Skip to main content

Ternary II-VI Alloys Promising for Application in Photodetectors

  • Chapter
  • First Online:
Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors

Abstract

In this chapter, an overview of II-VI semiconductors, especially some important ternary II-VI alloys, CdZnTe, CdHgTe, and HgZnTe, is given with more focusing on the applications in photodetectors. In this context, we investigate the solid-state physics of a photovoltaic device to provide a foundation to explain various considerations of manufacturing an II-VI-based photodetector and electronic properties that influence the photodetection efficiency of an II-VI alloy. Moreover, parameters which effect a photovoltaic device are discussed. The structural properties including crystal structures and their lattice parameters based on the composition of II-VI alloys as well as electronic and optical properties are introduced. A literature review related to the excellent properties of these alloys is presented to understand why they are chosen in detector technology. The dominant thermal diffusion current sources in II-Vis which are the Auger and Shockley–Read–Hall processes are discussed in detail. Then, in the following sections, we briefly focus on the applications of CdZnTe, HgCdTe, and HgZnTe ternary II-VI alloys as a photodetector. Herein, in addition to available detector performance of them, we give some important properties such as the wide bandgap, high crystalline perfection, and resistivity, which are required for improving the radiation detector performance. Some examples, most importantly, are given from the literature to understand how to accomplish these requirements and what are the obstacles to getting the detectors with desired properties. Finally, the effects of the size dimensionality on the performance of photodetectors are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adachi S (2009) Properties of semiconductor alloys: group-IV, III–V and II–VI semiconductors. John Wiley & Sons, Ltd, Chichester

    Book  Google Scholar 

  2. Weil R, Joucla M, Loison JL, Mazilu M, Ohlmann D, Robino M, Schwalbach G (1998) Preparation of optical quality ZnCdTe thin films by vacuum evaporation. Appl Opt 37:2681–2686. https://doi.org/10.1364/AO.37.002681

    Article  ADS  Google Scholar 

  3. Ohlmann D, Crégut O, Pelant I, Granger R, Triboulet R, Hönerlage B (1993) Linear and nonlinear optical properties of ZnCdTe monocrystals. J Lumin 54:357–367. https://doi.org/10.1016/0022-2313(93)90004-7

    Article  Google Scholar 

  4. Netiksis V, Hönerlage B, Weil R, Loison JL, Grun JB, Levy R (1993) Picosecond dynamics of absorption bleaching in polycrystalline ZnCdTe films. J Appl Phys 74:5729–5736. https://doi.org/10.1063/1.354190

    Article  ADS  Google Scholar 

  5. Zhao XC, Ouyang XP, Xu YD, Han HT, Zhang ZC, Wang T, Zha GQ, Ouyang X (2012) Time response of Cd0.9Zn0.1Te crystals under transient and pulsed irradiation. AIP Adv 2:12162. https://doi.org/10.1063/1.3693970

    Article  ADS  Google Scholar 

  6. Bale DS, Soldner SA, Szeles C (2008) A mechanism for dynamic lateral polarization in CdZnTe under high flux X-ray irradiation. Appl Phys Lett 92:82101. https://doi.org/10.1063/1.2883924

    Article  Google Scholar 

  7. Koley G, Liu J, Mandal KC (2007) Investigation of CdZnTe crystal defects using scanning probe microscopy. Appl Phys Lett 90:102121. https://doi.org/10.1063/1.2712496

    Article  ADS  Google Scholar 

  8. McNeil WJ, McGregor DS, Bolotnikov AE, Wright GW, James RB (2004) Single-charge-carrier-type sensing with an insulated Frisch ring CdZnTe semiconductor radiation detector. Appl Phys Lett 84:1988–1990. https://doi.org/10.1063/1.1668332

    Article  ADS  Google Scholar 

  9. Chu M, Terterian S, Ting D, Wang CC, Gurgenian HK, Mesropian S (2001) Tellurium antisites in CdZnTe. Appl Phys Lett 79:2728–2730. https://doi.org/10.1063/1.1412588

    Article  ADS  Google Scholar 

  10. Schlesinger TE, Toney JE, Yoon H, Lee EY, Brunett BA, Franks L, James RB (2001) Cadmium zinc telluride and its use as a nuclear radiation detector material. Mater Sci Eng R Rep 32:103–189. https://doi.org/10.1016/S0927-796X(01)00027-4

    Article  Google Scholar 

  11. Liu K, Kang H-S, Kim T-K, Zhang X-C (2002) Study of ZnCdTe crystals as terahertz wave emitters and detectors. Appl Phys Lett 81:4115–4117. https://doi.org/10.1063/1.1524696

    Article  ADS  Google Scholar 

  12. Gupta A, Parikh V, Compaan AD (2006) High efficiency ultra-thin sputtered CdTe solar cells. Sol Energy Mater Sol Cells 90:2263–2271. https://doi.org/10.1016/j.solmat.2006.02.029

    Article  Google Scholar 

  13. Melnikov AA (1999) CdZnTe radiation detectors. J Cryst Growth 197:663–665. https://doi.org/10.1016/S0022-0248(98)00967-1

    Article  ADS  Google Scholar 

  14. Li S, Jiang Y, Wu D, Wang B, Li J, Zhang Y, Wang W, Lan X, Zhong H, Chen L (2011) Synthesis and nano-field-effect transistors of p-type Zn0.3Cd0.7Te nanoribbons. Mater Lett 65:1753–1755. https://doi.org/10.1016/j.matlet.2011.03.068

    Article  Google Scholar 

  15. Mandal K, Kang SH, Choi M, Mertiri A, Pabst GW, Noblitt C (2007) Crystal growth and characterization of CdTe and Cd0.9Zn0.1Te for nuclear radiation detectors. MRS Proc 1038:1038-O04–02. https://doi.org/10.1557/PROC-1038-O04-02

    Article  Google Scholar 

  16. Eisen Y, Shor A, Mardor I (1999) CdTe and CdZnTe gamma ray detectors for medical and industrial imaging systems. Nucl Instrum Methods Phys Res, Sect A 428:158–170. https://doi.org/10.1016/S0168-9002(99)00003-0

    Article  ADS  Google Scholar 

  17. Auricchio N, Marchini L, Caroli E, Zappettini A, Abbene L, Honkimaki V (2011) Charge transport properties in CdZnTe detectors grown by the vertical Bridgman technique. J Appl Phys 110:124502. https://doi.org/10.1063/1.3667201

    Article  ADS  Google Scholar 

  18. Ikhmayies SJ (2014) Introduction to II-VI compounds: in “advances in II-VI compounds suitable for solar cell applications”. Signpost publisher

    Google Scholar 

  19. Özgür Ü, Alivov YI, Liu C, Teke A, Reshchikov MA, Doğan S, Avrutin V, Cho S-J, Morkoç H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98. https://doi.org/10.1063/1.1992666

  20. Lide DR (2011) CRC handbook of chemistry and physics. CRC press

    Google Scholar 

  21. Wang Y, Kudo K, Inatomi Y, Ji R, Motegi T (2005) Growth interface of CdZnTe grown from Te solution with THM technique under static magnetic field. J Cryst Growth 284:406–411. https://doi.org/10.1016/j.jcrysgro.2005.02.076

    Article  ADS  Google Scholar 

  22. Sivaraman G (2003) Characterization of cadmium zinc telluride solar cells. USF Tampa Graduate Theses and Dissertations, United States

    Google Scholar 

  23. Bensalah H, Hortelano V, Plaza JL, Martínez O, Crocco J, Zheng Q, Carcelen V, Dieguez E (2012) Characterization of CdZnTe after argon ion beam bombardment. J Alloys Compd 543:233–238. https://doi.org/10.1016/j.jallcom.2012.07.109

    Article  Google Scholar 

  24. Gunshor RL (1991) Strained-layer superlattices: materials science and technology. Elsevier

    Google Scholar 

  25. Furdyna JK (1988) Diluted magnetic semiconductors. J Appl Phys 64:R29–R64. https://doi.org/10.1063/1.341700

    Article  ADS  Google Scholar 

  26. Simmons JH, Potter KS (2000) Optical materials. Elsevier

    Google Scholar 

  27. Singh J (1994) Excitation energy transfer processes in condensed matter. Springer, US

    Book  Google Scholar 

  28. Rakhshani AE (1997) Electrodeposited CdTe—optical properties. J Appl Phys 81:7988–7993. https://doi.org/10.1063/1.365402

    Article  ADS  Google Scholar 

  29. Singh J, Shimakawa K (2003) Advances in amorphous semiconductors. CRC Press

    Book  Google Scholar 

  30. Kozlowski LJ, Montroy JT, Vural K, Kleinhans WE (1998) Ultralow-noise infrared focal plane array status. In: Infrared technology and applications, vol XXIV, pp 162–171

    Chapter  Google Scholar 

  31. Kozlowski LJ (1996) Low-noise capacitive transimpedance amplifier performance versus alternative IR detector interface schemes in submicron CMOS. In: Infrared readout electronics III, pp 2–11

    Chapter  Google Scholar 

  32. Reine MB, Sood AK, Tredwell TJ (1981) Photovoltaic infrared detectors. In: Semiconductors and semimetals. Elsevier

    Google Scholar 

  33. Reine MB (2001) Photovoltaic detectors in MCT. In: Infrared detectors and emitters: materials and devices. Springer US, Boston, MA

    Google Scholar 

  34. Lacklison DE, Capper P (1987) Minority carrier lifetime in doped and undoped p-type Cdx Hg1-xTe. Semicond Sci Technol 2:33–43. https://doi.org/10.1088/0268-1242/2/1/005

    Article  ADS  Google Scholar 

  35. Polla DL, Aggarwal RL, Nelson DA, Shanley JF, Reine MB (1983) Hg vacancy related lifetime in Hg0.68Cd0.32Te by optical modulation spectroscopy. Appl Phys Lett 43:941–943. https://doi.org/10.1063/1.94189

    Article  ADS  Google Scholar 

  36. Lopes VC, Syllaios AJ, Chen MC (1993) Minority carrier lifetime in mercury cadmium telluride. Semicond Sci Technol 8:824–841. https://doi.org/10.1088/0268-1242/8/6s/005

    Article  ADS  Google Scholar 

  37. Tennant WE, Lee D, Zandian M, Piquette E, Carmody M (2008) MBE HgCdTe technology: a very general solution to IR detection, described by “rule 07”, a very convenient heuristic. J Electron Mater 37:1406–1410. https://doi.org/10.1007/s11664-008-0426-3

    Article  ADS  Google Scholar 

  38. Tennant WE (2010) “Rule 07” revisited: still a good heuristic predictor of p/n HgCdTe photodiode performance? J Electron Mater 39:1030–1035. https://doi.org/10.1007/s11664-010-1084-9

    Article  ADS  Google Scholar 

  39. Nisoli M (2016) Semiconductor photonics. Principles and applications. Societ’a Editrice Esculapio. Italy

    Google Scholar 

  40. Kinch MA (2007) Fundamentals of infrared detector materials. SPIE press

    Book  Google Scholar 

  41. Wong JY (1980) Effect of trap tunneling on the performance of long-wavelength hg<inf>1-x</inf>cd<inf>x</inf>Te photodiodes. IEEE Trans Electron Devices 27:48–57. https://doi.org/10.1109/T-ED.1980.19818

    Article  ADS  Google Scholar 

  42. Anderson WW, Hoffman HJ (1982) Field ionization of deep levels in semiconductors with applications to Hg1−xCdxTe p-n junctions. J Appl Phys 53:9130–9145. https://doi.org/10.1063/1.330425

    Article  ADS  Google Scholar 

  43. Sah CT (1961) Electronic processes and excess currents in gold-doped narrow silicon junctions. Phys Rev 123:1594–1612. https://doi.org/10.1103/PhysRev.123.1594

    Article  ADS  Google Scholar 

  44. DeWames RE, Pasko JG, Yao ES, Vanderwyck AHB, Williams GM (1988) Dark current generation mechanisms and spectral noise current in long-wavelength infrared photodiodes. J Vac Sci Technol A 6:2655–2663. https://doi.org/10.1116/1.575526

    Article  Google Scholar 

  45. Nemirovsky Y, Rosenfeld D, Adar R, Kornfeld A (1989) Tunneling and dark currents in HgCdTe photodiodes. J Vac Sci Technol A 7:528–535. https://doi.org/10.1116/1.576215

    Article  Google Scholar 

  46. Rosenfeld D, Bahir G (1992) A model for the trap-assisted tunneling mechanism in diffused n-p and implanted n/sup +/−p HgCdTe photodiodes. IEEE Transactions on Electron Devices. 39:1638–1645. https://doi.org/10.1109/16.141229

    Article  ADS  Google Scholar 

  47. Anderson WW (1980) Absorption constant of Pb1−xSnxTe and Hg1−xCdxTe alloys. Infrared Phys 20:363–372. https://doi.org/10.1016/0020-0891(80)90053-6

    Article  ADS  Google Scholar 

  48. Carcelén V, Hidalgo P, Rodriguez-Fernández J, Dieguez E (2010) Growth of bi doped cadmium zinc telluride single crystals by Bridgman oscillation method and its structural, optical, and electrical analyses. J Appl Phys 107:93501

    Article  Google Scholar 

  49. Yang G, Jie W, Li Q, Wang T, Li G, Hua H (2005) Effects of in doping on the properties of CdZnTe single crystals. J Cryst Growth 283:431–437

    Article  ADS  Google Scholar 

  50. Foschini L (2009): Notes on the data analysis in high-energy astrophysicsar Xiv preprint ar Xiv: 0910.2156, Cornell University Library, Itaca, New York

    Google Scholar 

  51. Franc J, Höschl P, Belas E, Grill R, Hldek P, Moravec P, Bok J (1999) CdTe and CdZnTe crystals for room temperature gamma-ray detectors. Nucl Instrum Methods Phys Res, Sect A 434:146–151

    Article  ADS  Google Scholar 

  52. Rybka AV, Davydov LN, Shlyakhov IN, Kutny VE, Prokhoretz IM, Kutny DV, Orobinsky AN (2004) Gamma-radiation dosimetry with semiconductor CdTe and CdZnTe detectors. Nucl Instrum Methods Phys Res, Sect A 531:147–156

    Article  ADS  Google Scholar 

  53. Shkir M, Ganesh V, AlFaify S, Black A, Dieguez E, Maurya KK (2018) Large size crystal growth, photoluminescence, crystal excellence, and hardness properties of in-doped cadmium zinc telluride. Cryst Growth Des 18:2046–2054

    Article  Google Scholar 

  54. del Sordo S, Abbene L, Caroli E, Mancini AM, Zappettini A, Ubertini P (2009) Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors 9:3491–3526

    Article  ADS  Google Scholar 

  55. Owens A, Peacock A (2004) Compound semiconductor radiation detectors. Nucl Instrum Methods Phys Res, Sect A 531:18–37

    Article  ADS  Google Scholar 

  56. Szeles C, Soldner SA, Vydrin S, Graves J, Bale DS (2008) CdZnTe semiconductor detectors for spectroscopic x-ray imaging. IEEE Trans Nucl Sci 55:572–582

    Article  ADS  Google Scholar 

  57. Vadawale SV, Sreekumar P, Acharya YB, Shanmugam M, Banerjee D, Goswami JN, Bhandari N, Umapathy CN, Sharma MR, Tyagi A et al (2014) Hard X-ray continuum from lunar surface: results from high energy X-ray spectrometer (HEX) onboard Chandrayaan-1. Adv Space Res 54:2041–2049

    Article  ADS  Google Scholar 

  58. Nemirovsky Y, Ruzin A, Asa G, Gorelik J (1996) Study of the charge collection efficiency of CdZnTe radiation detectors. J Electron Mater 25:1221–1231. https://doi.org/10.1007/BF02655012

    Article  ADS  Google Scholar 

  59. Cho HY, Lee JH, Kwon YK, Moon JY, Lee CS (2011) Measurement of the drift mobilities and the mobility-lifetime products of charge carriers in a CdZnTe crystal by using a transient pulse technique. J Instrum 6:C01025–C01025. https://doi.org/10.1088/1748-0221/6/01/c01025

    Article  Google Scholar 

  60. Prías-Barragán JJ, Tirado-Mejía L, Ariza-Calderón H, Baños L, Perez-Bueno JJ, Rodríguez ME (2006) Band gap energy determination by photoacoustic absorption and optical analysis of Cd1−xZnxTe for low zinc concentrations. J Cryst Growth 286:279–283. https://doi.org/10.1016/j.jcrysgro.2005.09.022

    Article  ADS  Google Scholar 

  61. Rodriguez ME, Alvarado-Gil JJ, Delgadillo I, Zelaya O, Vargas H, Sánchez-Sinencio F, Tufiño-Velázquez M, Baños L (1996) On the Thermal and Structural Properties of Cd1- xZnxTe in the Range 0<< 0.3. Phys Status Solidi A 158:67–72

    Article  ADS  Google Scholar 

  62. Reno JL, Jones ED (1992) Determination of the dependence of the band-gap energy on composition for Cd 1- x Zn x Te. Phys Rev B 45:1440

    Article  ADS  Google Scholar 

  63. Stolyarova S, Edelman F, Chack A, Berner A, Werner P, Zakharov N, Vytrykhivsky M, Beserman R, Weil R, Nemirovsky Y (2008) Structure of CdZnTe films on glass. J Phys D Appl Phys 41:65402

    Article  Google Scholar 

  64. Toney JE, Schlesinger TE, James RB (1998) Modeling and simulation of uniformity effects in Cd/sub 1-x/Zn/sub x/Te gamma-ray spectrometers. IEEE Trans Nucl Sci 45:105–113. https://doi.org/10.1109/23.659560

    Article  ADS  Google Scholar 

  65. Fiederle M, Feltgen T, Meinhardt J, Rogalla M, Benz KW (1999) State of the art of (Cd, Zn) Te as gamma detector. J Cryst Growth 197:635–640

    Article  ADS  Google Scholar 

  66. Bueno JJP, Rodrguez ME, Zelaya-Angel O, Baquero R, Gonzalez-Hernández J, Baños L, Fitzpatrick BJ (2000) Growth and characterization of Cd1- xZnxTe crystals with high Zn concentrations. J Cryst Growth 209:701–708

    Article  ADS  Google Scholar 

  67. Kang S, Jung B, Noh S, Cho C, Yoon I, Park J (2012) Feasibility study of direct-conversion x-ray detection using cadmium zinc telluride films. J Instrum 7:C01010

    Article  Google Scholar 

  68. Niraula M, Yasuda K, Namba S, Kondo T, Muramatsu S, Wajima Y, Yamashita H, Agata Y (2013) MOVPE growth of thick single crystal CdZnTe epitaxial layers on Si substrates for nuclear radiation detector development. IEEE Trans Nucl Sci 60:2859–2863

    Article  ADS  Google Scholar 

  69. Sellin PJ (2006) Thick film compound semiconductors for X-ray imaging applications. Nucl Instrum Methods Phys Res, Sect A 563:1–8

    Article  ADS  Google Scholar 

  70. Takahashi J, Mochizuki K, Hitomi K, Shoji T (2004) Growth of Cd1- xZnxTe (x~ 0.04) films by hot-wall method and its evaluation. J Cryst Growth 269:419–424

    Article  ADS  Google Scholar 

  71. Kim K, Cho S, Seo J, Won J, Hong J, Kim S (2008) Type conversion of polycrystalline CdZnTe thick films by multiple compensation. Nucl Instrum Methods Phys Res, Sect A 584:191–195

    Article  ADS  Google Scholar 

  72. Tokuda S, Kishihara H, Adachi S, Sato T (2004) Preparation and characterization of polycrystalline CdZnTe films for large-area, high-sensitivity X-ray detectors. J Mater Sci Mater Electron 15:1–8

    Article  Google Scholar 

  73. Won JH, Kim KH, Suh JH, Cho SH, Cho PK, Hong JK, Kim SU (2008) The X-ray sensitivity of semi-insulating polycrystalline CdZnTe thick films. Nucl Instrum Methods Phys Res, Sect A 591:206–208

    Article  ADS  Google Scholar 

  74. Xu L, Jie W, Fu X, Bolotnikov AE, James RB, Feng T, Zha G, Wang T, Xu Y, Zaman Y (2015) Axial distribution of deep-level defects in as-grown CdZnTe: in ingots and their effects on the material′ s electrical properties. J Cryst Growth 409:71–74

    Article  ADS  Google Scholar 

  75. Reine MB (2004) Fundamental properties of mercury cadmium telluride. Encyclopedia of Modern Optics/Academic Press, London

    Google Scholar 

  76. Rogalski A (2005) HgCdTe infrared detector material: history, status and outlook. Rep Prog Phys 68:2267–2336. https://doi.org/10.1088/0034-4885/68/10/r01

    Article  ADS  Google Scholar 

  77. Rogalski A (2000) Infrared detectors at the beginning of the next millennium. Sens materials 12:233–288

    Google Scholar 

  78. Ruzgar S, Caglar Y, Polat O, Sobola D, Caglar M (2020) The tuning of electrical performance of Au/(CuO:La)/n-Si photodiode with La doping. Surf Interfaces 21:100750. https://doi.org/10.1016/j.surfin.2020.100750

    Article  Google Scholar 

  79. Kim J, Choi J-H, Chae H, Kim H (2014) Effect of indium doping on low-voltage ZnO nanocrystal field-effect transistors with ion-gel gate dielectric. Jpn J Appl Phys 53:71101. https://doi.org/10.7567/jjap.53.071101

    Article  Google Scholar 

  80. Lee JH, Jang BR, Lee JY, Kim HS, Jang NW, Kong BH, Cho HK, Bae KR, Lee WJ, Yun Y (2011) Effect of indium mole fraction on the diode characteristics of ZnO:in/p-Si (111) heterojunctions. Jpn J Appl Phys 50:31101. https://doi.org/10.1143/jjap.50.031101

    Article  Google Scholar 

  81. Bansal S, Jain P, Gupta N, Singh AK, Kumar N, Kumar S, Sardana N (2018) A highly efficient bilayer graphene-HgCdTe heterojunction based p+−n photodetector for long wavelength infrared (LWIR). In: IEEE 13th nanotechnology materials and devices conference (NMDC). IEEE, pp 1–4

    Google Scholar 

  82. Rogalski A (1989) Hg1−xZnxTe as a potential infrared detector material. Prog Quantum 13:299–353. https://doi.org/10.1016/0079-6727(89)90008-6

    Article  ADS  Google Scholar 

  83. Toulouse B, Granger R, Rolland S, Triboulet R (1987) Band gap in Hg1-x Znx Te solid solutions. J Phys 48:247–251. https://doi.org/10.1051/jphys:01987004802024700

    Article  Google Scholar 

  84. Berding MA, Sher A, Chen A-B, Patrick R (1990) Vacancies and surface segregation in HgCdTe and HgZnTe. Semicond Sci Technol 5:S86–S89. https://doi.org/10.1088/0268-1242/5/3s/019

    Article  Google Scholar 

  85. Ravid A, Sher A, Zussman A (1990) Photoluminescence study of HgZnTe alloys. J Appl Phys 68:3592–3597. https://doi.org/10.1063/1.346319

    Article  ADS  Google Scholar 

  86. Granger R, Lasbley A, Rolland S, Pelletier CM, Triboulet R (1988) Carrier concentration and transport in Hg1−xZnxTe for x near 0.15. J Cryst Growth 86:682–688. https://doi.org/10.1016/0022-0248(90)90795-M

    Article  ADS  Google Scholar 

  87. Baars J, Sorger F (1972) Reststrahlen spectra of HgTe and cdx Hg1-xTe. Solid State Commun 10:875–878. https://doi.org/10.1016/0038-1098(72)90211-6

    Article  ADS  Google Scholar 

  88. Nintz G (1982) in Landolt-Börstein numerical data. Springer, Verlag Berlin

    Google Scholar 

  89. Granger R, Pelletier CM (1992) Electron mobility evaluation in Hg1−xCdxTe and Hg1−xZnxTe with two-optical-mode dispersion. J Cryst Growth 117:203–207. https://doi.org/10.1016/0022-0248(92)90745-5

    Article  ADS  Google Scholar 

  90. Patterson JD, Gobba WA, Lehoczky SL (1992) Electron mobility in n-type Hg1−xCdxTe and Hg1−xZnx Te alloys. J Mater Res 7:2211–2218. https://doi.org/10.1557/JMR.1992.2211

    Article  ADS  Google Scholar 

  91. Granger R, Pelletier CM (1994) A prediction of the electron mobility in medium gap HgCdTe and HgZnTe solid solutions. J Cryst Growth 138:486–492. https://doi.org/10.1016/0022-0248(94)90855-9

    Article  ADS  Google Scholar 

  92. Sivananthan S, Chu X, Boukerche M, Faurie JP (1985) Growth of Hg1−xZnxTe by molecular beam epitaxy on a GaAs (100) substrate. Appl Phys Lett 47:1291–1293. https://doi.org/10.1063/1.96308

    Article  ADS  Google Scholar 

  93. Rolland S, Lasbley A, Seyni A, Granger R, Triboulet R (1989) Electrical characterization of as-grown, annealed and indium-doped Hg1-xZnxTe for x near 0.15. Revue de Physique Appliquée 24:795–802. https://doi.org/10.1051/rphysap:01989002408079500

    Article  Google Scholar 

  94. Granger R, Lasbley A, Seyni A, Rolland S, Triboulet R (1990) Study of p-to-n-type conversion in bulk Hg1-xZnxTe near x = 0.15. J Cryst Growth 101:241–245. https://doi.org/10.1016/0022-0248(90)90974-P

    Article  ADS  Google Scholar 

  95. Seyni A, Granger R, Triboulet R, Rolland S, Lasbley A (1991) Acceptor level in narrow gap Hg1−xZnx Te. Phys Status Solidi A 128:K27–K32. https://doi.org/10.1002/pssa.2211280135

    Article  ADS  Google Scholar 

  96. Granger R, Pobla C, Rolland S, Triboulet R (1990) Interdiffusion coefficient in Hg1-xZnxTe solid solutions. J Cryst Growth 101:261–265. https://doi.org/10.1016/0022-0248(90)90978-T

    Article  ADS  Google Scholar 

  97. Rolland S, Granger R, Triboulet R (1992) P-to-n conversion in Hg1−xZnxTe by ion beam milling effect. J Cryst Growth 117:208–212. https://doi.org/10.1016/0022-0248(92)90746-6

    Article  ADS  Google Scholar 

  98. Granger R, Triboulet R, Rolland SR (1996) Bond stability and electronic properties of Hg1-xZnxTe solid solutions. In: Longshore RE, Baars JW (eds) Infrared detectors for remote sensing: physics, materials, and devices. SPIE, pp 14–28

    Chapter  Google Scholar 

  99. Brus L (1991) Quantum crystallites and nonlinear optics. Applied Physics A 53:465–474. https://doi.org/10.1007/BF00331535

    Article  Google Scholar 

  100. Colvin VL, Schlamp MC, Alivisatos AP (1994) Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370:354–357. https://doi.org/10.1038/370354a0

    Article  ADS  Google Scholar 

  101. Dabbousi BO, Bawendi MG, Onitsuka O, Rubner MF (1995) Electroluminescence from CdSe quantum-dot/polymer composites. Appl Phys Lett 66:1316–1318. https://doi.org/10.1063/1.113227

    Article  ADS  Google Scholar 

  102. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937. https://doi.org/10.1126/science.271.5251.933

    Article  ADS  Google Scholar 

  103. Weller H, Vossmeyer T, Eychmüller A, Mews A, Katsikas L, Reck G (1994) Nanocrystals of II-VI semiconductor materials. MRS Proc 358:213. https://doi.org/10.1557/PROC-358-213

    Article  Google Scholar 

  104. Malcıoğlu OB, Raty J-Y (2013) Dynamic effect of solvation on the optical properties of a CdTe nanocrystal. Adv Opt Mater 1:239–243. https://doi.org/10.1002/adom.201200037

    Article  Google Scholar 

  105. Schmitt-Rink S, Miller DAB, Chemla DS (1987) Theory of the linear and nonlinear optical properties of semiconductor microcrystallites. Phys Rev B 35:8113–8125. https://doi.org/10.1103/PhysRevB.35.8113

    Article  ADS  Google Scholar 

  106. Vossmeyer T, Katsikas L, Giersig M, Popovic IG, Diesner K, Chemseddine A, Eychmueller A, Weller H (1994) CdS nanoclusters: synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift. J Phys Chem 98:7665–7673. https://doi.org/10.1021/j100082a044

    Article  Google Scholar 

  107. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715. https://doi.org/10.1021/ja00072a025

    Article  Google Scholar 

  108. Murray CB, Kagan CR, Bawendi MG (1995) Self-organization of CdSe Nanocrystallites into three-dimensional quantum dot Superlattices. Science 270:1335–1338. https://doi.org/10.1126/science.270.5240.1335

    Article  ADS  Google Scholar 

  109. Bailey RE, Nie S (2003) Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J Am Chem Soc 125:7100–7106. https://doi.org/10.1021/ja035000o

    Article  Google Scholar 

  110. Xing X, Zhang Q, Huang Z, Lu Z, Zhang J, Li H, Zeng H, Zhai T (2016) Strain driven spectral broadening of Pb ion exchanged CdS nanowires. Small 12:874–881. https://doi.org/10.1002/smll.201503044

    Article  ADS  Google Scholar 

  111. Lu J, Liu H, Zhang X, Sow CH (2018) One-dimensional nanostructures of II–VI ternary alloys: synthesis, optical properties, and applications. Nanoscale 10:17456–17476. https://doi.org/10.1039/C8NR05019H

    Article  Google Scholar 

  112. Junpeng L, Cheng S, Minrui Z, Mathews N, Hongwei L, Gin Seng C, Xinhai Z, Mhaisalkar SG, Chorng Haur S (2011) Facile one-step synthesis of CdSxSe1–x nanobelts with uniform and controllable stoichiometry. J Phys Chem C 115:19538–19545. https://doi.org/10.1021/jp205760r

    Article  Google Scholar 

  113. Takahashi T, Nichols P, Takei K, Ford AC, Jamshidi A, Wu MC, Ning CZ, Javey A (2012) Contact printing of compositionally graded CdSxSe1-xnanowire parallel arrays for tunable photodetectors. Nanotechnology 23:45201. https://doi.org/10.1088/0957-4484/23/4/045201

    Article  Google Scholar 

  114. Lu J, Lim X, Zheng M, Mhaisalkar SG, Sow C-H (2012) Direct laser pruning of CdSxSe1–x nanobelts en route to a multicolored pattern with controlled functionalities. ACS Nano 6:8298–8307. https://doi.org/10.1021/nn303000j

    Article  Google Scholar 

  115. Wu D, Chang Y, Lou Z, Xu T, Xu J, Shi Z, Tian Y, Li X (2017) Controllable synthesis of ternary ZnSxSe1-x nanowires with tunable band-gaps for optoelectronic applications. J Alloys Compd 708:623–627. https://doi.org/10.1016/j.jallcom.2017.03.012

    Article  Google Scholar 

  116. Choi Y-J, Park K-S, Park J-G (2010) Network-bridge structure of CdSxSe1-xnanowire-based optical sensors. Nanotechnology 21:505605. https://doi.org/10.1088/0957-4484/21/50/505605

    Article  Google Scholar 

  117. Guo P, Hu W, Zhang Q, Zhuang X, Zhu X, Zhou H, Shan Z, Xu J, Pan A (2014) Semiconductor alloy nanoribbon lateral heterostructures for high-performance photodetectors. Adv Mater 26:2844–2849. https://doi.org/10.1002/adma.201304967

    Article  Google Scholar 

  118. Ferekides CS, Balasubramanian U, Mamazza R, Viswanathan V, Zhao H, Morel DL (2004) CdTe thin film solar cells: device and technology issues. Sol Energy 77:823–830. https://doi.org/10.1016/j.solener.2004.05.023

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şakir Erkoç .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kurban, M., Malcıoğlu, O.B., Erkoç, Ş. (2023). Ternary II-VI Alloys Promising for Application in Photodetectors. In: Korotcenkov, G. (eds) Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors. Springer, Cham. https://doi.org/10.1007/978-3-031-19531-0_4

Download citation

Publish with us

Policies and ethics