zhao JL et al (2010) ‘Occurrence and a screening-level risk assessment of human pharmaceuticals in the pearl river system, South China. Environ Toxicol Chem 29:1377–1384. https://doi.org/10.1002/etc.161

    Article  CAS  PubMed  Google Scholar 

  34. Rad TS et al (2018) Synthesis of pumice-TiO2 nanoflakes for sonocatalytic degradation of famotidine. J Clean Prod 202:853–862. https://doi.org/10.1016/j.jclepro.2018.08.165

    Article  CAS  Google Scholar 

  35. Kiszkiel-Taudul I, Starczewska B (2019) Dispersive liquid-liquid microextraction of famotidine and nizatidine from water samples. J Chromatogr Sci 57:93–100. https://doi.org/10.1093/chromsci/bmy087

    Article  CAS  PubMed  Google Scholar 

  36. Koopal C et al (2017) Effect of adding bezafibrate to standard lipid-lowering therapy on post-fat load lipid levels in patients with familial dysbetalipoproteinemia. A randomized placebo-controlled crossover trial. J Lipid Res 58:2180–2187. © 2017 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. https://doi.org/10.1194/jlr.M076901

  37. Shi XT et al (2018) Kinetics and pathways of Bezafibrate degradation in UV/chlorine process. Environ Sci Pollut Res 25:672–682. https://doi.org/10.1007/s11356-017-0461-9

    Article  CAS  Google Scholar 

  38. Ledeţi I et al (2015) Kinetic analysis of solid-state degradation of pure pravastatin versus pharmaceutical formulation. J Therm Anal Calorim 121:1103–1110. https://doi.org/10.1007/s10973-015-4842-3

    Article  CAS  Google Scholar 

  39. Mao Z et al (2018) Pravastatin alleviates interleukin 1β-induced cartilage degradation by restoring impaired autophagy associated with MAPK pathway inhibition. Int Immunopharmacol 64:308–318. https://doi.org/10.1016/j.intimp.2018.09.018

    Article  CAS  PubMed  Google Scholar 

  40. Razavi B et al (2011) Treatment of statin compounds by advanced oxidation processes: kinetic considerations and destruction mechanisms. Radiat Phys Chem 80:453–461. https://doi.org/10.1016/j.radphyschem.2010.10.004

    Article  CAS  ADS  Google Scholar 

  41. Akul NB et al (2021) Effects of mevastatin on electricity generation in microbial fuel cells. Pol J Environ Stud 30:5407–5412. https://doi.org/10.15244/pjoes/133402

    Article  CAS  Google Scholar 

  42. Gottlieb K et al (2016) Inhibition of methanogenic archaea by statins as a targeted management strategy for constipation and related disorders. Aliment Pharmacol Ther 43:197–212. https://doi.org/10.1111/apt.13469

    Article  CAS  PubMed  Google Scholar 

  43. Hapeshi E et al (2015) Licit and illicit drugs in urban wastewater in Cyprus. Clean—Soil, Air, Water 43:1272–1278. https://doi.org/10.1002/clen.201400483

    Article  CAS  Google Scholar 

  44. Azusano IPI, Caparanga AR, Chen BH (2020) Degradation of ketoprofen using iron-supported ZSM-5 catalyst via heterogeneous Fenton oxidation. IOP Conf Ser: Earth Environ Sci 612:012048. https://doi.org/10.1088/1755-1315/612/1/012048

    Article  Google Scholar 

  45. Feng Y et al (2017) Degradation of ketoprofen by sulfate radical-based advanced oxidation processes: kinetics, mechanisms, and effects of natural water matrices. Chemosphere 189:643–651. https://doi.org/10.1016/j.chemosphere.2017.09.109

    Article  CAS  PubMed  ADS  Google Scholar 

  46. Chin CJM et al (2014) Effective anodic oxidation of naproxen by platinum nanoparticles coated FTO glass. J Hazar Mater 277:110–119. https://doi.org/10.1016/j.jhazmat.2014.02.034

  47. Sétifi N et al (2019) Heterogeneous Fenton-like oxidation of naproxen using synthesized goethite-montmorillonite nanocomposite. J Photochem Photobiol, A 370:67–74. https://doi.org/10.1016/j.jphotochem.2018.10.033

    Article  CAS  Google Scholar 

  48. Tran N et al (2015) Optimization of sono-electrochemical oxidation of ibuprofen in wastewater. J Environ Chem Eng 3:2637–2646. https://doi.org/10.1016/j.jece.2015.05.001

  49. Richardson SD, Kimura SY (2020) Water analysis: emerging contaminants and current issues. Anal Chem 92(1):473–505. https://doi.org/10.1021/acs.analchem.9b05269

    Article  CAS  PubMed  Google Scholar 

  50. Roberts PH, Thomas KV (2006) The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment. Sci Total Environ 356(1–3):143–153. https://doi.org/10.1016/j.scitotenv.2005.04.031

    Article  CAS  PubMed  ADS  Google Scholar 

  51. Perron N et al (2013) Deleterious effects of indomethacin in the mid-gestation human intestine. Genomics 101:171–177. https://doi.org/10.1016/j.ygeno.2012.12.003

  52. Chen H et al (2020) Significant role of high-valent iron-oxo species in the degradation and detoxification of indomethacine. Chemosphere 251:126451. https://doi.org/10.1016/j.chemosphere.2020.126451

    Article  CAS  PubMed  ADS  Google Scholar 

  53. Heli H et al (2009) Copper nanoparticles-carbon microparticles nanocomposite for electrooxidation and sensitive detection of sotalol. Sens Actuators, B Chem 140:245–251. https://doi.org/10.1016/j.snb.2009.04.021

    Article  CAS  Google Scholar 

  54. González-Mariño I et al (2015) Transformation of methadone and its main human metabolite, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), during water chlorination. Water Res 68:759–770. https://doi.org/10.1016/j.watres.2014.10.058

    Article  CAS  PubMed  Google Scholar 

  55. Benner J, Ternes TA (2009) Ozonation of metoprolol: elucidation of oxidation pathways and major oxidation products. Environ Sci Technol 43:5472–5480. https://doi.org/10.1021/es900280e

    Article  CAS  PubMed  ADS  Google Scholar 

  56. Kronacher C, Hogreve F (1936) Röntgenologische Skelettstudien an Dahlemer Binder-Drillingen und -Zwillingen. Zeitschrift für Züchtung Reihe B, Tierzüchtung und Züchtungsbiologie einschließlich Tierernährung 36(3):281–294. https://doi.org/10.1111/j.1439-0388.1936.tb00094.x

    Article  Google Scholar 

  57. Bae S, Kim D, Lee W (2013) Degradation of diclofenac by pyrite catalyzed Fenton oxidation. Appl Catalysis B, Environ 134–135:93–102. https://doi.org/10.1016/j.apcatb.2012.12.031

  58. Li J et al (2017) The degradation efficiency and mechanism of meclofenamic acid in aqueous solution by UV irradiation. J Adv Oxidation Technol 20:1–8. https://doi.org/10.1515/jaots-2016-0188

    Article  CAS  Google Scholar 

  59. Maskaoui K, Zhou JL (2010) Colloids as a sink for certain pharmaceuticals in the aquatic environment. Environ Sci Pollut Res 17:898–907. https://doi.org/10.1007/s11356-009-0279-1

    Article  CAS  Google Scholar 

  60. French J (2006) Introduction. Epilepsy Res 68:21–22. https://doi.org/10.1016/j.eplepsyres.2005.09.011

    Article  Google Scholar 

  61. Ding Y et al (2017) Chemical and photocatalytic oxidative degradation of carbamazepine by using metastable Bi3+ self-doped NaBiO3 nanosheets as a bifunctional material. Appl Catalysis B: Environ 202:528–538. https://doi.org/10.1016/j.apcatb.2016.09.054

  62. de Lima Perini JA et al (2017) Photo-Fenton degradation of the pharmaceuticals ciprofloxacin and fluoxetine after anaerobic pre-treatment of hospital effluent. Environ Sci Poll Res 24:6233–6240. https://doi.org/10.1007/s11356-016-7416-4

  63. Santos LHMLM et al (2013) Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: Identification of ecologically relevant pharmaceuticals. Sci Tot Environ 461–462:302–316. https://doi.org/10.1016/j.scitotenv.2013.04.077

  64. Yuan S et al (2013) Detection, occurrence and fate of 22 psychiatric pharmaceuticals in psychiatric hospital and municipal wastewater treatment plants in Beijing, China. Chemosphere 90:2520–2525. https://doi.org/10.1016/j.chemosphere.2012.10.089

    Article  CAS  PubMed  ADS  Google Scholar 

  65. Ferreira APG, Pinto BV, Cavalheiro TG (2018) Thermal decomposition investigation of paroxetine and sertraline. J Anal Appl Pyrolysis 136:232–241. https://doi.org/10.1016/j.jaap.2018.09.022

    Article  CAS  Google Scholar 

  66. Paíga P et al (2016) Presence of pharmaceuticals in the Lis river (Portugal): sources, fate and seasonal variation. Sci Tot Environ 573:164–177. https://doi.org/10.1016/j.scitotenv.2016.08.089

  67. Hunto ST et al (2020) Loratadine, an antihistamine drug, exhibits anti-inflammatory activity through suppression of the NF-kB pathway. Biochem Pharmacol 177:113949. https://doi.org/10.1016/j.bcp.2020.113949

    Article  CAS  PubMed  Google Scholar 

  68. Patel M et al (2019) Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chem Rev 119:3510–3673. https://doi.org/10.1021/acs.chemrev.8b00299

    Article  CAS  PubMed  Google Scholar 

  69. Isidori M et al (2009) Effects of ranitidine and its photoderivatives in the aquatic environment. Environ Int 35:821–825. https://doi.org/10.1016/j.envint.2008.12.002

  70. Zuccato E et al (2006) Pharmaceuticals in the environment in Italy: causes, occurrence, effects and control. Environ Sci Pollut Res 13:15–21. https://doi.org/10.1065/espr2006.01.004

    Article  CAS  Google Scholar 

  71. Patil RH, Hegde RN, Nandibewoor ST (2009) Voltammetric oxidation and determination of atenolol using a carbon paste electrode. Ind Eng Chem Res 48:10206–10210. https://doi.org/10.1021/ie901163k

    Article  CAS  Google Scholar 

  72. Ji Y et al (2013) Photocatalytic degradation of atenolol in aqueous titanium dioxide suspensions: Kinetics, intermediates and degradation pathways. J Photochem Photobiol A: Chem 254:35–44. https://doi.org/10.1016/j.jphotochem.2013.01.003

  73. Rodrigues S et al (2019) Toxicity of erythromycin to Oncorhynchus mykiss at different biochemical levels: detoxification metabolism, energetic balance, and neurological impairment. Environ Sci Pollut Res 26:227–239. https://doi.org/10.1007/s11356-018-3494-9

    Article  CAS  Google Scholar 

  74. Voigt M, Jaeger M (2017) On the photodegradation of azithromycin, erythromycin and tylosin and their transformation products—a kinetic study. Sustain Chem Pharm 5:131–140. https://doi.org/10.1016/j.scp.2016.12.001

    Article  CAS  Google Scholar 

  75. Parnham MJ et al (2014) Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacol Therapeutics 143:225–245. https://doi.org/10.1016/j.pharmthera.2014.03.003

  76. Kielhofner G (2005) Rethinking disability and what to do about it: disability studies and its implications for occupational therapy. Am J Occup Ther 59:487–496. https://doi.org/10.5014/ajot.59.5.487

    Article  PubMed  Google Scholar 

  77. Avramiotis E et al (2021) Oxidation of sulfamethoxazole by rice husk biochar-activated persulfate. Catalysts 11:850. https://doi.org/10.3390/catal11070850

    Article  CAS  Google Scholar 

  78. Wang Q et al (2019) Study of the degradation of trimethoprim using photo-Fenton oxidation technology. Water (Switzerland) 11:207. https://doi.org/10.3390/w11020207

    Article  CAS  Google Scholar 

  79. Brown KD et al (2006) Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico. Sci Total Environ 366:772–783. https://doi.org/10.1016/j.scitotenv.2005.10.007

    Article  CAS  PubMed  ADS  Google Scholar 

  80. Kovalakova P et al (2020) Occurrence and toxicity of antibiotics in the aquatic environment: a review. Chemosphere 251:126351. https://doi.org/10.1016/j.chemosphere.2020.126351

    Article  CAS  PubMed  ADS  Google Scholar 

  81. Yilmaz G et al (2017) Characterization and toxicity of hospital wastewaters in Turkey. Environ Monit Assess 189:55. https://doi.org/10.1007/s10661-016-5732-2

    Article  CAS  PubMed  Google Scholar 

  82. Weng X, Owens G, Chen Z (2020) Synergetic adsorption and Fenton-like oxidation for simultaneous removal of ofloxacin and enrofloxacin using green synthesized Fe NPs. Chem Eng J 382:122871. https://doi.org/10.1016/j.cej.2019.122871

    Article  CAS  Google Scholar 

  83. Renew JE, Huang CH (2004) Simultaneous determination of fluoroquinolone, sulfonamide, and trimethoprim antibiotics in wastewater using tandem solid phase extraction and liquid chromatography-electrospray mass spectrometry. J Chromatogr A 1042:113–121. https://doi.org/10.1016/j.chroma.2004.05.056

    Article  CAS  PubMed  Google Scholar 

  84. Pi Y et al (2014) Oxidation of ofloxacin by Oxone/Co2+: identification of reaction products and pathways. Environ Sci Pollut Res 21:3031–3040. https://doi.org/10.1007/s11356-013-2220-x

    Article  CAS  Google Scholar 

  85. Baydum VPA et al (2012) Pre-treatment of propranolol effluent by advanced oxidation processes Valderice. AfinidAd LXiX 559:211–216

    Google Scholar 

  86. Anquandah GAK et al (2013) Ferrate(VI) oxidation of propranolol: kinetics and products. Chemosphere 91:105–109. https://doi.org/10.1016/j.chemosphere.2012.12.001

    Article  CAS  PubMed  ADS  Google Scholar 

  87. Chu CW et al (2019) Thioridazine enhances p62-mediated autophagy and apoptosis through Wnt/β-catenin signaling pathway in glioma cells. Int J Mol Sci 20:473. https://doi.org/10.3390/ijms20030473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ebele AJ, Abou-Elwafa Abdallah M, Harrad S (2017) Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg Contaminants 3:1–16. https://doi.org/10.1016/j.emcon.2016.12.004

    Article  Google Scholar 

  89. Krzeminski P et al (2019) Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: a review. Sci Tot Environ 648:1052–1081. https://doi.org/10.1016/j.scitotenv.2018.08.130

  90. Lopes et al (2016) Antibiotic resistance in E. coli isolated in effluent from a wastewater treatment plant and sediments in receiver body. Int J River Basin Manag 14:441–445. https://doi.org/10.1080/15715124.2016.1201094

  91. Pazda M et al (2019) Antibiotic resistance genes identified in wastewater treatment plant systems—a review. Sci Tot Environ 697:134023. https://doi.org/10.1016/j.scitotenv.2019.134023

  92. Rafraf ID et al (2016) Abundance of antibiotic resistance genes in five municipal wastewater treatment plants in the Monastir Governorate, Tunisia. Environ Poll 219:353–358. https://doi.org/10.1016/j.envpol.2016.10.062

    Article  CAS  Google Scholar 

  93. Ben W et al (2017) Distribution of antibiotic resistance in the effluents of ten municipal wastewater treatment plants in China and the effect of treatment processes. Chemosphere 172:392–398. https://doi.org/10.1016/j.chemosphere.2017.01.041

    Article  CAS  PubMed  ADS  Google Scholar 

  94. Karkman A et al (2016) High-throughput quantification of antibiotic resistance genes from an urban wastewater treatment plant. FEMS Microbiol Ecol 92:1–7. https://doi.org/10.1093/femsec/fiw014

    Article  CAS  Google Scholar 

  95. Zanotto C et al (2016) Identification of antibiotic-resistant Escherichia coli isolated from a municipal wastewater treatment plant. Chemosphere 164:627–633. https://doi.org/10.1016/j.chemosphere.2016.08.040

    Article  CAS  PubMed  ADS  Google Scholar 

  96. Li J et al (2016) Occurrence and removal of antibiotics and the corresponding resistance genes in wastewater treatment plants: effluents’ influence to downstream water environment. Environ Sci Pollut Res 23:6826–6835. https://doi.org/10.1007/s11356-015-5916-2

    Article  CAS  Google Scholar 

  97. Pallares-Vega R et al (2019) Determinants of presence and removal of antibiotic resistance genes during WWTP treatment: a cross-sectional study. Water Res 161:319–328. https://doi.org/10.1016/j.watres.2019.05.100

    Article  CAS  PubMed  Google Scholar 

  98. Osińska A et al (2017) The prevalence and characterization of antibiotic-resistant and virulent Escherichia coli strains in the municipal wastewater system and their environmental fate. Sci Total Environ 577:367–375. https://doi.org/10.1016/j.scitotenv.2016.10.203

    Article  CAS  PubMed  ADS  Google Scholar 

  99. Wright GD (2010) Q&A: Antibiotic resistance: where does it come from and what can we do about it? BMC Biol 8:123. https://doi.org/10.1186/1741-7007-8-123

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ballesteros O, Vílchez JL, Navalón A (2002) Determination of the antibacterial ofloxacin in human urine and serum samples by solid-phase spectrofluorimetry. J Pharm Biomed Anal 30:1103–1110. https://doi.org/10.1016/S0731-7085(02)00466-1

    Article  CAS  PubMed  Google Scholar 

  101. Starling MCVM, Amorim CC, Leão MMD (2019) Occurrence, control and fate of contaminants of emerging concern in environmental compartments in Brazil. J Hazar Mater 372:17–36. https://doi.org/10.1016/j.jhazmat.2018.04.043

    Article  CAS  Google Scholar 

  102. Head A (1997) Exercise metabolism in healthy volunteers taking celiprolol, atenolol, and placebo. Br J Sports Med 31:120–125. https://doi.org/10.1136/bjsm.31.2.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Prata JC et al (2018) Influence of microplastics on the toxicity of the pharmaceuticals procainamide and doxycycline on the marine microalgae Tetraselmis chuii. Aquatic Toxicol 197:143–152. https://doi.org/10.1016/j.aquatox.2018.02.015

    Article  CAS  Google Scholar 

  104. Santos A, Veiga F, Figueiras A (2020) Dendrimers as pharmaceutical excipients: synthesis, properties, toxicity and biomedical applications. Materials. https://doi.org/10.3390/ma13010065

  105. Tkaczyk A et al (2021) Daphnia magna model in the toxicity assessment of pharmaceuticals: a review. Sci Total Environ 763:143038. https://doi.org/10.1016/j.scitotenv.2020.143038

    Article  CAS  PubMed  ADS  Google Scholar 

  106. Seydi E, Tabbati Y, Pourahmad J (2020) Toxicity of atenolol and propranolol on rat heart mitochondria. Drug Res 70:151–157. https://doi.org/10.1055/a-1112-7032

    Article  CAS  Google Scholar 

  107. Diniz MS et al (2015) Ecotoxicity of ketoprofen, diclofenac, atenolol and their photolysis byproducts in zebrafish (Danio rerio). Sci Tot Environ 505:282–289. https://doi.org/10.1016/j.scitotenv.2014.09.103

  108. Foran CM et al (2004) Reproductive assessment of Japanese Medaka (Oryzias latipes) following a four-week fluoxetine (SSRI) exposure. Arch Environ Contam Toxicol 46:511–517. https://doi.org/10.1007/s00244-003-3042-5

    Article  CAS  PubMed  Google Scholar 

  109. Henry TB, Black MC (2008) Acute and chronic toxicity of fluoxetine (selective serotonin reuptake inhibitor) in western Mosquitofish. Arch Environ Contam Toxicol 54:325–330. https://doi.org/10.1007/s00244-007-9018-0

    Article  CAS  PubMed  Google Scholar 

  110. Wan J et al (2015) Effect of erythromycin exposure on the growth, antioxidant system and photosynthesis of Microcystis flos-aquae. J Hazar Mater 283:778–786. https://doi.org/10.1016/j.jhazmat.2014.10.026

  111. Nie XP et al (2013) Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole exposure to the antioxidant system in Pseudokirchneriella subcapitata. Environ Poll 172:23–32. https://doi.org/10.1016/j.envpol.2012.08.013

    Article  CAS  Google Scholar 

  112. Liu B et al (2011) Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole on photosynthetic apparatus in Selenastrum capricornutum. Ecotoxicol Environ Safety 74:1027–1035. https://doi.org/10.1016/j.ecoenv.2011.01.022

  113. Rangasamy B et al (2018) Developmental toxicity and biological responses of zebrafish (Danio rerio) exposed to anti-inflammatory drug ketoprofen. Chemosphere 213:423–433. https://doi.org/10.1016/j.chemosphere.2018.09.013

    Article  CAS  PubMed  ADS  Google Scholar 

  114. Chen X et al (2021) Occurrence and risk assessment of pharmaceuticals and personal care products (PPCPs) against COVID-19 in lakes and WWTP-river-estuary system in Wuhan, China. Sci Tot Environ 792:148352. https://doi.org/10.1016/j.scitotenv.2021.148352

  115. Shiraki K, Daikoku T (2020) Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company’s public news and information. Pharmacol Therapeutics 2(9):107512

    Google Scholar 

  116. Azuma T et al (2017) Fate of new three anti-influenza drugs and one prodrug in the water environment. Chemosphere 169:550–557. https://doi.org/10.1016/j.chemosphere.2016.11.102

    Article  CAS  PubMed  ADS  Google Scholar 

  117. Hassanipour S et al (2021) The efficacy and safety of Favipiravir in treatment of COVID-19: a systematic review and meta-analysis of clinical trials. Scien Rep 11:1–11. https://doi.org/10.1038/s41598-021-90551-6

    Article  CAS  Google Scholar 

  118. Kuroda K et al (2021) Predicted occurrence, ecotoxicological risk and environmentally acquired resistance of antiviral drugs associated with COVID-19 in environmental waters. Sci Tot Environ 776:145740. https://doi.org/10.1016/j.scitotenv.2021.145740

  119. Tong S et al (2020) Ribavirin therapy for severe COVID-19: a retrospective cohort study. Int J Antimicrobial Agents 56:1–5. https://doi.org/10.1016/j.ijantimicag.2020.106114

    Article  CAS  Google Scholar 

  120. Kasonga TK et al (2021) Endocrine-disruptive chemicals as contaminants of emerging concern in wastewater and surface water: a review. J Environ Manage 277:111485. https://doi.org/10.1016/j.jenvman.2020.111485

    Article  CAS  PubMed  Google Scholar 

  121. Joseph L et al (2019) Removal of contaminants of emerging concern by metal-organic framework nanoadsorbents: a review. Chem Eng J 369:928–946. https://doi.org/10.1016/j.cej.2019.03.173

    Article  CAS  Google Scholar 

  122. Kaur L (2020) Role of phytoremediation strategies in removal of heavy metals. https://doi.org/10.1007/978-981-32-9771-5_13

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadreza Kamali .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamali, M., Aminabhavi, T.M., V. Costa, M.E., Ul Islam, S., Appels, L., Dewil, R. (2023). Pharmaceutically Active Compounds in Water Bodies—Occurrence, Fate, and Toxicity. In: Advanced Wastewater Treatment Technologies for the Removal of Pharmaceutically Active Compounds. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-20806-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20806-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20805-8

  • Online ISBN: 978-3-031-20806-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics