Skip to main content

Fabrication of Nanomaterials

  • Chapter
  • First Online:
Green Nanomaterials as Potential Antimicrobials

Abstract

Nanomaterials have gained prominence in technological advancements that comprise a diverse range of examples exhibiting at least one dimension in the range of 1–100 nm. The rational design of nanomaterials can result in the creation of surfaces with astronomically large surface area. Micro- and nanoscale materials can be created with unique features in the areas of magnetism, electrical conductivity, optical transmission, mechanical strength, and catalysis that are substantially exclusive from their bulk-sized counterparts. Innovative advancements in science and engineering have advanced at a breakneck pace toward the fabrication of nanomaterials, which can exhibit exceptional properties that are distinct from those of bulk materials. Recently, nanofabrication has emerged as a crucial field of study, with applications ranging from increasing material characteristics to precise clinical diagnostics and detection. It also has applications in creating high energy densities that may be used to generate pulse power, developing innovative therapeutic mechanisms, and controlling environmental pollution. Following the continuous progress in the different manufacturing techniques, the production of extremely sensitive nanostructure-based devices has been possible for quite some time now. There are several key nanofabrication techniques that may be used to fabricate nanostructures in this chapter, as well as current breakthroughs in this subject, which are discussed in depth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Parashar, R. Parashar, B. Sharma, A.C. Pandey, Parthenium leaf extract mediated synthesis of silver nanoparticles: a novel approach towards weed utilization (2009)

    Google Scholar 

  2. M. Rai, A. Ingle, Role of nanotechnology in agriculture with special reference to management of insect pests. Appl. Microbiol. Biotechnol. 94, 287–293 (2012)

    Article  CAS  Google Scholar 

  3. K. Renugadevi, V. Aswini, Microwave irradiation assisted synthesis of silver nanoparticle using leaf extract of Baliospermum montanum and evaluation of its antimicrobial, anticancer potential activity (2012)

    Google Scholar 

  4. M.A. Sabri, A. Umer, G.H. Awan, M.F. Hassan, A. Hasnain, Selection of suitable biological method for the synthesis of silver nanoparticles. Nanomaterials Nanotechnol. 6, 29 (2016)

    Article  Google Scholar 

  5. N. Baig, I. Kammakakam, W. Falath, Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges, materials. Advances 2, 1821–1871 (2021)

    Google Scholar 

  6. M. Arruebo, M. Valladares, Á. González-Fernández, Antibody-conjugated nanoparticles for biomedical applications. J. Nanomater. 2009, 439389 (2009)

    Article  Google Scholar 

  7. S. Kumar, P. Bhushan, S. Bhattacharya, Fabrication of nanostructures with bottom-up approach and their utility in diagnostics, therapeutics, and others, in: Environmental, Chemical and Medical Sensors, ed by S. Bhattacharya, A.K. Agarwal, N. Chanda, A. Pandey, A.K. Sen (Springer Singapore, Singapore, 2018), pp. 167–198

    Google Scholar 

  8. H. Hu, L. Onyebueke, A. Abatan, Characterizing and modeling mechanical properties of nanocomposites-review and evaluation. J. Miner. Mater Charact. Eng. 09(04), 45 (2010)

    Google Scholar 

  9. N. Chopra, V.G. Gavalas, L.G. Bachas, B.J. Hinds, L.G. Bachas, Functional one-dimensional nanomaterials: applications in nanoscale biosensors. Anal. Lett. 40, 2067–2096 (2007)

    Article  CAS  Google Scholar 

  10. A. Ciesielski, C.-A. Palma, M. Bonini, P. Samorì, Towards supramolecular engineering of functional nanomaterials: pre-programming multi-component 2D self-assembly at solid-liquid interfaces. Adv. Mater. 22, 3506–3520 (2010)

    Article  CAS  Google Scholar 

  11. M. Pashchanka, R.C. Hoffmann, A. Gurlo, J.J. Schneider, Molecular based, chimie douce approach to 0D and 1D indium oxide nanostructures. Evaluation of their sensing properties towards CO and H2. J. Mater. Chem. 20, 8311–8319 (2010)

    Google Scholar 

  12. H.S. Song, W.J. Zhang, C. Cheng, Y.B. Tang, L.B. Luo, X. Chen, C.Y. Luan, X.M. Meng, J.A. Zapien, N. Wang, C.S. Lee, I. Bello, S.T. Lee, Controllable fabrication of three-dimensional radial ZnO nanowire/silicon microrod hybrid architectures. Cryst. Growth Des. 11, 147–153 (2011)

    Article  CAS  Google Scholar 

  13. S. Kumar, P. Bhushan, S. Bhattacharya, Facile synthesis of Au@Ag–hemin decorated reduced graphene oxide sheets: a novel peroxidase mimetic for ultrasensitive colorimetric detection of hydrogen peroxide and glucose. RSC Adv. 7, 37568–37577 (2017)

    Article  CAS  Google Scholar 

  14. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)

    Article  CAS  Google Scholar 

  15. X. Huang, I.H. El-Sayed, W. Qian, M.A. El-Sayed, Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115–2120 (2006)

    Article  CAS  Google Scholar 

  16. J.S. Kim, E. Kuk, K.N. Yu, J.-H. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y.K. Park, Y.H. Park, C.-Y. Hwang, Y.-K. Kim, Y.-S. Lee, D.H. Jeong, M.-H. Cho, Antimicrobial effects of silver nanoparticles, nanomedicine: nanotechnology. Biol. Med. 3, 95–101 (2007)

    CAS  Google Scholar 

  17. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev. 108, 2064–2110 (2008)

    Google Scholar 

  18. X.Y. Su, P.D. Liu, H. Wu, N. Gu, Enhancement of radiosensitization by metal-based nanoparticles in cancer radiation therapy. Cancer Biol. Med. 11, 86–91 (2014)

    CAS  Google Scholar 

  19. G. Cao, Y. Wang, Nanostructures and nanomaterials. World Scientific (2011)

    Google Scholar 

  20. J. Singh, T. Dutta, K.-H. Kim, M. Rawat, P. Samddar, P. Kumar, ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J. Nanobiotechnol. 16, 84 (2018)

    Article  CAS  Google Scholar 

  21. S. Anniebell, C.B.S. Gopinath, Polymer conjugated gold nanoparticles in biomedical applications. Curr. Med. Chem. 25, 1433–1445 (2018)

    Article  CAS  Google Scholar 

  22. S. Ramanathan, S.C. Gopinath, Potentials in synthesizing nanostructured silver particles. 23, 4345–4357 (2017)

    Google Scholar 

  23. A.C. Jones, M.L. Hitchman, Chemical vapour deposition: precursors, processes and applications, (Royal society of chemistry, 2009)

    Google Scholar 

  24. K.A. Shah, B.A. Tali, Synthesis of carbon nanotubes by catalytic chemical vapour deposition: a review on carbon sources, catalysts and substrates. Mater. Sci. Semicond. Process. 41, 67–82 (2016)

    Article  CAS  Google Scholar 

  25. H. Ago, Frontiers of Graphene and Carbon Nanotubes (Springer, Japan, Tokyo, 2015)

    Google Scholar 

  26. P. Machac, S. Cichon, L. Lapcak, L. Fekete, Graphene prepared by chemical vapour deposition process. Graphene Technol. 5, 9–17 (2020)

    Article  Google Scholar 

  27. Q. Wu, W. Wongwiriyapan, J.-H. Park, S. Park, S.J. Jung, T. Jeong, S. Lee, Y.H. Lee, Y.J. Song, In situ chemical vapor deposition of graphene and hexagonal boron nitride heterostructures. Curr. Appl. Phys. 16, 1175–1191 (2016)

    Article  Google Scholar 

  28. T. Cele, Preparation of nanoparticles, in Engineered Nanomaterials-Health and Safety, (IntechOpen London, UK, 2020)

    Google Scholar 

  29. S. Anu Mary Ealia, M.P. Saravanakumar, A review on the classification, characterisation, synthesis of nanoparticles and their application, in IOP Conference Series: Materials Science and Engineering, vol. 263 (2017), p. 032019

    Google Scholar 

  30. S. Horikoshi, N. Serpone, Introduction to nanoparticles, in Microwaves in Nanoparticle Synthesis: Fundamentals and Applications (2013), pp. 1–24

    Google Scholar 

  31. U. Riaz, S.M. Ashraf, A. Madan, Effect of microwave irradiation time and temperature on the spectroscopic and morphological properties of nanostructured poly(carbazole) synthesized within bentonite clay galleries. New J. Chem. 38, 4219–4228 (2014)

    Article  CAS  Google Scholar 

  32. H. Imanieha, S. Ghammamya, M. Mohammadib, Rapid and efficient oxidation of organcic compounds in microvave condition with new phase transfer oxidative agent: CTAMABC (2008)

    Google Scholar 

  33. S. Mohan, T. Behera, B.R. Kumar, Microwave irradiation versus conventional method: synthesis of benzimidazolyl chalcone derivatives. Int. J. ChemTech Res. 2, 1634–1637 (2010)

    Google Scholar 

  34. S. Joseph, B. Mathew, Synthesis of silver nanoparticles by microwave irradiation and investigation of their catalytic activity. Res. J. Recent Sci. 2277, 2502 (2014)

    Google Scholar 

  35. S.C. Gopinath, Nanoparticles in Analytical and Medical Devices, (Elsevier, 2020)

    Google Scholar 

  36. D. Zhang, K. Ye, Y. Yao, F. Liang, T. Qu, W. Ma, B. Yang, Y. Dai, T. Watanabe, Controllable synthesis of carbon nanomaterials by direct current arc discharge from the inner wall of the chamber. Carbon 142, 278–284 (2019)

    Article  CAS  Google Scholar 

  37. C.M. Lieber, C.-C. Chen, Preparation of fullerenes and fullerene-based materials, in Solid State Physics. ed. by H. Ehrenreich, F. Spaepen (Academic Press, 1994), pp.109–148

    Google Scholar 

  38. J.M. Jones, R.P. Malcolm, K.M. Thomas, S.H. Botrell, The anode deposit formed during the carbon-arc evaporation of graphite for the synthesis of fullerenes and carbon nanotubes. Carbon 34, 231–237 (1996)

    Article  CAS  Google Scholar 

  39. F. Liang, M. Tanaka, S. Choi, T. Watanabe, Formation of different arc-anode attachment modes and their effect on temperature fluctuation for carbon nanomaterial production in DC arc discharge. Carbon 117, 100–111 (2017)

    Article  CAS  Google Scholar 

  40. F. Liang, T. Shimizu, M. Tanaka, S. Choi, T. Watanabe, Selective preparation of polyhedral graphite particles and multi-wall carbon nanotubes by a transferred arc under atmospheric pressure. Diam. Relat. Mater. 30, 70–76 (2012)

    Article  CAS  Google Scholar 

  41. N. Li, Z. Wang, K. Zhao, Z. Shi, Z. Gu, S. Xu, Synthesis of single-wall carbon nanohorns by arc-discharge in air and their formation mechanism. Carbon 48, 1580–1585 (2010)

    Article  CAS  Google Scholar 

  42. Z.-S. Wu, W. Ren, L. Gao, J. Zhao, Z. Chen, B. Liu, D. Tang, B. Yu, C. Jiang, H.-M. Cheng, Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 3, 411–417 (2009)

    Article  CAS  Google Scholar 

  43. H.K. Kammler, L. Mädler, S.E. Pratsinis, Flame synthesis of nanoparticles. Chem. Eng. Technol. 24, 583–596 (2001)

    Article  CAS  Google Scholar 

  44. R. D’Amato, M. Falconieri, S. Gagliardi, E. Popovici, E. Serra, G. Terranova, E. Borsella, Synthesis of ceramic nanoparticles by laser pyrolysis: from research to applications. J. Anal. Appl. Pyrol. 104, 461–469 (2013)

    Article  Google Scholar 

  45. A.J.C. Merzhanov, SHS research and development handbook (Russian Academy of Sciences, Russia, 1999)

    Google Scholar 

  46. A. Varma, A.S. Rogachev, A.S. Mukasyan, S. Hwang, Combustion synthesis of advanced materials: principles and applications, in Advances in Chemical Engineering. ed. by J. Wei (Academic Press, 1998), pp.79–226

    Google Scholar 

  47. S.V. Ganachari, N.R. Banapurmath, B. Salimath, J.S. Yaradoddi, A.S. Shettar, A.M. Hunashyal, A. Venkataraman, P. Patil, H. Shoba, G.B. Hiremath, Synthesis techniques for preparation of nanomaterials, in Handbook of Ecomaterials (2017), pp. 83–103

    Google Scholar 

  48. D.R. Baghurst, D.M.P. Mingos, Superheating effects associated with microwave dielectric heating. J. Chem. Soc. Chem. Commun. 674–677 (1992)

    Google Scholar 

  49. D.R. Baghurst, A.M. Chippindale, D.M.P. Mingos, Microwave syntheses for superconducting ceramics. Nature 332, 311–311 (1988)

    Article  CAS  Google Scholar 

  50. B. Vaidhyanathan, M. Ganguli, K.J. Rao, Fast solid state synthesis of metal vanadates and chalcogenides using microwave irradiation. Mater. Res. Bull. 30, 1173–1177 (1995)

    Article  CAS  Google Scholar 

  51. G.L. Messing, S.-C. Zhang, G.V. Jayanthi, Ceramic powder synthesis by spray pyrolysis. J. Am. Ceram. Soc. 76, 2707–2726 (1993)

    Article  CAS  Google Scholar 

  52. D. Lindackers, C. Janzen, B. Rellinghaus, E.F. Wassermann, P. Roth, Synthesis of Al2O3 and SnO2 particles by oxidation of metalorganic precursors in premixed H2/O2/Ar low pressure flames. Nanostruct. Mater. 10, 1247–1270 (1998)

    Article  CAS  Google Scholar 

  53. W. Shou, B.K. Mahajan, B. Ludwig, X. Yu, J. Staggs, X. Huang, H. Pan, Low-cost manufacturing of bioresorbable conductors by evaporation–condensation-mediated laser printing and sintering of Zn nanoparticles. Adv. Mater. 29, 1700172 (2017)

    Article  Google Scholar 

  54. M.J. Firdhouse, P. Lalitha, Biosynthesis of silver nanoparticles and its applications. J. Nanotechnol. 2015, 829526 (2015)

    Article  Google Scholar 

  55. L. Mocan, F.A. Tabaran, T. Mocan, T. Pop, O. Mosteanu, L. Agoston-Coldea, C.T. Matea, D. Gonciar, C. Zdrehus, C. Iancu, Laser thermal ablation of multidrug-resistant bacteria using functionalized gold nanoparticles. Int. J. Nanomed. 12, 2255–2263 (2017)

    Article  CAS  Google Scholar 

  56. J.S. Duque, B.M. Madrigal, H. Riascos, Y.P. Avila, Colloidal metal oxide nanoparticles prepared by laser ablation technique and their antibacterial test. Colloids Interfaces 3 (2019)

    Google Scholar 

  57. N. Patelli, A. Migliori, V. Morandi, L. Pasquini, One-step synthesis of metal/oxide nanocomposites by gas phase condensation. Nanomaterials (Basel, Switzerland), 9 (2019)

    Google Scholar 

  58. K.M.M. Abou El-Nour, A.a. Eftaiha, A. Al-Warthan, R.A.A. Ammar, Synthesis and applications of silver nanoparticles. Arab. J. Chem. 3, 135–140 (2010)

    Google Scholar 

  59. K.J.A.M. Tauer, MPI colloids and interfaces. D-14476 Golm, Germany: Emulsions-Part, 1 (2010)

    Google Scholar 

  60. Y. Dong, C. Ying, D. Li-hong, Z. Yu-jiang, Controllable synthesis of CaCO3 micro/nanocrystals with different morphologies in microemulsion. Chem. Res. Chinese Univ. 26, 678–682 (2010)

    Google Scholar 

  61. I. Capek, Radical polymerization of polar unsaturated monomers in direct microemulsion systems. Adv. Coll. Interface. Sci. 80, 85–149 (1999)

    Article  CAS  Google Scholar 

  62. K. Holmberg, D.O. Shah, M.J. Schwuger, Handbook of Applied Surface and Colloid Chemistry (Wiley-Blackwell, 2002)

    Google Scholar 

  63. H. Bönnemann, R.M. Richards, Nanoscopic Metal particles—synthetic methods and potential applications, Eur. J. Inorg. Chem. 2455–2480 (2001)

    Google Scholar 

  64. K. Wongwailikhit, S. Horwongsakul, The preparation of iron (III) oxide nanoparticles using W/O microemulsion. Mater. Lett. 65, 2820–2822 (2011)

    Article  CAS  Google Scholar 

  65. X. Wu, G.Q. Lu, L. Wang, Shell-in-shell TiO2 hollow spheres synthesized by one-pot hydrothermal method for dye-sensitized solar cell application. Energy Environ. Sci. 4, 3565–3572 (2011)

    Article  CAS  Google Scholar 

  66. S. Cao, C. Zhao, T. Han, L. Peng, Hydrothermal synthesis, characterization and gas sensing properties of the WO3 nanofibers. Mater. Lett. 169, 17–20 (2016)

    Article  CAS  Google Scholar 

  67. J. Li, Q. Wu, J. Wu, Handbook of nanoparticles (2015)

    Google Scholar 

  68. A. Chen, P. Holt-Hindle, Platinum-based nanostructured materials: synthesis, properties, and applications. Chem. Rev. 110, 3767–3804 (2010)

    Article  CAS  Google Scholar 

  69. L.-Y. Meng, B. Wang, M.-G. Ma, K.-L. Lin, The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials. Mater. Today Chem. 1–2, 63–83 (2016)

    Article  Google Scholar 

  70. Y. Dong, X.-Q. Du, P. Liang, X.-L. Man, One-pot solvothermal method to fabricate 1D-VS4 nanowires as anode materials for lithium ion batteries. Inorg. Chem. Commun. 115, 107883 (2020)

    Article  CAS  Google Scholar 

  71. Y. Jiang, Z. Peng, S. Zhang, F. Li, Z. Liu, J. Zhang, Y. Liu, K. Wang, Facile in-situ Solvothermal Method to synthesize double shell ZnIn2S4 nanosheets/TiO2 hollow nanosphere with enhanced photocatalytic activities. Ceram. Int. 44, 6115–6126 (2018)

    Article  CAS  Google Scholar 

  72. B. Chai, M. Xu, J. Yan, Z. Ren, Remarkably enhanced photocatalytic hydrogen evolution over MoS2 nanosheets loaded on uniform CdS nanospheres. Appl. Surf. Sci. 430, 523–530 (2018)

    Article  CAS  Google Scholar 

  73. L.L. Hench, J.K. West, The sol-gel process. Chem. Rev. 90, 33–72 (1990)

    Google Scholar 

  74. T.K. Tseng, Y.S. Lin, Y.J. Chen, H. Chu, A review of photocatalysts prepared by sol-gel method for VOCs removal. Int. J. Mol. Sci. 11 (2010)

    Google Scholar 

  75. M. Parashar, V.K. Shukla, R. Singh, Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications. J. Mater. Sci.: Mater. Electron. 31, 3729–3749 (2020)

    CAS  Google Scholar 

  76. C. de Coelho Escobar, J.H.Z. dos Santos, Effect of the sol–gel route on the textural characteristics of silica imprinted with Rhodamine B. J. Sep. Sci. 37, 868–875 (2014)

    Google Scholar 

  77. Y. Zhang, Y. Ru, H. Gao, S. Wang, J. Yan, K. Gao, X.-d. Jia, H.-w. Luo, H. Fang, A.-q. Zhang, L.-z. Wang, Sol-gel synthesis and electrochemical performance of NiCo2O4 nanoparticles for supercapacitor applications. J. Electrochem. Sci. Eng. (2019)

    Google Scholar 

  78. M. Jemmali, B. Marzougui, Y.B. Smida, R. Marzouki, M. Triki, Polycrystalline powder synthesis methods, in Crystallization and Applications, (IntechOpen, 2021)

    Google Scholar 

  79. S.C.B. Gopinath, S. Ramanathan, K. Hann Suk, M. Ee Foo, P. Anbu, M.N.A. Uda, Engineered nanostructures to carry the biological ligands, in MATEC Web of Conferences, vol. 150 (2018)

    Google Scholar 

  80. S. Ramanathan, S.C.B. Gopinath, M.K. Md. Arshad, P. Poopalan, Multidimensional (0D-3D) nanostructures for lung cancer biomarker analysis: Comprehensive assessment on current diagnostics. Biosens. Bioelectron. 141, 111434 (2019)

    Google Scholar 

  81. Y. Li, F. Chu, Research on the preparation of silver nanoparticles by chemical reduction method, in Advanced Graphic Communications and Media Technologies, ed by P. Zhao, Y. Ouyang, M. Xu, L. Yang, Y. Ouyang (Springer Singapore, Singapore, 2017), pp. 1109–1114.

    Google Scholar 

  82. A. Khan, A. Rashid, R. Younas, R. Chong, A chemical reduction approach to the synthesis of copper nanoparticles. Int. Nano Lett. 6, 21–26 (2016)

    Article  CAS  Google Scholar 

  83. M.A. Malik, M.Y. Wani, M.A. Hashim, Microemulsion method: a novel route to synthesize organic and inorganic nanomaterials: 1st nano update. Arab. J. Chem. 5, 397–417 (2012)

    Article  CAS  Google Scholar 

  84. L. Rodríguez-Sánchez, M.C. Blanco, M.A. López-Quintela, Electrochemical synthesis of silver nanoparticles. J. Phys. Chem. B 104, 9683–9688 (2000)

    Article  Google Scholar 

  85. S. Ahmed, M. Ahmad, B.L. Swami, S. Ikram, A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J. Adv. Res. 7, 17–28 (2016)

    Article  CAS  Google Scholar 

  86. I.-M. Chung, I. Park, K. Seung-Hyun, M. Thiruvengadam, G. Rajakumar, Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications. Nanoscale Res. Lett. 11, 40 (2016)

    Article  Google Scholar 

  87. L. Marchiol, Synthesis of metal nanoparticles in living plants. Ital. J. Agron. 7, e37-e37 (2012)

    Google Scholar 

  88. P.T. Anastas, J.C. Warner, Principles of green chemistry. Green Chem.: Theory Pract. 29 (1998)

    Google Scholar 

  89. C. Vidya, S. Hiremath, M. Chandraprabha, M.L. Antonyraj, I.V. Gopal, A. Jain, K. Bansal, Green synthesis of ZnO nanoparticles by Calotropis gigantean. Int. J. Curr. Eng. Technol 1, 118–120 (2013)

    Google Scholar 

  90. H.S. Devi, T.D. Singh, Synthesis of copper oxide nanoparticles by a novel method and its application in the degradation of methyl orange, Adv Electron Electr Eng 4, 83–88 (2014)

    Google Scholar 

  91. S. Maensiri, P. Laokul, J. Klinkaewnarong, S. Phokha, V. Promarak, S. Seraphin, Indium oxide (In2O3) nanoparticles using Aloe vera plant extract: synthesis and optical properties. Optoelectron Adv Mater 10, 161–165 (2008)

    Google Scholar 

  92. S. Gunalan, R. Sivaraj, V. Rajendran, Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Progress Nat. Sci.: Mater. Int. 22, 693–700 (2012)

    Article  Google Scholar 

  93. S. Iravani, Green synthesis of metal nanoparticles using plants. Green Chem. 13, 2638–2650 (2011)

    Article  CAS  Google Scholar 

  94. C.L. Keat, A. Aziz, A.M. Eid, N.A. Elmarzugi, Biosynthesis of nanoparticles and silver nanoparticles. Bioresources Bioprocess. 2, 47 (2015)

    Article  Google Scholar 

  95. J. Annamalai, T. Nallamuthu, Green synthesis of silver nanoparticles: characterization and determination of antibacterial potency. Appl. Nanosci. 6, 259–265 (2016)

    Article  CAS  Google Scholar 

  96. K.M. Metz, S.E. Sanders, J.P. Pender, M.R. Dix, D.T. Hinds, S.J. Quinn, A.D. Ward, P. Duffy, R.J. Cullen, P.E. Colavita, Green synthesis of metal nanoparticles via natural extracts: the biogenic nanoparticle corona and its effects on reactivity. ACS Sustain. Chem. Eng. 3, 1610–1617 (2015)

    Article  CAS  Google Scholar 

  97. A. Mubayi, S. Chatterji, P.M. Rai, G.J.A.M.L. Watal, Evidence based green synthesis of nanoparticles 3, 519–525 (2012)

    Google Scholar 

  98. S. Iravani, H. Korbekandi, S.V. Mirmohammadi, B. Zolfaghari, Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9, 385–406 (2014)

    CAS  Google Scholar 

  99. M. Gericke, A. Pinches, Microbial production of gold nanoparticles. Gold Bulletin 39, 22–28 (2006)

    Article  CAS  Google Scholar 

  100. S. Iravani, Bacteria in nanoparticle synthesis: current status and future prospects (2014)

    Google Scholar 

  101. K.N. Thakkar, S.S. Mhatre, R.Y. Parikh, Biological synthesis of metallic nanoparticles, nanomedicine: nanotechnology. Biol. Med. 6, 257–262 (2010)

    CAS  Google Scholar 

  102. Y.-L. Chen, H.-Y. Tuan, C.-W. Tien, W.-H. Lo, H.-C. Liang, Y.-C. Hu, Augmented biosynthesis of cadmium sulfide nanoparticles by genetically engineered Escherichia coli. Biotechnol. Prog. 25, 1260–1266 (2009)

    Article  CAS  Google Scholar 

  103. P. Mohanpuria, N.K. Rana, S.K. Yadav, Biosynthesis of nanoparticles: technological concepts and future applications. J. Nanopart. Res. 10, 507–517 (2008)

    Article  CAS  Google Scholar 

  104. K.B. Narayanan, N. Sakthivel, Synthesis and characterization of nano-gold composite using Cylindrocladium floridanum and its heterogeneous catalysis in the degradation of 4-nitrophenol. J. Hazard. Mater. 189, 519–525 (2011)

    Article  CAS  Google Scholar 

  105. N.L. Pacioni, C.D. Borsarelli, V. Rey, A.V. Veglia, Synthetic routes for the preparation of silver nanoparticles, in Silver Nanoparticle Applications: In the Fabrication and Design of Medical and Biosensing Devices. ed. by E.I. Alarcon, M. Griffith, K.I. Udekwu (Springer International Publishing, Cham, 2015), pp.13–46

    Chapter  Google Scholar 

  106. P. Devaraj, P. Kumari, C. Aarti, A. Renganathan, Synthesis and characterization of silver nanoparticles using Cannonball leaves and their cytotoxic activity against MCF-7 cell line. J. Nanotechnol. 2013, 598328 (2013)

    Article  Google Scholar 

  107. A.M. Yurkov, M. Kemler, D. Begerow, Species accumulation curves and incidence-based species richness estimators to appraise the diversity of cultivable yeasts from beech forest soils. PLoS ONE 6, e23671–e23671 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Haider .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haider, A., Ikram, M., Rafiq, A. (2023). Fabrication of Nanomaterials. In: Green Nanomaterials as Potential Antimicrobials. Springer, Cham. https://doi.org/10.1007/978-3-031-18720-9_2

Download citation

Publish with us

Policies and ethics