Skip to main content

Trajectron++: Dynamically-Feasible Trajectory Forecasting with Heterogeneous Data

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12363))

Included in the following conference series:

Abstract

Reasoning about human motion is an important prerequisite to safe and socially-aware robotic navigation. As a result, multi-agent behavior prediction has become a core component of modern human-robot interactive systems, such as self-driving cars. While there exist many methods for trajectory forecasting, most do not enforce dynamic constraints and do not account for environmental information (e.g., maps). Towards this end, we present Trajectron++, a modular, graph-structured recurrent model that forecasts the trajectories of a general number of diverse agents while incorporating agent dynamics and heterogeneous data (e.g., semantic maps). Trajectron++ is designed to be tightly integrated with robotic planning and control frameworks; for example, it can produce predictions that are optionally conditioned on ego-agent motion plans. We demonstrate its performance on several challenging real-world trajectory forecasting datasets, outperforming a wide array of state-of-the-art deterministic and generative methods.

T. Salzmann and B. Ivanovic—Equal contribution.

T. Salzmann—Work done as a visiting student in the Autonomous Systems Lab.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All of our source code, trained models, and data can be found online at

    https://github.com/StanfordASL/Trajectron-plus-plus.

References

  1. Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: International Conference on Learning Representations (2015)

    Google Scholar 

  3. Battaglia, P.W., Pascanu, R., Lai, M., Rezende, D., Kavukcuoglu, K.: Interaction networks for learning about objects, relations and physics. In: Conference on Neural Information Processing Systems (2016)

    Google Scholar 

  4. Bowman, S.R., Vilnis, L., Vinyals, O., Dai, A.M., Jozefowicz, R., Bengio, S.: Generating sentences from a continuous space. In: Proceedings of the Annual Meeting of the Association for Computational Linguistics (2015)

    Google Scholar 

  5. Britz, D., Goldie, A., Luong, M.T., Le, Q.V.: Massive exploration of neural machine translation architectures. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1442–1451 (2017)

    Google Scholar 

  6. Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving (2019)

    Google Scholar 

  7. Casas, S., Gulino, C., Liao, R., Urtasun, R.: SpAGNN: spatially-aware graph neural networks for relational behavior forecasting from sensor data (2019)

    Google Scholar 

  8. Casas, S., Luo, W., Urtasun, R.: IntentNet: learning to predict intention from raw sensor data. In: Conference on Robot Learning, pp. 947–956 (2018)

    Google Scholar 

  9. Chang, M.F., et al.: Argoverse: 3D tracking and forecasting with rich maps. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  10. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1724–1734 (2014)

    Google Scholar 

  11. Deo, M.F., Trivedi, J.: Multi-modal trajectory prediction of surrounding vehicles with maneuver based LSTMs. In: IEEE Intelligent Vehicles Symposium (2018)

    Google Scholar 

  12. Goodfellow, I., et al.: Generative adversarial nets. In: Conference on Neural Information Processing Systems (2014)

    Google Scholar 

  13. Gupta, A., Johnson, J., Li, F., Savarese, S., Alahi, A.: Social GAN: socially acceptable trajectories with generative adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  14. Gweon, H., Saxe, R.: Developmental cognitive neuroscience of theory of mind, chap. 20. In: Neural Circuit Development and Function in the Brain, pp. 367–377. Academic Press (2013). https://doi.org/10.1016/B978-0-12-397267-5.00057-1. http://www.sciencedirect.com/science/article/pii/B9780123972675000571

  15. Hallac, D., Leskovec, J., Boyd, S.: Network lasso: clustering and optimization in large graphs. In: ACM International Conference on Knowledge Discovery and Data Mining (2015)

    Google Scholar 

  16. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282–4286 (1995)

    Article  Google Scholar 

  17. Higgins, I., et al.: \(\upbeta \)-VAE: learning basic visual concepts with a constrained variational framework. In: International Conference on Learning Representations (2017)

    Google Scholar 

  18. Ho, J., Ermon, S.: Multiple futures prediction. In: Conference on Neural Information Processing Systems (2019)

    Google Scholar 

  19. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)

    Article  Google Scholar 

  20. Ivanovic, B., Pavone, M.: The trajectron: probabilistic multi-agent trajectory modeling with dynamic spatiotemporal graphs. In: IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  21. Ivanovic, B., Schmerling, E., Leung, K., Pavone, M.: Generative modeling of multimodal multi-human behavior. In: IEEE/RSJ International Conference on Intelligent Robots & Systems (2018)

    Google Scholar 

  22. Jain, A., Zamir, A.R., Savarese, S., Saxena, A.: Structural-RNN: deep learning on spatio-temporal graphs. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  23. Jain, A., et al.: Discrete residual flow for probabilistic pedestrian behavior prediction. In: Conference on Robot Learning (2019)

    Google Scholar 

  24. Jang, E., Gu, S., Poole, B.: Categorial reparameterization with Gumbel-Softmax. In: International Conference on Learning Representations (2017)

    Google Scholar 

  25. Kalman, R.E.: A new approach to linear filtering and prediction problems. ASME J. Basic Eng. 82, 35–45 (1960)

    Article  MathSciNet  Google Scholar 

  26. Kesten, R., et al.: Lyft Level 5 AV Dataset 2019 (2019). https://level5.lyft.com/dataset/

  27. Kong, J., Pfeifer, M., Schildbach, G., Borrelli, F.: Kinematic and dynamic vehicle models for autonomous driving control design. In: IEEE Intelligent Vehicles Symposium (2015)

    Google Scholar 

  28. Kosaraju, V., et al.: Social-BiGAT: multimodal trajectory forecasting using bicycle-GAN and graph attention networks. In: Conference on Neural Information Processing Systems (2019)

    Google Scholar 

  29. LaValle, S.M.: Better unicycle models. In: Planning Algorithms, p. 743. Cambridge University Press (2006)

    Google Scholar 

  30. LaValle, S.M.: A simple unicycle. In: Planning Algorithms, pp. 729–730. Cambridge University Press (2006)

    Google Scholar 

  31. Lee, N., et al.: DESIRE: distant future prediction in dynamic scenes with interacting agents. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  32. Lee, N., Kitani, K.M.: Predicting wide receiver trajectories in American football. In: IEEE Winter Conference on Applications of Computer Vision (2016)

    Google Scholar 

  33. Lerner, A., Chrysanthou, Y., Lischinski, D.: Crowds by example. Comput. Graph. Forum 26(3), 655–664 (2007)

    Article  Google Scholar 

  34. Morton, J., Wheeler, T.A., Kochenderfer, M.J.: Analysis of recurrent neural networks for probabilistic modeling of driver behavior. IEEE Trans. Pattern Anal. Mach. Intell. 18(5), 1289–1298 (2017)

    Article  Google Scholar 

  35. Paden, B., Čáp, M., Yong, S.Z., Yershov, D., Frazzoli, E.: A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Trans. Intell. Veh. 1(1), 33–55 (2016)

    Article  Google Scholar 

  36. Paszke, A., et al.: Automatic differentiation in PyTorch. In: Conference on Neural Information Processing Systems - Autodiff Workshop (2017)

    Google Scholar 

  37. Pellegrini, S., Ess, A., Schindler, K., Gool, L.: You’ll never walk alone: modeling social behavior for multi-target tracking. In: IEEE International Conference on Computer Vision (2009)

    Google Scholar 

  38. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning), 1st edn. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  39. Rhinehart, N., McAllister, R., Kitani, K., Levine, S.: PRECOG: prediction conditioned on goals in visual multi-agent settings. In: IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  40. Rudenko, A., Palmieri, L., Herman, M., Kitani, K.M., Gavrila, D.M., Arras, K.O.: Human motion trajectory prediction: a survey (2019). https://arxiv.org/abs/1905.06113

  41. Sadeghian, A., Kosaraju, V., Sadeghian, A., Hirose, N., Rezatofighi, S.H., Savarese, S.: SoPhie: an attentive GAN for predicting paths compliant to social and physical constraints. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  42. Sadeghian, A., Legros, F., Voisin, M., Vesel, R., Alahi, A., Savarese, S.: CAR-Net: Clairvoyant attentive recurrent network. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_10

    Chapter  Google Scholar 

  43. Schöller, C., Aravantinos, V., Lay, F., Knoll, A.: What the constant velocity model can teach us about pedestrian motion prediction. IEEE Robot. Autom. Lett. 5, 1696–1703 (2020)

    Article  Google Scholar 

  44. Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. In: Conference on Neural Information Processing Systems (2015)

    Google Scholar 

  45. Thiede, L.A., Brahma, P.P.: Analyzing the variety loss in the context of probabilistic trajectory prediction. In: IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  46. Thrun, S., Burgard, W., Fox, D.: The extended Kalman filter. In: Probabilistic Robotics, pp. 54–64. MIT Press (2005)

    Google Scholar 

  47. Vemula, A., Muelling, K., Oh, J.: Social attention: modeling attention in human crowds. In: Proceedings of the IEEE Conference on Robotics and Automation (2018)

    Google Scholar 

  48. Wang, J.M., Fleet, D.J., Hertzmann, A.: Gaussian process dynamical models for human motion. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 283–298 (2008)

    Article  Google Scholar 

  49. Waymo: Safety report (2018). https://waymo.com/safety/. Accessed 9 Nov 2019

  50. Waymo: Waymo Open Dataset: An autonomous driving dataset (2019). https://waymo.com/open/

  51. Zeng, W., et al.: End-to-end interpretable neural motion planner. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  52. Zhao, S., Song, J., Ermon, S.: InfoVAE: balancing learning and inference in variational autoencoders. In: Proceedings of the AAAI Conference on Artificial Intelligence (2019)

    Google Scholar 

  53. Zhao, T., et al.: Multi-agent tensor fusion for contextual trajectory prediction. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by the Ford-Stanford Alliance. This article solely reflects the opinions and conclusions of its authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Ivanovic .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1132 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salzmann, T., Ivanovic, B., Chakravarty, P., Pavone, M. (2020). Trajectron++: Dynamically-Feasible Trajectory Forecasting with Heterogeneous Data. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12363. Springer, Cham. https://doi.org/10.1007/978-3-030-58523-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58523-5_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58522-8

  • Online ISBN: 978-3-030-58523-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics