Skip to main content
Log in

A review on emerging materials with focus on BiI3 for room-temperature semiconductor radiation detectors

  • Review
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Purpose

Considerable advances in the fundamental knowledge and applications of radiation science have led to significant progress and development of room-temperature semiconductor radiation detectors (RTSD). The RTSDs technologies are continuously evolving with accelerated research and material engineering in the last decade. Significant scientific and technological advancements have led to development of high-performance radiation detectors with high signal-to-noise ratio (SNR), better sensitivity, faster response and higher-resolution with capability of desired room-temperature operation. This paper is a review on emerging semiconductor radiation detector materials with a deeper insight into the prospective role of Bismuth tri-iodide (BiI3) for room-temperature radiation detectors.

Methods

An introduction of the state of art of most developed semiconductor materials, i.e., cadmium telluride (CdTe), mercury iodide (HgI2), lead iodide (PbI2), etc., and a critical examination of properties, shortcomings and challenges related to their synthesis have been elaborated. Polymer-semiconductor composites with desirable properties and their integration into detector devices is also presented. Subsequent sections discuss the role of BiI3 as an emerging radiation detector material for room-temperature operation with an in-depth discussion on the role of defects in charge transportation and electrode configuration. Furthermore, the current challenges along with the future prospects of these materials for radiation detection to promote continuous innovation and practical applications are also elaborated.

Conclusion

The comprehensive review on latest developments in room-temperature radiation detector materials is expected to help establish a technological roadmap for the synthesis, fabrication and commercialization of novel materials for development of efficient radiation detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.M. Bagher, Advantages of gamma radiation in science and industry. J. Adv. Phys. 3, 97 (2014)

    Article  Google Scholar 

  2. F. Tabatabaei, More about radioactive pollution. Heal. Scope 1, 99 (2012)

    Google Scholar 

  3. A. Vaiserman, A. Koliada, O. Zabuga, Y. Socol, Health impacts of low-dose ionizing radiation: current scientific debates and regulatory issues. Dose-Response 16, 155932581879633 (2018)

    Article  Google Scholar 

  4. K. Kamiya, K. Ozasa, S. Akiba, O. Niwa, K. Kodama, N. Takamura, E.K. Zaharieva, Y. Kimura, R. Wakeford, Long-term effects of radiation exposure on health. Lancet 386, 469 (2015)

    Article  Google Scholar 

  5. W. Lin, Q. Yi-min, H. Bo, Z. Zhi-ming, W. Xian-yong, C. Qing-ru, Z. Guo-lin, Study on the reaction mechanism of naphthalene with oxalyl chloride. Wuhan Univ. J. Nat. Sci. 6, 854 (2001)

    Article  Google Scholar 

  6. A. Kumar, How Careless Dumping Of Radioactive Material In Delhi’s Mayapuri Has Damaged Lives, Youth Ki Aawaj (2016).

  7. L. Wu, Y.M. Qin, B. Huang, Z.M. Zong, X.Y. Wei, Q.R. Chen, G.L. Zou, Study on the reaction mechanism of naphthalene with oxalyl chloride. Wuhan Univ. J. Nat. Sci. 6, 854 (2001)

    Article  Google Scholar 

  8. Why Do We Need Radiation Detectors ?, http://depts.washington.edu/imreslab/from old SITE/pet_intro/nmphysics_fall07/radiation_detection_Fall_2007.pdf.

  9. S. Usman, A. Patil, Radiation detector deadtime and pile up: a review of the status of science. Nucl. Eng. Technol. 50, 1006 (2018)

    Article  Google Scholar 

  10. S.V. Chuklyaev, A.S. Koshelev, Gas-filled ionization chamber and secondary-emission detector for measuring γ-ray dose rate. At. Energy 128, 166 (2020)

    Article  Google Scholar 

  11. F. Zhou, Z. Li, W. Lan, Q. Wang, L. Ding, Z. Jin, Halide perovskite, a potential scintillator for X-ray detection. Small Methods 4, 2000506 (2020)

    Article  Google Scholar 

  12. K. Moshkbar-Bakhshayesh, Constructing energy spectrum of inorganic scintillator based on plastic scintillator by different Kernel functions of SVM learning algorithm and TSC data mapping. J. Instrum. 15, P01028 (2020)

    Article  Google Scholar 

  13. S. D’Auria, Introduction to Radiation, in (2018), pp. 1–11.

  14. Mirion Technologies, Gamma and X-Ray Detection Detector Overview, 2014.

  15. K. Kumar, P. Arun, C.R. Kant, N.C. Mehra, V. Mathew, The effect of cesium metal clusters on the optical properties of cesium iodide thin films. Appl. Phys. A Mater. Sci. Process. 99, 305 (2010)

    Article  ADS  Google Scholar 

  16. K. Kumar, P. Arun, C. Ravi Kant, N.C. Mehra, L. Makinistian, E.A. Albanesi, Effect of residual stress on the optical properties of CsCl thin films. J. Phys. Chem. Solids 71, 163 (2010)

    Article  ADS  Google Scholar 

  17. K. Kumar, P. Arun, C. Ravi Kant, B.K. Juluri, Metal cluster’s effect on the optical properties of cesium bromide thin films. Appl. Phys. Lett. 100, 2010 (2012)

    Article  Google Scholar 

  18. A. Mirzaei, J. Soo, H. Sang, S. Kim, H. Woo, Room temperature hard radiation detectors based on solid state compound semiconductors : an overview. Electron. Mater. Lett. 14, 261 (2018)

    Article  ADS  Google Scholar 

  19. G. Lutz, in Semiconductor Radiation Detectors (Springer, Berlin Heidelberg, Berlin, Heidelberg, 2007)

    Book  MATH  Google Scholar 

  20. P. M. Johns, Materials Development For Nuclear Security: Bismuth Triiodide Room Temperature Semiconductor Detectors, (University of Florida, 2017)

  21. V.M. Zaletin, Development of semiconductor detectors based on wide-gap materials. At. Energy 97, 773 (2004)

    Article  Google Scholar 

  22. S. Abbaspour, B. Mahmoudian, J. Islamian, Cadmium telluride semiconductor detector for improved spatial and energy resolution radioisotopic imaging. World J. Nucl. Med. 16, 101 (2017)

    Article  Google Scholar 

  23. P.M. Johns, J.C. Nino, Room temperature semiconductor detectors for nuclear security. J. Appl. Phys. 126, 040902 (2019)

    Article  ADS  Google Scholar 

  24. B. Zerroumda, H. Ferhati, F. Djeffal, S. Benaggoune, A novel high-performance junctionless 4H-SiC trench MOSFET with improved switching characteristics. Microelectron. Eng. 277, 112011 (2023)

    Article  Google Scholar 

  25. X. Guo, H. Song, Y. Li, P. Wang, S. Liu, Fabrication of 4H–SiC nanoparticles using femtosecond pulsed laser ablation in deionized water. Opt. Mater. (Amst) 132, 112817 (2022)

    Article  Google Scholar 

  26. G.A. Armantrout, S.P. Swierkowski, J.W. Sherohman, J.H. Yee, What can be expected from high-Z semiconductor detectors? IEEE Trans. Nucl. Sci. 24, 121 (1977)

    Article  ADS  Google Scholar 

  27. Z. Kang, Y. Zhang, H. Menkara, B.K. Wagner, C.J. Summers, W. Lawrence, V. Nagarkar, CdTe quantum dots and polymer nanocomposites for X-ray scintillation and imaging. Appl. Phys. Lett. 98, 181914 (2011)

    Article  ADS  Google Scholar 

  28. P.J. Sellin, Recent advances in compound semiconductor radiation detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 513, 332 (2003)

    Article  ADS  Google Scholar 

  29. C. Han, E. Sahle-Demessie, E. Varughese, H. Shi, Polypropylene–MWCNT composite degradation, and release, detection and toxicity of MWCNTs during accelerated environmental aging. Environ. Sci. Nano 6, 1876 (2019)

    Article  Google Scholar 

  30. C.V. More, Z. Alsayed, M.S. Badawi, A.A. Thabet, P.P. Pawar, Polymeric composite materials for radiation shielding: a review. Environ. Chem. Lett. 19, 2057 (2021)

    Article  Google Scholar 

  31. H. Spieler, in " Silicon Detectors " Basic Concepts I, Lectures on Detector Techniques Stanford Linear Accelerator Center September 1998— February, 1999 (1998).

  32. M. O. Schillgalies, Silicon Photodiodes For Gamma Ray Detection, First Sens. 1 (2011).

  33. M. Turala, Silicon tracking detectors—historical overview. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 541, 1 (2005)

    Article  ADS  Google Scholar 

  34. G. Lindström, Radiation damage in silicon detectors. Nucl. Instrum. Methods Phys. Res. Sect. A 512, 30–43 (2003)

    Article  ADS  Google Scholar 

  35. J.G. Webster, M.R. Squillante, J.F. Christian, and G. Entine, Solid state radiation detectors. Wiley Encycl. Electr. Electron. Eng. 1 (2016).

  36. J. Eberth, H.G. Thomas, P.V. Brentano, R.M. Lieder, H.M. Jäger, H. Kämmerfing, M. Berst, D. Gutknecht, R. Henck, Encapsulated Ge detectors: development and first tests. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 369, 135 (1996)

    Article  ADS  Google Scholar 

  37. W. Adam et al., Review of the development of diamond radiation sensors. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 434, 131 (1999)

    Article  ADS  Google Scholar 

  38. K. Su, Z. Ren, J. Zhang, L. Liu, J. Zhang, Y. Zhang, Q. He, C. Zhang, X. Ouyang, Y. Hao, High performance hydrogen/oxygen terminated CVD single crystal diamond radiation detector. Appl. Phys. Lett. 116, 092104 (2020)

    Article  ADS  Google Scholar 

  39. G.R. Fern, P.R. Hobson, A. Metcalfe, D.R. Smith, Performance of four CVD diamond radiation sensors at high temperature. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 958, 162486 (2020)

    Article  Google Scholar 

  40. S. Del Sordo, L. Abbene, E. Caroli, A.M. Mancini, A. Zappettini, P. Ubertini, Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors 9, 3491 (2009)

    Article  ADS  Google Scholar 

  41. Y. Jia, Y. Shen, X. Sun, Z. Shi, K. Jiang, T. Wu, H. Liang, X. Cui, W. Lü, D. Li, Improved performance of SiC radiation detector based on metal–insulator–semiconductor structures. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 997, 165166 (2021)

    Article  Google Scholar 

  42. Y. Eisen, A. Shor, CdTe and CdZnTe room-temperature X-ray and gamma ray detectors and imaging systems. Mater. Res. Soc. Symp. Proc. 487, 129 (1998)

    Article  Google Scholar 

  43. T. Takahashi, S. Watanabe, Recent progress in CdTe and CdZnTe detectors. IEEE Trans. Nucl. Sci. 48, 950 (2001)

    Article  ADS  Google Scholar 

  44. M. Sun, D. Zhao, Z. Yin, F. Yang, W. Jie, T. Wang, Material properties and device performance of CdSe radiation detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 959, 163487 (2020)

    Article  Google Scholar 

  45. S. Wei et al., Single crystal CdSe X-ray detectors with ultra-high sensitivity and low detection limit. ACS Appl. Mater. Interfaces 12, 56126 (2020)

    Article  Google Scholar 

  46. C. Szeles, CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications. Phys. Status Solidi 241, 783 (2004)

    Article  Google Scholar 

  47. U.N. Roy, G.S. Camarda, Y. Cui, R. Gul, A. Hossain, G. Yang, J. Zazvorka, V. Dedic, J. Franc, R.B. James, Role of selenium addition to CdZnTe matrix for room-temperature radiation detector applications. Sci. Rep. 9, 1620 (2019)

    Article  ADS  Google Scholar 

  48. X. Gao, H. Sun, D. Yang, P. Wangyang, C. Zhang, X. Zhu, Large-area CdZnTe thick film based array X-ray detector. Vacuum 183, 109855 (2021)

    Article  ADS  Google Scholar 

  49. A. Datta, J. Fiala, P. Becla, S. Motakef, Stable room-temperature thallium bromide semiconductor radiation detectors. APL Mater. 5, 106109 (2017)

    Article  ADS  Google Scholar 

  50. I.B. Oliveira, F.E. Costa, P.K. Kiyohara, M.M. Hamada, Influence of crystalline surface quality on TlBr radiation detector performance. IEEE Trans. Nucl. Sci. 52, 2058 (2005)

    Article  ADS  Google Scholar 

  51. K. Hitomi, T. Shoji, K. Ishii, Advances in TlBr detector development. J. Cryst. Growth 379, 93 (2013)

    Article  ADS  Google Scholar 

  52. W.R. Willig, Mercury iodide as a gamma spectrometer. Nucl. Instrum. Methods 96, 615 (1971)

    Article  ADS  Google Scholar 

  53. K.-T. Kim, J.-H. Kim, M.-J. Han, S.-S. Lee, Y.-J. Heo, G.-S. Cho, B.-I. Min, H.-L. Cho, K.-B. Kim, S.-K. Park, Characterization of a HgI2 dosimeter for the monitoring system of position detection of radioactive sources in gamma-ray projector. Sci. Adv. Mater. 12, 1502 (2020)

    Article  Google Scholar 

  54. M. Schieber, Fabrication of HgI2 nuclear detectors. Nucl. Instrum. Methods 144, 469 (1977)

    Article  ADS  Google Scholar 

  55. K.-B. Kim, J.-S. Kim, K.-T. Kim, S.-H. Choi, G.-S. Cho, W.-I. Jang, S. Kwon, Stabilization of mercuric iodide using titanium and silicon oxides. J. Korean Phys. Soc. 76, 484 (2020)

    Article  ADS  Google Scholar 

  56. F. Zhuge, P. Luo, T. Zhai, Lead-free perovskites for X-ray detecting. Sci. Bull. 62, 1491 (2017)

    Article  Google Scholar 

  57. K.S. Shah, P. Bennett, M. Klugerman, L. Moy, L. Cirignano, Y. Dmitriyev, M.R. Squillante, F. Olschner, W.W. Moses, in Lead Iodide Optical Detectors for Gamma Ray Spectroscopy, 1996 IEEE Nuclear Science Symposium. Conference Record, Vol. 1 (IEEE, 1996), pp. 21–24

  58. T. Hayashi, M. Kinpara, J.F. Wang, K. Miraura, M. Isshiki, Growth of ultra-high purity PbI2 single crystal: (1) preparation of high purity PbI2. Cryst. Res. Technol. 43, 9 (2008)

    Article  Google Scholar 

  59. T. Saito, T. Iwasaki, S. Kurosawa, A. Yoshikawa, T. Den, BiI3 single crystal for room-temperature gamma ray detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 806, 395 (2016)

    Article  ADS  Google Scholar 

  60. C.C. Stoumpos et al., Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Cryst. Growth Des. 13, 2722 (2013)

    Article  Google Scholar 

  61. H. Li, F. Meng, C.D. Malliakas, Z. Liu, D.Y. Chung, B. Wessels, M.G. Kanatzidis, Mercury chalcohalide semiconductor Hg3 Se2 Br2 for hard radiation detection. Cryst. Growth Des. 16, 6446 (2016)

    Article  Google Scholar 

  62. H. Needleman, Lead poisoning. Annu. Rev. Med. 55, 209 (2004)

    Article  Google Scholar 

  63. P.A. Beckmann, A review of polytypism in lead iodide. Cryst. Res. Technol. 45, 455 (2010)

    Article  Google Scholar 

  64. C.R. Kant, P. Arun, Controlling the photoluminescence of ZnO: Si nano-composite films by heat-treatment. Mater. Res. Bull. 45, 1368 (2010)

    Article  Google Scholar 

  65. X. Zhao et al., Nanosecond X-ray detector based on high resistivity ZnO single crystal semiconductor. Appl. Phys. Lett. 108, 171103 (2016)

    Article  ADS  Google Scholar 

  66. M. Simon, R.A. Ford, A.R. Franklin, S.P. Grabowski, B. Menser, G. Much, A. Nascetti, M. Overdick, M.J. Powell, D.U. Wiechert, in PbO as Direct Conversion X-Ray Detector Material, ed. by M.J. Yaffe M.J. Flynn. Medical Imaging 2004: Physics of Medical Imaging, Vol. 5368 (2004), p. 188.

  67. C.R. Kant, P. Arun, Film thickness controlled photoluminescence emission in ZnO: Si nanocomposite. Opt. Mater. 35, 314 (2012)

    Article  ADS  Google Scholar 

  68. C.R. Kant, P. Arun, White-light emission from annealed ZnO: Si nanocomposite thin films. J. Lumin. 132, 1744 (2012)

    Article  Google Scholar 

  69. J.M. Lobez, T.M. Swager, Radiation detection: resistivity responses in functional Poly(Olefin Sulfone)/carbon nanotube composites. Angew. Chem. Int. Ed. 49, 95 (2010)

    Article  Google Scholar 

  70. N. Kucuk, M. Cakir, N.A. Isitman, Mass attenuation coefficients, effective atomic numbers and effective electron densities for some polymers. Radiat. Prot. Dosim. 153, 127 (2013)

    Article  Google Scholar 

  71. D. Wang, Semiconductor nanocrystal-polymer composites: using polymers for nanocrystal processing. Semicond. Nanocrystal Quantum Dots Synth. Assem. Spectrosc. Appl. 171 (2008)

  72. D. Bloor, K. Donnelly, P.J. Hands, P. Laughlin, D. Lussey, A metal-polymer composite with unusual properties. J. Phys. D Appl. Phys. 38, 2851 (2005)

    Article  ADS  Google Scholar 

  73. A. Barabash, D. Barabash, V. Pertsev, D. Panfilov, Polymer-composite materials for radiation protection. Adv. Intell. Syst. Comput. 983, 352–360 (2019)

    Article  Google Scholar 

  74. A. Upadhyay, S. Karpagam, Movement of new direction from conjugated polymer to semiconductor composite polymer nanofiber. Rev. Chem. Eng. 35, 351 (2019)

    Article  Google Scholar 

  75. S.K. Sharma, R.P. Tandon, V.K. Sachdev, Pre-localized MWCNT network for a low percolation threshold in MWCNT/ABS nanocomposites: experiment and theory. RSC Adv. 4, 60733 (2014)

    Article  ADS  Google Scholar 

  76. A.M.S. Galante, O.L. Galante, L.L. Campos, Study on application of PTFE, FEP and PFA fluoropolymers on radiation dosimetry. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 619, 177 (2010)

    Article  ADS  Google Scholar 

  77. A. Intaniwet, C.A. Mills, M. Shkunov, P.J. Sellin, J.L. Keddie, Heavy metallic oxide nanoparticles for enhanced sensitivity in semiconducting polymer X-ray detectors. Nanotechnology 23, 235502 (2012)

    Article  ADS  Google Scholar 

  78. S. Nambiar, E.K. Osei, J.T.W. Yeow, Polymer nanocomposite-based shielding against diagnostic X-rays. J. Appl. Polym. Sci. 127, 4939 (2013)

    Article  Google Scholar 

  79. A.I. Ayesh, B. Salah, L.A. Al-Sulaiti, Production and characterization of flexible semiconducting polymer-nanoparticle composites for X-ray sensors. Radiat. Phys. Chem. 167, 108233 (2020)

    Article  Google Scholar 

  80. S. Nambiar, J.T.W. Yeow, Polymer-composite materials for radiation protection. ACS Appl. Mater. Interfaces 4, 5717 (2012)

    Article  Google Scholar 

  81. D. Nason, L. Keller, The growth and crystallography of bismuth tri-iodide crystals grown by vapor transport. J. Cryst. Growth 156, 221 (1995)

    Article  ADS  Google Scholar 

  82. Y.N. Dmitriyev, P.R. Bennett, L.J. Cirignano, M.B. Klugerman, K.S. Shah, in Bismuth Iodide Crystals as a Detector Material: Some Optical and Electrical Properties, ed. by R.B. James, R.C. Schirato. Hard X-Ray, Gamma-Ray, and Neutron Detector Physics, Vol. 3768 (1999), p. 521

  83. M. Matsumoto, K. Hitomi, T. Shoji, and Y. Hiratate, in Bismuth iodide (III) crystals for nuclear radiation detectors, IEEE Nuclear Science Symposium and Medical Imaging Conference, Vol. 4 (IEEE, 2002), pp. 2344–2347

  84. A. Garg, M. Tomar, V. Gupta, Synthesis and characterisation of thin films of bismuth triiodide for semiconductor radiation detectors. Conf. Pap. Sci. 2014, 1 (2014)

    Google Scholar 

  85. W. Qiu, G.J. Dudder, X. Zhao, S.S. Perry, J.C. Nino, Interfacial reactivity of Au, Pd, and Pt on BiI3 (001): implications for electrode selection. ACS Appl. Mater. Interfaces 3, 1910 (2011)

    Article  Google Scholar 

  86. P.M. Johns, J.E. Baciak, and J.C. Nino, Enhanced gamma ray sensitivity in bismuth triiodide sensors through volumetric defect control. Appl. Phys. Lett. 109 (2016)

  87. P.M. Johns, S. Sulekar, S. Yeo, J.E. Baciak, M. Bliss, J.C. Nino, Superheating suppresses structural disorder in layered BiI3 semiconductors grown by the Bridgman method. J. Cryst. Growth 433, 153 (2016)

    Article  ADS  Google Scholar 

  88. T.R. Devidas, N.V. Chandra Shekar, C.S. Sundar, P. Chithaiah, Y.A. Sorb, V.S. Bhadram, N. Chandrabhas, K. Pal, U.V. Waghmare, C.N.R. Rao, Pressure-induced structural changes and insulator-metal transition in layered bismuth triiodide, BiI3: a combined experimental and theoretical study. J. Phys. Condens. Matter 26, 275502 (2014)

    Article  Google Scholar 

  89. J. Trotter, T. Zobel, The crystal structure of SbI3 and BiI3. Zeitschrift Für Krist. Cryst. Mater. 123, 81 (1966)

    Google Scholar 

  90. B.J. Curtis, H.R. Brunner, The crystal growth of bismuth iodide. Mater. Res. Bull. 9, 715 (1974)

    Article  Google Scholar 

  91. C.C. Coleman, H. Goldwhite, W. Tikkanen, a review of intercalation in heavy metal iodides. Chem. Mater. 10, 2794 (1998)

    Article  Google Scholar 

  92. M. Schlüter, M.L. Cohen, S.E. Kohn, C.Y. Fong, Electronic structure of BiI3. Phys. Status Solidi 78, 737 (1976)

    Article  Google Scholar 

  93. Y. Kaifu, T. Komatsu, T. Aikami, Optical properties of BiI3 single crystals. Nuovo Cim. B Ser. 11(38), 449 (1977)

    Article  ADS  Google Scholar 

  94. Y. Kaifu, Excitons in layered BiI3 single crystals. J. Lumin. 42, 61 (1988)

    Article  Google Scholar 

  95. T. Karasawa, T. Komatsu, Y. Kaifu, Zone-folding effects on phonons and excitons in polytypic BiI3 single crystals. Solid State Commun. 44, 323 (1982)

    Article  ADS  Google Scholar 

  96. D.G.S.A.A. Kikineshi, Localized states and electron-hole processes in BiI3 crystals. Phys. Stat. Sol. 12, 299 (1972)

    Article  ADS  Google Scholar 

  97. J. Seco, B. Clasie, M. Partridge, Review on the characteristics of radiation detectors for dosimetry and imaging. Phys. Med. Biol. 59, R303 (2014)

    Article  ADS  Google Scholar 

  98. I.F. Kopinets, S.V. Mikulaninets, I.D. Turyanitsa, D.V. Chepur, Effect of oxygen adsorption on the properties of bismuth triiodide single crystals. Sov. Phys. J. 12, 1118 (1972)

    Article  Google Scholar 

  99. B. Wagner, A. Huttner, D. Bischof, A. Engel, G. Witte, J. Heine, Chemical surface reactivity and morphological changes of bismuth triiodide (BiI3) under different environmental conditions. Langmuir 36, 6458 (2020)

    Article  Google Scholar 

  100. N.C. Greenham, X. Peng, A.P. Alivisatos, Charge separation and transport in conjugated polymer/cadmium selenide nanocrystal composites studied by photoluminescence quenching and photoconductivity. Synth. Met. 84, 545 (1997)

    Article  Google Scholar 

  101. T.J. Hajagos, C. Liu, N.J. Cherepy, Q. Pei, High-Z sensitized plastic scintillators: a review. Adv. Mater. 30, 1706956 (2018)

    Article  Google Scholar 

  102. G. Aydın, Simulation study for the energy resolution performances of homogenous calorimeters with scintillator-photodetector combinations. Adv. High Energy Phys. 2018, 1 (2018)

    Article  Google Scholar 

  103. M.F. L’annunziata, in Nuclear Radiation, Its Interaction With Matter And Radioisotope Decay, Handbook of Radioactivity Analysis (Elsevier, 2003), pp. 1–121

  104. M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, K. Olsen, XCOM: Photon Cross Section Database (version 1.5). (National Institute of Standards and Technology, Gaithersburg, 2010), http://physics.nist.gov/xcom. Accessed 27 Oct 2023

  105. N.J. Podraza, W. Qiu, B.B. Hinojosa, M.A. Motyka, S.R. Phillpot, J.E. Baciak, S. Trolier-McKinstry, J.C. Nino, Band gap and structure of single crystal BiI3: resolving discrepancies in literature. J. Appl. Phys. 114, 033110 (2013)

    Article  ADS  Google Scholar 

  106. R. Minder, G. Ottaviani, C. Canali, Charge transport in layer semiconductors. J. Phys. Chem. Solids 37, 417 (1976)

    Article  ADS  Google Scholar 

  107. Lovkush, C. Ravi Kant, P. Arun, Tunability of surface plasmon resonance peaks in CsI: Ag films by growth conditions. Plasmonics 15, 735 (2020)

    Article  Google Scholar 

  108. L. Fornaro, I. Aguiar, A. Noguera, M. Perez, M. Rodriguez, Improvements on bismuth tri-iodide platelets for room temperature X-ray detection, In 2006 IEEE Nuclear Science Symposium Conference Record (IEEE, 2006), pp. 3616–3621

  109. A. T. Lintereur, W. Qiu, J. C. Nino, and J. E. Baciak, in Iodine Based Compound Semiconductors for Room Temperature Gamma-Ray Spectroscopy, ed. by C.S. Halvorson, D. Lehrfeld, T.T. Saito.Optics and Photonics in Global Homeland Security IV, Vol. 6945 (2008), p. 694503

  110. K. Oh, M.-S. Yun, S. Cho, M. Kim, Y. Kim, Y. Kim, J.-U. Sin, S. Nam, Laminate structure detectors for low dark current with photoconductors in digital X-ray imaging. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 607, 158 (2009)

    Article  ADS  Google Scholar 

  111. M. Ikeda, T. Oka, K. Mori, and M. Atsuta, Study of dark current blocking layer for BiI/Sub3/X-Ray detector film, In IEEE Symposium Conference Record Nuclear Science 2004., Vol. 7 (IEEE, 2004), pp. 4520–4523.

  112. L. Fornaro, A. Cuna, A. Noguera, M. Perez, L. Mussio, Growth of bismuth tri-iodide platelets for room temperature X-ray detection. IEEE Trans. Nucl. Sci. 51, 2461 (2004)

    Article  ADS  Google Scholar 

  113. I. Aguiar, S. Kröger, L. Fornaro, Bismuth tri-iodide polycrystalline films for X-ray direct and digital imagers. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 610, 332 (2009).

  114. L. F. Ivana Aguiar, Alvaro Olivera, Heinkel Bentos Pereira, in Development of a novel Ionizing radiation detector based in hydrothermally synthesized BiI3 Nanostructures, XIV Brazil MRS Meeting (2015), pp. 1–2

  115. N.S. Edwards and D. S. McGregor, in Charge collection efficiency mapping of a frisch-collared BiI3 device, In 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (IEEE, 2014), pp. 1–4

  116. S.S. Gokhale, H. Han, J.E. Baciak, J.C. Nino, K.A. Jordan, Growth, fabrication, and testing of bismuth tri-iodide semiconductor radiation detectors. Radiat. Meas. 74, 47 (2015)

    Article  Google Scholar 

  117. H. Han, M. Hong, S.S. Gokhale, S.B. Sinnott, K. Jordan, J.E. Baciak, J.C. Nino, Defect engineering of BiI3 single crystals: enhanced electrical and radiation performance for room temperature gamma-ray detection. J. Phys. Chem. C 118, 3244 (2014)

    Article  Google Scholar 

  118. A.T. Lintereur, W. Qiu, J.C. Nino, J. Baciak, Characterization of bismuth tri-iodide single crystals for wide band-gap semiconductor radiation detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip 652, 166 (2011)

    Article  ADS  Google Scholar 

  119. S.S. Gokhale, H.S. Han, O. Pelaez, J.E. Baciak, J.C. Nino, K.A. Jordan, Fabrication and testing of antimony doped bismuth tri-iodide semiconductor gamma-ray detectors. Radiat. Meas. 91, 1 (2016)

    Article  Google Scholar 

  120. H. Sun, X. Zhu, P. Wangyang, X. Gao, S. Zhu, B. Zhao, Preparation and characterization of free-standing—BiI3 single-crystal flakes for X-ray detection application. J. Mater. Sci. Mater. Electron. 29, 20003 (2018)

    Article  Google Scholar 

  121. P. Praveenkumar, G.D. Venkatasubbu, P. Thangadurai, T. Prakash, Nanocrystalline bismuth oxyiodides thick films for X-ray detector. Mater. Sci. Semicond. Process. 104, 104686 (2019)

    Article  Google Scholar 

  122. Y. Liu, H. Sun, D. Yang, P. Wangyang, X. Gao, Z. Gou, X. Zhu, Electrical properties of X-ray detector based on bismuth Tri-iodide single crystal with electrode configuration considering. Mater. Res. Express 6, 055902 (2019)

    Article  ADS  Google Scholar 

  123. R. Chaudhari, A. Garg, K. Singh, M. Tomar, V. Gupta, C. RaviKant, Bismuth tri-iodide-polystyrene composite for x-rays switching applications at room temperature. Radiat. Phys. Chem. 186, 109538 (2021)

    Article  Google Scholar 

  124. C. De Blasi, S. Galassini, C. Manfredotti, G. Micocci, L. Ruggiero, A. Tepore, Trapping levels in PbI2. Solid State Commun. 25, 149 (1978)

    Article  ADS  Google Scholar 

  125. A. Kargar, H. Kim, L. Cirignano, K. Shah, in The effect of guard ring on leakage current and spectroscopic performance of TlBr planar detector, ed. by G. P. Grim and H. B. Barber. Radiation Detectors: Systems and Applications XV, Vol. 9215 (2014), p. 92150E

  126. H.Y. Cho, J.H. Lee, Y.K. Kwon, J.Y. Moon, C.S. Lee, Measurement of the drift mobilities and the mobility-lifetime products of charge carriers in a CdZnTe crystal by using a transient pulse technique. J. Instrum. 6, C01025 (2011)

    Article  Google Scholar 

  127. G. Ariño-Estrada, M. Chmeissani, G. de Lorenzo, M. Kolstein, C. Puigdengoles, J. García, E. Cabruja, Measurement of mobility and lifetime of electrons and holes in a Schottky CdTe diode. J. Instrum. 9, C12032 (2014)

    Article  Google Scholar 

  128. P.J. Sellin, Thick film compound semiconductors for X-ray imaging applications. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 563, 1 (2006)

    Article  ADS  Google Scholar 

  129. W. Koehler, M. Streicher, S. O’Neal, Z. He, A correction factor to the two-bias method for determining mobility-lifetime products in pixelated detectors. IEEE Trans. Nucl. Sci. 63, 1832 (2016)

    Article  ADS  Google Scholar 

  130. H.M. Thirimanne et al., High sensitivity organic inorganic hybrid X-ray detectors with direct transduction and broadband response. Nat. Commun. 9, 2926 (2018)

    Article  ADS  Google Scholar 

  131. R.R. Karthieka, R.N. Begum, T. Prakash, Direct conversion X-ray sensing nature of Bismuth (III) Iodide thick films. Chin. J. Phys. 71, 643 (2021)

    Article  Google Scholar 

  132. L. Mao, Y. Li, L. Yu, X. Li, J. Zhang, Stable and printable direct X-ray detectors based on micropyramid ω-Bi2O3 with low detection limit. IEEE Trans. Electron Devices 68, 3411 (2021)

    Article  ADS  Google Scholar 

  133. M. Thompson, S.L.R. Ellison, R. Wood, Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure Appl. Chem. 74, 835 (2002)

    Article  Google Scholar 

  134. N.J. Cherepy et al., in Performance of Europium-doped strontium iodide, transparent ceramics and bismuth-loaded polymer scintillators, ed. by L.A. Franks, R.B. James, and A. Burger. Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XIII, Vol. 8142 (2011), p. 81420W

  135. A. Salleo, R.J. Kline, D.M. DeLongchamp, M.L. Chabinyc, Microstructural characterization and charge transport in thin films of conjugated polymers. Adv. Mater. 22, 3812 (2010)

    Article  Google Scholar 

  136. R. Chaudhari, C. RaviKant, A review on BiI3 perovskites and composites for direct X-ray detection. Sens. Actuators A Phys. 346, 113863 (2022)

    Article  Google Scholar 

  137. R. Chaudhari, C.R. Kant, A. Garg, Polymer-BiI3 composites for high-performance, room temperature, direct X-ray detectors. MRS Commun. 12, 358–364 (2022)

    Article  ADS  Google Scholar 

  138. R. Chaudhari, C.R. Kant, Defects studies of BiI3-polymer composites with carbon fillers to achieve better charge transportation for direct X-ray detectors. Mater. Sci. Semicond. Process. 163, 107555 (2023)

    Article  Google Scholar 

  139. R. Chaudhari, S. Kumar Sharma, C. Ravi Kant, A. Garg, Investigations on low energy X-ray induced strong radiation-matter interaction phenomena in polymer-BiI3 hybrid materials for room temperature radiation detectors. Mater. Today Proc. 67, 478 (2022)

    Article  Google Scholar 

  140. X. Zheng, W. Zhao, P. Wang, H. Tan, M.I. Saidaminov, S. Tie, L. Chen, Y. Peng, J. Long, W.H. Zhang, Ultrasensitive and stable X-ray detection using zero-dimensional lead-free perovskites. J. Energy Chem. 49, 299 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

RC acknowledges Indira Gandhi Delhi Technical University for Women for IGDTUW Senior Research Fellowship and various infrastructure and facilities for research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chhaya Ravi Kant.

Ethics declarations

Conflict of interest

Authors do not have any conflict of Interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhari, R., Ravi Kant, C., Garg, A. et al. A review on emerging materials with focus on BiI3 for room-temperature semiconductor radiation detectors. Radiat Detect Technol Methods 7, 465–483 (2023). https://doi.org/10.1007/s41605-023-00426-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41605-023-00426-9

Keywords

Navigation