Skip to main content

Aware of the History: Trajectory Forecasting with the Local Behavior Data

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

The historical trajectories previously passing through a location may help infer the future trajectory of an agent currently at this location. Despite great improvements in trajectory forecasting with the guidance of high-definition maps, only a few works have explored such local historical information. In this work, we re-introduce this information as a new type of input data for trajectory forecasting systems: the local behavior data, which we conceptualize as a collection of location-specific historical trajectories. Local behavior data helps the systems emphasize the prediction locality and better understand the impact of static map objects on moving agents. We propose a novel local-behavior-aware (LBA) prediction framework that improves forecasting accuracy by fusing information from observed trajectories, HD maps, and local behavior data. Also, where such historical data is insufficient or unavailable, we employ a local-behavior-free (LBF) prediction framework, which adopts a knowledge-distillation-based architecture to infer the impact of missing data. Extensive experiments demonstrate that upgrading existing methods with these two frameworks significantly improves their performances. Especially, the LBA framework boosts the SOTA methods’ performance on the nuScenes dataset by at least 14% for the \(K=1\) metrics. Code is at https://github.com/Kay1794/LocalBehavior-based-trajectory-prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: Proceedings of the IEEE Conference On Computer Vision and Pattern Recognition, pp. 961–971 (2016)

    Google Scholar 

  2. Bennewitz, M., Burgard, W., Thrun, S.: Learning motion patterns of persons for mobile service robots. In: Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292), vol. 4, pp. 3601–3606. IEEE (2002)

    Google Scholar 

  3. Caesar, H., et al.: nuscenes: A multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11621–11631 (2020)

    Google Scholar 

  4. Carrasco, S., Llorca, D.F., Sotelo, M.Á.: SCOUT: socially-consistent and understandable graph attention network for trajectory prediction of vehicles and VRUs. arXiv preprint arXiv:2102.06361 (2021)

  5. Casas, S., Luo, W., Urtasun, R.: Intentnet: learning to predict intention from raw sensor data. In: Conference on Robot Learning, pp. 947–956. PMLR (2018)

    Google Scholar 

  6. Chang, M.F., et al.: Argoverse: 3d tracking and forecasting with rich maps. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8748–8757 (2019)

    Google Scholar 

  7. Chen, G., Choi, W., Yu, X., Han, T., Chandraker, M.: Learning efficient object detection models with knowledge distillation. Adv. Neural. Inf. Process. Syst. 30, 1–10 (2017)

    Google Scholar 

  8. De Leege, A., van Paassen, M., Mulder, M.: A machine learning approach to trajectory prediction. In: AIAA Guidance, Navigation, and Control (GNC) Conference, p. 4782 (2013)

    Google Scholar 

  9. Deo, N., Trivedi, M.M.: Trajectory forecasts in unknown environments conditioned on grid-based plans. arXiv preprint arXiv:2001.00735 (2020)

  10. Deo, N., Wolff, E., Beijbom, O.: Multimodal trajectory prediction conditioned on lane-graph traversals. In: 5th Annual Conference on Robot Learning (2021)

    Google Scholar 

  11. Gao, J., et al.: VectorNet: Encoding HD maps and agent dynamics from vectorized representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11525–11533 (2020)

    Google Scholar 

  12. Gilles, T., Sabatini, S., Tsishkou, D., Stanciulescu, B., Moutarde, F.: Gohome: graph-oriented heatmap output for future motion estimation. arXiv preprint arXiv:2109.01827 (2021)

  13. Gilles, T., Sabatini, S., Tsishkou, D., Stanciulescu, B., Moutarde, F.: Home: heatmap output for future motion estimation. arXiv preprint arXiv:2105.10968 (2021)

  14. Gilles, T., Sabatini, S., Tsishkou, D., Stanciulescu, B., Moutarde, F.: Thomas: trajectory heatmap output with learned multi-agent sampling. arXiv:2110.06607 (2021)

  15. Gu, J., Sun, C., Zhao, H.: DenseTNT: end-to-end trajectory prediction from dense goal sets. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15303–15312 (2021)

    Google Scholar 

  16. Hao, Y., Fu, Y., Jiang, Y.G., Tian, Q.: An end-to-end architecture for class-incremental object detection with knowledge distillation. In: 2019 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2019)

    Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  18. He, T., Shen, C., Tian, Z., Gong, D., Sun, C., Yan, Y.: Knowledge adaptation for efficient semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 578–587 (2019)

    Google Scholar 

  19. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  20. Hu, Y., Chen, S., Zhang, Y., Gu, X.: Collaborative motion prediction via neural motion message passing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6319–6328 (2020)

    Google Scholar 

  21. Kim, B., Kang, C.M., Kim, J., Lee, S.H., Chung, C.C., Choi, J.W.: Probabilistic vehicle trajectory prediction over occupancy grid map via recurrent neural network. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 399–404. IEEE (2017)

    Google Scholar 

  22. Li, Y., Ren, S., Wu, P., Chen, S., Feng, C., Zhang, W.: Learning distilled collaboration graph for multi-agent perception. arXiv preprint arXiv:2111.00643 (2021)

  23. Liang, M., et al.: Learning lane graph representations for motion forecasting. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 541–556. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_32

    Chapter  Google Scholar 

  24. Liu, Y., Zhang, J., Fang, L., Jiang, Q., Zhou, B.: Multimodal motion prediction with stacked transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7577–7586 (2021)

    Google Scholar 

  25. Liu, Y., Chen, K., Liu, C., Qin, Z., Luo, Z., Wang, J.: Structured knowledge distillation for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2604–2613 (2019)

    Google Scholar 

  26. Liu, Y., Dong, X., Lu, X., Khan, F.S., Shen, J., Hoi, S.: Teacher-students knowledge distillation for Siamese trackers. arXiv preprint arXiv:1907.10586 (2019)

  27. Luo, Y., Cai, P., Bera, A., Hsu, D., Lee, W.S., Manocha, D.: PORCA: modeling and planning for autonomous driving among many pedestrians. IEEE Robot. Autom. Lett. 3(4), 3418–3425 (2018)

    Article  Google Scholar 

  28. Marchetti, F., Becattini, F., Seidenari, L., Bimbo, A.D.: MANTRA: memory augmented networks for multiple trajectory prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7143–7152 (2020)

    Google Scholar 

  29. Messaoud, K., Deo, N., Trivedi, M.M., Nashashibi, F.: Trajectory prediction for autonomous driving based on multi-head attention with joint agent-map representation. arXiv preprint arXiv:2005.02545 (2020)

  30. Nikhil, N., Morris, B.T.: Convolutional neural network for trajectory prediction. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11131, pp. 186–196. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11015-4_16

    Chapter  Google Scholar 

  31. Phan-Minh, T., Grigore, E.C., Boulton, F.A., Beijbom, O., Wolff, E.M.: CoverNet: multimodal behavior prediction using trajectory sets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14074–14083 (2020)

    Google Scholar 

  32. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. arXiv preprint arXiv:1706.02413 (2017)

  33. Salzmann, T., Ivanovic, B., Chakravarty, P., Pavone, M.: Trajectron++: dynamically-feasible trajectory forecasting with heterogeneous data. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 683–700. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_40

    Chapter  Google Scholar 

  34. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)

    Article  Google Scholar 

  35. Sun, C., Karlsson, P., Wu, J., Tenenbaum, J.B., Murphy, K.: Stochastic prediction of multi-agent interactions from partial observations. arXiv preprint arXiv:1902.09641 (2019)

  36. Sun, C., Shrivastava, A., Vondrick, C., Sukthankar, R., Murphy, K., Schmid, C.: Relational action forecasting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 273–283 (2019)

    Google Scholar 

  37. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  38. Wang, C., Wang, Y., Xu, M., Crandall, D.J.: Stepwise goal-driven networks for trajectory prediction. arXiv preprint arXiv:2103.14107 (2021)

  39. Xu, C., Li, M., Ni, Z., Zhang, Y., Chen, S.: GroupNet: multiscale hypergraph neural networks for trajectory prediction with relational reasoning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6498–6507 (2022)

    Google Scholar 

  40. Xu, C., Mao, W., Zhang, W., Chen, S.: Remember intentions: retrospective-memory-based trajectory prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6488–6497 (2022)

    Google Scholar 

  41. Ye, M., Cao, T., Chen, Q.: TPCN: temporal point cloud networks for motion forecasting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11318–11327 (2021)

    Google Scholar 

  42. Yu, C., Ma, X., Ren, J., Zhao, H., Yi, S.: Spatio-temporal graph transformer networks for pedestrian trajectory prediction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 507–523. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_30

    Chapter  Google Scholar 

  43. Zeng, W., Liang, M., Liao, R., Urtasun, R.: LanerCNN: distributed representations for graph-centric motion forecasting. arXiv preprint arXiv:2101.06653 (2021)

  44. Zhao, H., et al.: Tnt: Target-driven trajectory prediction. arXiv preprint arXiv:2008.08294 (2020)

  45. Zhao, H., Wildes, R.P.: Where are you heading? Dynamic trajectory prediction with expert goal examples. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7629–7638 (2021)

    Google Scholar 

Download references

Acknowledgements

National Natural Science Foundation of China under Grant 62171276, the Science and Technology Commission of Shanghai Municipal under Grant 21511100900, CCF-DiDi GAIA Research Collaboration Plan 202112 and CALT 2021-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siheng Chen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1773 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhong, Y., Ni, Z., Chen, S., Neumann, U. (2022). Aware of the History: Trajectory Forecasting with the Local Behavior Data. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13682. Springer, Cham. https://doi.org/10.1007/978-3-031-20047-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20047-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20046-5

  • Online ISBN: 978-3-031-20047-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics