Skip to main content

Sulfur-Containing Compounds from Plants

  • Chapter
  • First Online:
Natural Secondary Metabolites

Abstract

Sulfur (S) is an essential nutrient assimilated through the diet and incorporated into organic structures such as amino acids, coenzymes, and other bioactive compounds. Plants’ ability to regulate stress resistance via secondary metabolism has extended the interest in S-containing compounds, driven by their additional properties as bioactive molecules. Among plant families that produce S-compounds, the Brassicaceae, which includes broccoli, cabbage, and cauliflower, and the Liliaceae family, which includes garlic and onion, stand out. In recent years, the research has been focused on S-containing amino acids (mainly methionine and cysteine) and glucosinolates (GSLs) and their hydrolysis products like isothiocyanates but also in other S-containing compounds such as phytoalexins or cysteine sulfoxides. GSLs are becoming more popular because of their specific biological properties, including antioxidant, anti-inflammatory, or antimicrobial, among others. Accordingly, a diet rich in vegetables containing S-containing compounds has been associated with a lower risk of developing cancer, neurological diseases like Alzheimer’s, inflammatory bowel disease, cardiovascular diseases, several skin disorders, and obesity. Hence, S-metabolites can therefore be used as therapeutic and preventative components in functional foods and nutraceuticals, as well as cosmeceutical products. This chapter aims to revise the most important features related to sulfur metabolism and S-containing compounds from plant sources, with emphasis on their involvement in secondary metabolism, natural sources, structural classification, biological functions, and applications in human nutrition and health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

APS:

Adenosine 5′-phosphosulfate

PAPS:

Phospoadenosine 5′-phosphosulfate

PAP:

Adenosine 5′-phosphate

Cys:

Cysteine

Met:

Methionine

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

SAM:

S-adenosylmethionine

SIR:

Sulfite reductase

Cysta:

Cystathionine

Hcy:

Homocysteine

OAS:

O-acetylserine

Glu:

l-glutamate

Gly:

Glycine

AMPS:

Antimicrobial peptides

CRT:

Chloroquine-resistance transporter

γ-EC:

γ-Glutamylcysteine

TAAC:

Paps/chloroplast thylakoid atp/adp carrier

SULTR:

Sulfur transporters

SOT:

Sulfotransferase

Ser:

Serine

SMM:

S-methylmethionine

NA:

Nicotianamine

MBIT:

Methoxybenzyl isothiocyanate

SQDG:

Sulfoquinovosyl diacylglycerol

AITC:

allyl isothiocyanate,

SFN:

Sulforaphane

PEITC:

phenethyl isothiocyanate

MIC-1:

4-[(α-l-Rhamnosyloxy) benzyl] isothiocyanate extracted from Moringa oleifera

7-MSI:

7-methylsulfinylheptyl isothiocyanate

GSL:

Glucosinolates

TSN:

Thiosulfinate

ITC:

Isothiocyanate

6-MITC:

6-(methylsulfinyl)hexyl isothiocyanate

DNCB:

2,4-dinitrochlorobenzene

DSS:

Dextran sulfate sodium

AD:

Alzheimer’s disease

T2D:

Type-2-diabetes

IL:

Interleukin

NF-κB:

Nuclear factor-κB

TNF-α:

Tumor necrosis factor-α

Nrf2:

Nuclear factor erythroid 2

TC:

Total cholesterol

TG:

Triglycerides

TrkB:

Tropomyosin receptor kinase B

LDL-C:

Low-density lipoprotein cholesterol

HDL-C:

High-density lipoprotein cholesterol

References

  • Aarabi F, Naake T, Fernie AR, Hoefgen R (2020) Coordinating sulfur pools under sulfate deprivation. Trends Plant Sci 25(12):1227–1239

    Article  CAS  PubMed  Google Scholar 

  • Abadie C, Tcherkez G (2019) Plant sulphur metabolism is stimulated by photorespiration. Commun Biol 2(1):1–7

    Article  CAS  Google Scholar 

  • Abdalla MA, Mühling KH (2019) Plant-derived sulfur containing natural products produced as a response to biotic and abiotic stresses: a review of their structural diversity and medicinal importance. J Appl Bot Food Qual 92(September):204–215

    CAS  Google Scholar 

  • Abdel-Daim MM, Abushouk AI, Donia T, Alarifi S, Alkahtani S, Aleya L et al (2019) The nephroprotective effects of allicin and ascorbic acid against cisplatin-induced toxicity in rats. Environ Sci Pollut Res 26(13):13502–13509

    Article  CAS  Google Scholar 

  • Agerbirk N, Olsen CE (2012) Glucosinolate structures in evolution. Phytochemistry 77:16–45

    Article  CAS  PubMed  Google Scholar 

  • Ahmed S, Kovinich N (2021) Regulation of phytoalexin biosynthesis for agriculture and human health. Phytochem Rev 20(2):483–505

    Article  CAS  Google Scholar 

  • Alyoussef A (2021) Attenuation of experimentally induced atopic dermatitis in mice by sulforaphane: effect on inflammation and apoptosis. Toxicol Mech Methods 32(3):224–232

    Article  PubMed  Google Scholar 

  • Angelino D, Jeffery E (2014) Glucosinolate hydrolysis and bioavailability of resulting isothiocyanates: Focus on glucoraphanin. J Funct Foods 7(1):67–76

    Article  CAS  Google Scholar 

  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Gzyl J, Chmielowska-Bak J (2013) Homocysteine over-accumulation as the effect of potato leaves exposure to biotic stress. Plant Physiol Biochem 63:177–184

    Article  CAS  PubMed  Google Scholar 

  • Arruda RL, Paz ATS, Bara MTF, Côrtes MV de CB, Filippi MCC de, Conceição EC da (2016) An approach on phytoalexins: function, characterization and biosynthesis in plants of the family Poaceae. Ciência Rural 46:1206–1216

    Article  CAS  Google Scholar 

  • Arzuaga X, Ren N, Stromberg A, Black EP, Arsenescu V, Cassis LA et al (2009) Induction of gene pattern changes associated with dysfunctional lipid metabolism induced by dietary fat and exposure to a persistent organic pollutant. Toxicol Lett 189(2):96–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atazadegan MA, Bagherniya M, Askari G, Tasbandi A, Sahebkar A (2021) The effects of medicinal plants and bioactive natural compounds on homocysteine. Molecules 26(11)

    Google Scholar 

  • Axelsson Annika S, Tubbs E, Mecham B, Chacko S, Nenonen Hannah A, Tang Y, et al (2017) Sulforaphane reduces hepatic glucose production and improves glucose control in patients with type 2 diabetes. Sci Transl Med 9(394):eaah4477

    Google Scholar 

  • Barba FJ, Nikmaram N, Roohinejad S, Khelfa A, Zhu Z, Koubaa M (2016) Bioavailability of glucosinolates and their breakdown products: impact of processing. Front Nutr 3(August):1–12

    Google Scholar 

  • Benavides GA, Squadrito GL, Mills RW, Patel HD, Isbell TS, Patel RP et al (2007) Hydrogen sulfide mediates the vasoactivity of garlic. Proc Natl Acad Sci 104(46):17977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S et al (2018) Heart disease and stroke statistics—2018 update: a report from the American Heart Association. Circulation 137(12):e67–e492

    Article  PubMed  Google Scholar 

  • Boer MP, Meijer RI, Richter EA, Nieuw Amerongen GP, Sipkema P, Poelgeest EM et al (2016) Globular adiponectin controls insulin-mediated vasoreactivity in muscle through AMPKα2. Vasc Pharmacol 78:24–35

    Article  Google Scholar 

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Article  PubMed  Google Scholar 

  • Brosnan J, ME B. (2006) Amino acid assessment workshop. J Nutr 136(6):16365–16405

    Google Scholar 

  • Burel C, Boujard T, Escaffre A-M, Kaushik SJ, Boeuf G, Mol KA, Van Der Geyten SKER (2000) Dietary low-glucosinolate rapeseed meal affects thyroid status and nutrient utilization in rainbow trout (Oncorhynchus mykiss). Br J Nutr 83(6):653–664

    Article  CAS  PubMed  Google Scholar 

  • Butts CT, Zhang X, Kelly JE, Roskamp KW, Unhelkar MH, Freites JA et al (2016) Sequence comparison, molecular modeling, and network analysis predict structural diversity in cysteine proteases from the Cape sundew, Drosera capensis. Comput Struct Biotechnol J 14:271–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caglayan B, Kilic E, Dalay A, Altunay S, Tuzcu M, Erten F et al (2018) Allyl isothiocyanate attenuates oxidative stress and inflammation by modulating Nrf2/HO-1 and NF-κB pathways in traumatic brain injury in mice. Mol Biol Rep 46(1):241–250

    Article  PubMed  Google Scholar 

  • Capaldi FR, Gratão PL, Reis AR, Lima LW, Azevedo RA (2015) Sulfur metabolism and stress defense responses in plants. Trop Plant Biol 8(3–4):60–73

    Article  CAS  Google Scholar 

  • Carpenter EL, Le MN, Miranda CL, Reed RL, Stevens JF, Indra AK, et al (2018) Photoprotective properties of isothiocyanate and nitrile glucosinolate derivatives from meadowfoam (Limnanthes alba) against UVB irradiation in human skin equivalent. Front Pharmacol 9(MAY)

    Google Scholar 

  • Cartea ME, Velasco P (2008) Glucosinolates in Brassica foods: bioavailability in food and significance for human health. Phytochem Rev 7(2):213–229

    Article  CAS  Google Scholar 

  • Charron CS, Sams CE (2004) Glucosinolate content and myrosinase activity in rapid-cycling Brassica oleracea grown in a controlled environment. J Am Soc Hortic Sci 129(3):321–330

    Article  CAS  Google Scholar 

  • Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J et al (2018) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9(6):7204–7218

    Article  PubMed  Google Scholar 

  • Chen Y, Wang Y, Yang M, Guo MY (2019) Allicin inhibited Staphylococcus aureus-induced mastitis by reducing lipid raft stability via LxR alpha in mice. J Agric Food Chem 67(39):10863–10870

    Article  CAS  PubMed  Google Scholar 

  • Chiba M, Ito Y, Nagasawa T (2019) Phenethyl isothiocyanate stimulates glucose uptake through the Akt pathway in C2C12 myotubes. Biosci Biotechnol Biochem 83(7):1319–1328

    Article  CAS  PubMed  Google Scholar 

  • Cohen JH, Kristal AR, Stanford JL (2000) Fruit and vegetable intakes and prostate cancer risk. J Natl Cancer Inst 92(1):61–68

    Article  CAS  PubMed  Google Scholar 

  • Corssac GB, Campos-Carraro C, Hickmann A, da Rosa Araujo AS, Fernandes RO, Belló-Klein A (2018) Sulforaphane effects on oxidative stress parameters in culture of adult cardiomyocytes. Biomed Pharmacother 104(March):165–171

    Article  CAS  PubMed  Google Scholar 

  • Coulombe J, Villeneuve S, Lamy P, Yelle S, Bélec C, Tremblay N (1998) Evaluation of soil and petiole sap nitrate quick tests for broccoli in québec. Acta Hortic 506:147–152

    Google Scholar 

  • Couturier J, Chibani K, Jacquot JP, Rouhier N (2013) Cysteine-based redox regulation and signaling in plants. Front Plant Sci 4(Apr):1–7

    Google Scholar 

  • Cuellar-Núñez ML, Loarca-Piña G, Berhow M, Gonzalez de Mejia E (2020) Glucosinolate-rich hydrolyzed extract from Moringa oleifera leaves decreased the production of TNF-α and IL-1β cytokines and induced ROS and apoptosis in human colon cancer cells. J Funct Foods 75:104270

    Article  Google Scholar 

  • Dinkova-Kostova AT, Kostov RV (2012) Glucosinolates and isothiocyanates in health and disease. Trends Mol Med 18(6):337–347

    Article  CAS  PubMed  Google Scholar 

  • Dubey H, Singh A, Patole AM, Tenpe CR (2017) Antihypertensive effect of allicin in dexamethasone-induced hypertensive rats. Integr Med Res 6(1):60–65

    Article  PubMed  Google Scholar 

  • Elkayam A, Peleg E, Grossman E, Shabtay Z, Sharabi Y (2013) Effects of allicin on cardiovascular risk factors in spontaneously hypertensive rats. Isr Med Assoc J 15(3):170–173

    PubMed  Google Scholar 

  • Engelen-Eigles G, Holden G, Cohen JD, Gardner G (2006) The effect of temperature, photoperiod, and light quality on gluconasturtiin concentration in watercress (Nasturtium officinale R. Br.). J Agric Food Chem 54(2):328–334

    Article  CAS  PubMed  Google Scholar 

  • Feizabad MS (2019) Synthesis of cysteine sulfoxides and related compounds occurring in wild onions. Philipps-Universität Marburg

    Google Scholar 

  • Fernandes RO, De Castro AL, Bonetto JHP, Ortiz VD, Müller DD, Campos-Carraro C et al (2016) Sulforaphane effects on postinfarction cardiac remodeling in rats: Modulation of redox-sensitive prosurvival and proapoptotic proteins. J Nutr Biochem 34:106–117

    Article  CAS  PubMed  Google Scholar 

  • Fike DA, Bradley AS, Rose CV (2015) Rethinking the ancient sulfur cycle. Annu Rev Earth Planet Sci 43:593–622

    Article  CAS  Google Scholar 

  • Fritsch RM, Keusgen M (2006) Occurrence and taxonomic significance of cysteine sulphoxides in the genus Allium L. (Alliaceae). Phytochemistry 67(11):1127–1135

    Article  CAS  PubMed  Google Scholar 

  • Gao A, Cayabyab FS, Chen X, Yang J, Wang L, Peng T et al (2017) Implications of sortilin in lipid metabolism and lipid disorder diseases. DNA Cell Biol 36(12):1050–1061

    Article  CAS  PubMed  Google Scholar 

  • Gigolashvili T, Kopriva S (2014) Transporters in plant sulfur metabolism Vol. 5, Frontiers in Plant Science.

    Google Scholar 

  • Großkinsky DK, van der Graaff E, Roitsch T (2012) Phytoalexin transgenics in crop protection—Fairy tale with a happy end? Plant Sci 195:54–70

    Article  PubMed  Google Scholar 

  • Gwon MH, Yun JM (2021) Phenethyl isothiocyanate improves lipid metabolism and inflammation via mTOR/PPARγ/AMPK signaling in the adipose tissue of obese mice. J Med Food 24(6):666–669

    Article  CAS  PubMed  Google Scholar 

  • Han NR, Moon PD, Ryu KJ, Kim HM, Jeong HJ (2018) Phenethyl isothiocyanate decreases thymic stromal lymphopoietin-induced inflammatory reactions in mast cells. J Food Biochem 42(1)

    Google Scholar 

  • Hanschen FS, Rohn S, Mewis I, Schreiner M, Kroh LW (2012) Influence of the chemical structure on the thermal degradation of the glucosinolates in broccoli sprouts. Food Chem 130(1):1–8

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Bhuyan MHMB, Mahmud JA, Nahar K, Mohsin SM, Parvin K et al (2018) Interaction of sulfur with phytohormones and signaling molecules in conferring abiotic stress tolerance to plants. Plant Signal Behav 13(5):1–5

    Article  Google Scholar 

  • Hirschmann F, Krause F, Papenbrock J (2014) The multi-protein family of sulfotransferases in plants: composition, occurrence, substrate specificity, and functions Vol. 5, Frontiers in Plant Science

    Google Scholar 

  • Holst B, Williamson G (2004) A critical review of the bioavailability of glucosinolates and related compounds. Nat Prod Rep 21(3):425–447

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Wang Y, Cao Y-G, Qi H-P, Li L, Bai B et al (2013) Antiarrhythmic effects and ionic mechanisms of allicin on myocardial injury of diabetic rats induced by streptozotocin. Naunyn Schmiedeberg's Arch Pharmacol 386(8):697–704

    Article  CAS  Google Scholar 

  • Hwang E-S, Hwang E-STND (2015) Impact of cooking method on bioactive compound content and antioxidant capacity of cabbage. Korean J Food Sci Technol 47(2):184–190

    Article  Google Scholar 

  • Ishida M, Hara M, Fukino N, Kakizaki T, Morimitsu Y (2014) Glucosinolate metabolism, functionality and breeding for the improvement of brassicaceae vegetables. Vol. 64, Breeding Science. Japanese Society of Breeding; p. 48–59

    Google Scholar 

  • Jensen CR, Mogensen VO, Mortensen G, Fieldsend JK, Milford GFJ, Andersen MN et al (1996) Seed glucosinolate, oil and protein contents of field-grown rape (Brassica napus L.) affected by soil drying and evaporative demand. F Crop Res 47(2–3):93–105

    Article  Google Scholar 

  • Jones CG, Hartley SE (2016) Nordic society Oikos a protein competition model of phenolic allocation author(s): Clive G. Jones and Susan E. Hartley published by: Wiley on behalf of Nordic Society Oikos Stable URL: http://www.jstor.org/stable/3546567 References Linked reference. 86(1):27–44

  • Kamal RM, Razis AFA, Sukri NSM, Perimal EK, Ahmad H, Patrick R et al (2022) Beneficial health effects of glucosinolates-derived isothiocyanates on cardiovascular and neurodegenerative diseases. Molecules 27(3):1–49

    Article  Google Scholar 

  • Khan MS, Haas FH, Allboje Samami A, Moghaddas Gholami A, Bauer A, Fellenberg K et al (2010 Apr) Sulfite reductase defines a newly discovered bottleneck for assimilatory sulfate reduction and is essential for growth and development in Arabidopsis thaliana. Plant Cell 22(4):1216–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim WT, Seo SP, Byun YJ, Kang HW, Kim YJ, Lee SC et al (2017a) Garlic extract in bladder cancer prevention: evidence from T24 bladder cancer cell xenograft model, tissue microarray, and gene network analysis. Int J Oncol 51(1):204–212

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Lee S, Choi B-R, Yang H, Hwang Y, Park JHY et al (2017b) Sulforaphane epigenetically enhances neuronal BDNF expression and TrkB signaling pathways. Mol Nutr Food Res 61(2):1600194

    Article  Google Scholar 

  • Kim JH, Jang HJ, Cho WY, Yeon SJ, Lee CH (2020) In vitro antioxidant actions of sulfur-containing amino acids. Arab J Chem 13(1):1678–1684

    Article  CAS  Google Scholar 

  • Kim AJ, Park JE, Cho YH, Lim DS, Lee JS (2021) Effect of 7-methylsulfinylheptyl isothiocyanate on the inhibition of melanogenesis in B16-F1 cells. Life-Basel 11(2)

    Google Scholar 

  • Kleszczyński K, Ernst IM, Wagner AE, Kruse N, Zillikens D, Rimbach G, et al. Sulforaphane and phenylethyl isothiocyanate protect human skin against UVR-induced oxidative stress and apoptosis: role of Nrf2-dependent gene expression and antioxidant enzymes. Pharmacol Res 2013/10/15. 2013;78:28–40

    Google Scholar 

  • Ko HJ, Kim JH, Lee GS, Shin T (2020) Sulforaphane controls the release of paracrine factors by keratinocytes and thus mitigates particulate matter-induced premature skin aging by suppressing melanogenesis and maintaining collagen homeostasis. Phytomedicine 77

    Google Scholar 

  • Komkleow S, Niyomploy P, Sangvanich P (2021) Maldi-mass spectrometry imaging for phytoalexins detection in RD6 Thai rice. Appl Biochem Microbiol 57(4):533–541

    Article  CAS  Google Scholar 

  • Kopriva S, Malagoli M, Takahashi H (2019) Sulfur nutrition: impacts on plant development, metabolism, and stress responses. J Exp Bot 70(16):4069–4073

    Article  CAS  PubMed  Google Scholar 

  • Koprivova A, Kopriva S (2014) Molecular mechanisms of regulation of sulfate assimilation: first steps on a long road. Vol. 5, Frontiers in Plant Science.

    Google Scholar 

  • Künstler A, Gullner G, Ádám AL, Nagy JK, Király L (2020) The versatile roles of sulfur-containing biomolecules in plant defense—a road to disease resistance. Plan Theory 9(12):1–31

    Google Scholar 

  • Lähdesmäki P (1986) Determination of taurine and other acidic amino acids in plants. Phytochemistry 25(10):2409–2411

    Article  Google Scholar 

  • Lee YM, Cho HJ, Ponnuraj SP, Kim J, Kim JS, Kim SG et al (2011) Phenethyl isothiocyanate inhibits 12-O-tetradecanoylphorbol-13-acetate-induced inflammatory responses in mouse skin. J Med Food 14(4):377–385

    Article  CAS  PubMed  Google Scholar 

  • Lee CP, Wirtz M, Hell R (2014 Jan) Evidence for several cysteine transport mechanisms in the mitochondrial membranes of Arabidopsis thaliana. Plant Cell Physiol 55(1):64–73

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Choi B-R, Kim J, LaFerla FM, Park JHY, Han J-S et al (2018) Sulforaphane upregulates the heat shock protein co-chaperone CHIP and clears amyloid-β and Tau in a mouse model of Alzheimer’s disease. Mol Nutr Food Res 62(12):1800240

    Article  Google Scholar 

  • Lenzi RM, Campestrini LH, Semprebon SC, Paschoal JAR, Silva MAG, Zawadzki-Baggio SF et al (2021) Glucosinolate-enriched fractions from maca (Lepidium meyenii) exert myrosinase-dependent cytotoxic effects against HepG2/C3A and HT29 tumor cell lines. Nutr Cancer 2021:1–16

    Google Scholar 

  • Leustek T, Saito K (1999) Sulfate transport and assimilation in plants1. Plant Physiol 120(3):637–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Schonhof I, Krumbein A, Li L, Stützel H, Schreiner M (2007) Glucosinolate concentration in turnip (Brassica rapa ssp. rapifera L.) roots as affected by nitrogen and sulfur supply. J Agric Food Chem 55(21):8452–8457

    Article  CAS  PubMed  Google Scholar 

  • Li CX, Gao JG, Wan XY, Chen Y, Xu CF, Feng ZM, et al. Allyl isothiocyanate ameliorates lipid accumulation and inflammation in nonalcoholic fatty liver disease via the Sirt1/AMPK and NF-κB signaling pathways. World J Gastroenterol 2019/09/29. 2019;25(34):5120–5133

    Google Scholar 

  • Li SY, Yang YQ, Sargsyan D, Wu RY, Yin R, Kuo HCD et al (2020a) Epigenome, transcriptome, and protection by sulforaphane at different stages of UVB-induced skin carcinogenesis. Cancer Prev Res 13(6):551–561

    Article  CAS  Google Scholar 

  • Li Z, Guo H, Li J, Ma T, Zhou S, Zhang Z et al (2020b) Sulforaphane prevents type 2 diabetes-induced nephropathy via AMPK-mediated activation of lipid metabolic pathways and Nrf2 antioxidative function. Clin Sci 134(18):2469–2487

    Article  CAS  Google Scholar 

  • Lim SM, Hooker AL, Paxton JD (1970) Isolation of phytoalexins from corn with monogenic resistance to Helminthosporium turcicum. Phytopathology 60(7):1071–1075

    Article  CAS  Google Scholar 

  • Liou CS, Sirk SJ, Diaz CAC, Klein AP, Fischer CR, Higginbottom SK et al (2020) A metabolic pathway for activation of dietary glucosinolates by a human gut symbiont. Cell 180(4):717–728.e19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, He Y, Shi J, Liu L, Ma H, He L et al (2019) Allicin attenuates myocardial ischemia reperfusion injury in rats by inhibition of inflammation and oxidative stress. Transplant Proc 51(6):2060–2065

    Article  CAS  PubMed  Google Scholar 

  • Lohning A, Kidachi Y, Kamiie K, Sasaki K, Ryoyama K, Yamaguchi H (2021) 6-(Methylsulfinyl)hexyl isothiocyanate (6-MITC) from Wasabia japonica alleviates inflammatory bowel disease (IBD) by potential inhibition of glycogen synthase kinase 3 beta (GSK-3β). Eur J Med Chem 216:113250

    Article  CAS  PubMed  Google Scholar 

  • Loi VV, Huyen NTT, Busche T, Tung QN, Gruhlke MCH, Kalinowski J et al (2019) Staphylococcus aureus responds to allicin by global S-thioallylation – role of the Brx/BSH/YpdA pathway and the disulfide reductase MerA to overcome allicin stress. Free Radic Biol Med 139:55–69

    Article  CAS  PubMed  Google Scholar 

  • Long J, Yang M, Zuo C, Song N, He JM, Zeng J et al (2021) Requirement of Jasmonate signaling for defense responses against Alternaria alternata and Phytophthora nicotiane in tobacco. Crop Sci 61(6):4273–4283

    Article  CAS  Google Scholar 

  • López-Berenguer C, Martínez-Ballesta MC, García-Viguera C, Carvajal M (2008) Leaf water balance mediated by aquaporins under salt stress and associated glucosinolate synthesis in broccoli. Plant Sci 174(3):321–328

    Article  Google Scholar 

  • López-Berenguer C, Martínez-Ballesta MDC, Moreno DA, Carvajal M, García-Viguera C (2009) Growing hardier crops for better health: Salinity tolerance and the nutritional value of broccoli. J Agric Food Chem 57(2):572–578

    Article  PubMed  Google Scholar 

  • Lu J, Cheng B, Fang B, Meng Z, Zheng Y, Tian X et al (2017) Protective effects of allicin on 1,3-DCP-induced lipid metabolism disorder in HepG2 cells. Biomed Pharmacother 96:1411–1417

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Zhang Y, Lou Y, Cui W, Miao L (2020) Sulforaphane suppresses obesity-related glomerulopathy-induced damage by enhancing autophagy via Nrf2. Life Sci 258:118153

    Article  CAS  PubMed  Google Scholar 

  • Lv H, Zhen C, Liu J, Yang P, Hu L, Shang P. Unraveling the potential role of glutathione in multiple forms of cell death in cancer therapy. Oxidative Med Cell Longev 2019;2019

    Google Scholar 

  • Ma T, Zhu D, Chen D, Zhang Q, Dong H, Wu W et al (2018) Sulforaphane, a natural isothiocyanate compound, improves cardiac function and remodeling by inhibiting oxidative stress and inflammation in a rabbit model of chronic heart failure. Med Sci Monit 24:1473–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maitisha G, Aimaiti M, An Z, Li X (2021) Allicin induces cell cycle arrest and apoptosis of breast cancer cells in vitro via modulating the p53 pathway. Mol Biol Rep 48(11):7261–7272

    Article  CAS  PubMed  Google Scholar 

  • Mangla B, Javed S, Sultan MH, Kumar P, Kohli K, Najmi A et al (2021) Sulforaphane: A review of its therapeutic potentials, advances in its nanodelivery, recent patents, and clinical trials. Phyther Res 35(10):5440–5458

    Article  CAS  Google Scholar 

  • Martínez-Ballesta MDC, Moreno DA, Carvajal M (2013) The physiological importance of glucosinolates on plant response to abiotic stress in Brassica. Int J Mol Sci 14(6):11607–11625

    Article  Google Scholar 

  • Martínez-Hernández GB, Artés-Hernández F, Gómez PA, Artés F (2013) Induced changes in bioactive compounds of kailan-hybrid broccoli after innovative processing and storage. J Funct Foods 5(1):133–143

    Article  Google Scholar 

  • Masci A, Mattioli R, Costantino P, Baima S, Morelli G, Punzi P, et al. (2015) Neuroprotective effect of Brassica oleracea sprouts crude juice in a cellular model of Alzheimer’s disease. Vauzour D, editor. Oxid Med Cell Longev. 2015:781938

    Google Scholar 

  • Miekus N, Marszałek K, Podlacha M, Iqbal A, Puchalski C, Swiergiel AH (2020) Health benefits of plant-derived sulfur compounds, glucosinolates, and organosulfur compounds. Molecules 25(17)

    Google Scholar 

  • Miller JW (2012) Homocysteine. Encycl Hum Nutr 2–4:424–430

    Google Scholar 

  • Miyoshi N, Takabayashi S, Osawa T, Nakamura Y. Benzyl isothiocyanate inhibits excessive superoxide generation in inflammatory leukocytes: implication for prevention against inflammation-related carcinogenesis. Carcinogenesis. 2004;25(4):567–575

    Google Scholar 

  • Morroni F, Sita G, Graziosi A, Turrini E, Fimognari C, Tarozzi A et al (2018) Protective effects of 6-(methylsulfinyl)hexyl isothiocyanate on Aβ(1-42)-induced cognitive deficit, oxidative stress, inflammation, and apoptosis in mice. Int J Mol Sci 19(7)

    Google Scholar 

  • Mortada I (2017) Hyperuricemia, type 2 diabetes mellitus, and hypertension: an emerging association. Curr Hypertens Rep 19(9)

    Google Scholar 

  • Müller KO, Meyer G, Klinkowski M (1939) Physiologisch-genetische Untersuchungen über die Resistenz der Kartoffel gegenüber Phytophthora infestans. Naturwissenschaften 27(46)

    Google Scholar 

  • Murata K, Kitano T, Yoshimoto R, Takata R, Ube N, Ueno K et al (2020) Natural variation in the expression and catalytic activity of a naringenin 7-O-methyltransferase influences antifungal defenses in diverse rice cultivars. Plant J 101(5):1103–1117

    Article  CAS  PubMed  Google Scholar 

  • Musah RA, He Q, Kubec R (2009) Discovery and characterization of a novel lachrymatory factor synthase in Petiveria alliacea and its influence on alliinase-mediated formation of biologically active organosulfur compounds. Plant Physiol 151(3):1294–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Na GN, Salt DE (2011) The role of sulfur assimilation and sulfur-containing compounds in trace element homeostasis in plants. Environ Exp Bot 72(1):18–25

    Article  CAS  Google Scholar 

  • Nakamoto M, Kunimura K, Suzuki J, Kodera Y (2019) Antimicrobial properties of hydrophobic compounds in garlic: allicin, vinyldithiin, ajoene and diallyl polysulfides (Review). Exp Ther Med

    Google Scholar 

  • Noctor G, Queval G, Mhamdi A, Chaouch S, Foyer CH (2011) Glutathione:1–32

    Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B et al (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35(2):454–484

    Article  CAS  PubMed  Google Scholar 

  • Nugrahedi PY, Verkerk R, Widianarko B, Dekker M (2015) A mechanistic perspective on process-induced changes in glucosinolate content in brassica vegetables: a review. Crit Rev Food Sci Nutr 55(6):823–838

    Article  CAS  PubMed  Google Scholar 

  • Padilla G, Cartea ME, Velasco P, de Haro A, Ordás A (2007) Variation of glucosinolates in vegetable crops of Brassica rapa. Phytochemistry 68(4):536–545

    Article  CAS  PubMed  Google Scholar 

  • Pan P, Skaer C, Yu J, Zhao H, Ren H, Oshima K et al (2018) Berries and other natural products in the pancreatic cancer chemoprevention in human clinical trials. J Berry Res 7(3):147–161

    Article  Google Scholar 

  • Panyod S, Wu WK, Ho CT, Lu KH, Liu CT, Chu YL et al (2016) Diet supplementation with allicin protects against alcoholic fatty liver disease in mice by improving anti-inflammation and antioxidative functions. J Agric Food Chem 64(38):7104–7113

    Article  CAS  PubMed  Google Scholar 

  • Park HJ, Kim SJ, Park SJ, Eom SH, Gu GJ, Kim SH et al (2013) Phenethyl isothiocyanate regulates inflammation through suppression of the TRIF-dependent signaling pathway of Toll-like receptors. Life Sci 92(13):793–798

    Article  CAS  PubMed  Google Scholar 

  • Pedras MSC. Wasalexins A and B, new phytoalexins from wasabi: isolation and synthesis, and antifungal activity. In 1999

    Google Scholar 

  • Pedras MS, Zaharia IL (2000) Sinalbins A and B, phytoalexins from Sinapis alba: elicitation, isolation, and synthesis. Phytochemistry 55(3):213–216

    Article  CAS  PubMed  Google Scholar 

  • Pedras MSC, Zheng QA (2010) Metabolic responses of Thellungiella halophila/salsuginea to biotic and abiotic stresses: metabolite profiles and quantitative analyses. Phytochemistry 71(5–6):581–589

    Article  CAS  PubMed  Google Scholar 

  • Pedras MSC, Zheng QA, Strelkov S (2008) Metabolic changes in roots of the oilseed canola infected with the biotroph Plasmodiophora brassicae: phytoalexins and phytoanticipins. J Agric Food Chem 56(21):9949–9961

    Article  CAS  PubMed  Google Scholar 

  • Pedras MS, Hossain S, Snitynsky RB. Detoxification of cruciferous phytoalexins in Botrytis cinerea: spontaneous dimerization of a camalexin metabolite. Phytochemistry 2010/12/24. 2011;72(2–3):199–206

    Google Scholar 

  • Petkovic M, Leal EC, Alves I, Bose C, Palade PT, Singh P et al (2021) Dietary supplementation with sulforaphane ameliorates skin aging through activation of the Keap1-Nrf2 pathway. J Nutr Biochem 98

    Google Scholar 

  • Poloni A, Schirawski J (2014) Red card for pathogens: phytoalexins in sorghum and maize. Molecules 19(7):9114–9133

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Shivay YS (2018) Sulphur in soil, plant and human nutrition. Proc Natl Acad Sci India Sect B Biol Sci 88(2):429–434

    Article  CAS  Google Scholar 

  • Prieto MA, López CJ, Simal-Gandara J (2019) Glucosinolates: molecular structure, breakdown, genetic, bioavailability, properties and healthy and adverse effects. Adv Food Nutr Res

    Google Scholar 

  • Radziejewska-Kubzdela E, Olejnik A, Biegańska-Marecik R (2019) Effect of pretreatment on bioactive compounds in wild rocket juice. J Food Sci Technol 56(12):5234–5242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raiola A, Del Giudice R, Monti DM, Tenore GC, Barone A, Rigano MM (2015) Bioactive compound content and cytotoxic effect on human cancer cells of fresh and processed yellow tomatoes. Molecules 21(1):E33

    Article  PubMed  Google Scholar 

  • Rajakumar T, Pugalendhi P, Jayaganesh R, Ananthakrishnan D, Gunasekaran K (2018) Effect of allyl isothiocyanate on NF-kappa B signaling in 7,12-dimethylbenz(a)anthracene and N-methyl-N-nitrosourea-induced mammary carcinogenesis. Breast Cancer 25(1):50–59

    Article  PubMed  Google Scholar 

  • Ranaweera SS, Natraj P, Rajan P, Dayarathne LA, Mihindukulasooriya SP, Dinh DTT et al (2022) Anti-obesity effect of sulforaphane in broccoli leaf extract on 3T3-L1 adipocytes and ob/ob mice. J Nutr Biochem 100:108885

    Article  CAS  PubMed  Google Scholar 

  • Rausch T, Wachter A (2005) Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci 10(10):503–509

    Article  CAS  PubMed  Google Scholar 

  • Ravanel S, Gakière B, Job D, Douce R (1998) The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci U S A 95(13):7805–7812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddie KG, Carroll KS (2008) Expanding the functional diversity of proteins through cysteine oxidation. Curr Opin Chem Biol 12(6):746–754

    Article  CAS  PubMed  Google Scholar 

  • Redovnikovic IR, Glivetic T, Delonga K, Vorkapic-Fura J (2008) Glucosinolates and their potential role in plant. Period Biol 110(4):297–309

    CAS  Google Scholar 

  • Reiter J, Levina N, van der Linden M, Gruhlke M, Martin C, Slusarenko AJ (2017) Diallylthiosulfinate (Allicin), a volatile antimicrobial from garlic (Allium sativum), Kills human lung pathogenic bacteria, including MDR strains, as a Vapor. Molecules. 22(10)

    Google Scholar 

  • Rey P, Tarrago L (2018) Physiological roles of plant methionine sulfoxide reductases in redox homeostasis and signaling. Antioxidants 7(9)

    Google Scholar 

  • Richman EL, Carroll PR, Chan JM (2012) Vegetable and fruit intake after diagnosis and risk of prostate cancer progression. Int J Cancer 131(1):201–210

    Article  CAS  PubMed  Google Scholar 

  • Ripps H, Shen W (2012) Review: Taurine: A “very essential” amino acid. Mol Vis 18(November):2673–2686

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sahebi M, Hanafi MM, van Wijnen AJ, Akmar ASN, Azizi P, Idris AS et al (2017) Profiling secondary metabolites of plant defence mechanisms and oil palm in response to Ganoderma boninense attack. Int Biodeterior Biodegradation 122:151–164

    Article  CAS  Google Scholar 

  • Sahin N, Orhan C, Erten F, Tuzcu M, Defo Deeh PB, Ozercan IH et al (2019) Effects of allyl isothiocyanate on insulin resistance, oxidative stress status, and transcription factors in high-fat diet/streptozotocin-induced type 2 diabetes mellitus in rats. J Biochem Mol Toxicol 33(7):–e22328

    Google Scholar 

  • Sailaja BS, Aita R, Maledatu S, Ribnicky D, Verzi MP, Raskin I (2021) Moringa isothiocyanate-1 regulates Nrf2 and NF-κB pathway in response to LPS-driven sepsis and inflammation. PLoS One 16(4):–e0248691

    Google Scholar 

  • Sávio ALV, Silva GN, Salvadori DMF (2015) Inhibition of bladder cancer cell proliferation by allyl isothiocyanate (mustard essential oil). Mutat Res Mol Mech Mutagen 771:29–35

    Article  Google Scholar 

  • Schonhof I, Blankenburg D, Müller S, Krumbein A (2007) Sulfur and nitrogen supply influence growtn, product appearance, and glucosinolate concentration of broccoli. J Plant Nutr Soil Sci 170:65–72

    Article  CAS  Google Scholar 

  • Schreiner M, Huyskens-Keil S, Peters P, Schonhof I, Krumbein A, Widell S (2002) Seasonal climate effects on root colour and compounds of red radish. J Sci Food Agric 82(11):1325–1333

    Article  CAS  Google Scholar 

  • Schreiner M, Beyene B, Krumbein A, Stützel H (2009) Ontogenetic changes of 2-propenyl and 3-Lndolylmethyl glucosinolates in brassica carinata leaves as affected by water supply. J Agric Food Chem 57(16):7259–7263

    Article  CAS  PubMed  Google Scholar 

  • Shadkchan Y, Shemesh E, Mirelman D, Miron T, Rabinkov A, Wilchek M et al (2004) Efficacy of allicin, the reactive molecule of garlic, in inhibiting Aspergillus spp. in vitro, and in a murine model of disseminated aspergillosis. J Antimicrob Chemother 53(5):832–836

    Article  CAS  PubMed  Google Scholar 

  • Shamsipur M, Chaichi MJ (2005) A study of quenching effect of sulfur-containing amino acids l-cysteine and l-methionine on peroxyoxalate chemiluminescence of 7-amino-4-trifluoromethylcumarin. Spectrochim Acta A Mol Biomol Spectrosc 61(6):1227–1231

    Article  PubMed  Google Scholar 

  • Sharifi-Rad J, Hoseini Alfatemi S, Sharifi Rad M, Iriti M (2014) Antimicrobial synergic effect of allicin and silver nanoparticles on skin infection caused by methicillin-resistant Staphylococcus aureus spp. Ann Med Health Sci Res 4(6):863–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimojima M (2011) Biosynthesis and functions of the plant sulfolipid. Prog Lipid Res 50(3):234–239

    Article  CAS  PubMed  Google Scholar 

  • Shin JM, Lim E, Cho YS, Nho CW (2021) Cancer-preventive effect of phenethyl isothiocyanate through tumor microenvironment regulation in a colorectal cancer stem cell xenograft model. Phytomedicine 84:153493

    Article  CAS  PubMed  Google Scholar 

  • Sønderby IE, Geu-Flores F, Halkier BA (2010) Biosynthesis of glucosinolates – gene discovery and beyond. Trends Plant Sci 15(5):283–290

    Article  PubMed  Google Scholar 

  • Sun Y, Zhou S, Guo H, Zhang J, Ma T, Zheng Y et al (2020) Protective effects of sulforaphane on type 2 diabetes-induced cardiomyopathy via AMPK-mediated activation of lipid metabolic pathways and NRF2 function. Metabolism 102:154002

    Article  CAS  PubMed  Google Scholar 

  • Tafakh MS, Saidijam M, Ranjbarnejad T, Malih S, Mirzamohammadi S, Najafi R (2018) Sulforaphane, a chemopreventive compound, inhibits cyclooxygenase-2 and microsomal prostaglandin E synthase-1 expression in human HT-29 colon cancer cells. Cells Tissues Organs 206(1–2):46–53

    Article  CAS  PubMed  Google Scholar 

  • Taljaard TL (1993) Cabbage poisoning in ruminants. J S Afr Vet Assoc 64(2):96–100

    CAS  PubMed  Google Scholar 

  • Taylor MT, Nelson JE, Suero MG, Gaunt MJ (2018) A protein functionalization platform based on selective reactions at methionine residues. Nature 562(7728):563–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traka MH (2016) Health benefits of glucosinolates. Adv Bot Res 80:247–279

    Article  CAS  Google Scholar 

  • Umezawa C, Shin M (1999) Natural antimicrobial systems | Antimicrobial compounds in plants. In: Robinson RK (ed) Encyclopedia of food microbiology. Elsevier, Oxford, pp 1576–1582

    Chapter  Google Scholar 

  • UNIPROT (n.d.) Bifunctional 3′-phosphoadenosine 5′-phosphosulfate synthase 1

    Google Scholar 

  • Vaughan MM, Christensen S, Schmelz EA, Huffaker A, Mcauslane HJ, Alborn HT et al (2015) Accumulation of terpenoid phytoalexins in maize roots is associated with drought tolerance. Plant Cell Environ 38(11):2195–2207

    Article  CAS  PubMed  Google Scholar 

  • Vazquez-Prieto MA, Miatello RM (2010) Organosulfur compounds and cardiovascular disease. Mol Asp Med 31(6):540–545

    Article  CAS  Google Scholar 

  • Velasco P, Cartea ME, González C, Vilar M, Ordás A (2007) Factors affecting the glucosinolate content of kale (Brassica oleracea acephala Group). J Agric Food Chem 55(3):955–962

    Article  CAS  PubMed  Google Scholar 

  • Verkerk R, Schreiner M, Krumbein A, Ciska E, Holst B, Rowland I et al (2009) Glucosinolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health. Mol Nutr Food Res 53(SUPPL. 2):219–265

    Article  Google Scholar 

  • Wallock-Richards D, Doherty CJ, Doherty L, Clarke DJ, Place M, Govan JR et al (2014) Garlic revisited: antimicrobial activity of allicin-containing garlic extracts against Burkholderia cepacia complex. PLoS One 9(12):–e112726

    Google Scholar 

  • Walsh CT (2020) Chapter 1 Introduction to sulfur chemical biology. In: The chemical biology of sulfur. The Royal Society of Chemistry, pp 5–22

    Chapter  Google Scholar 

  • Waterman C, Rojas-Silva P, Tumer TB, Kuhn P, Richard AJ, Wicks S et al (2015) Isothiocyanate-rich Moringa oleifera extract reduces weight gain, insulin resistance, and hepatic gluconeogenesis in mice. Mol Nutr Food Res 59(6):1013–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei JL, Zhao Q, Zhang YY, Shi WY, Wang HH, Zheng ZZ et al (2021) Sulforaphane-mediated Nrf2 activation prevents radiation-induced skin injury through inhibiting the oxidative-stress-activated DNA damage and NLRP3 inflammasome. Antioxidants. 10(11)

    Google Scholar 

  • Wimo A, Winblad B, Aguero-Torres H, von Strauss E (2003) The magnitude of dementia occurrence in the world. Alzheimer Dis Assoc Disord 17(2):63–67

    Article  PubMed  Google Scholar 

  • Wittstock U, Burow M (2010) Glucosinolate breakdown in Arabidopsis: mechanism. Regul Biol Sign Arab B 8:e0134

    Google Scholar 

  • Wittstock U, Halkier BA (2002) Glucosinolate research in the Arabidopsis era. Trends Plant Sci 7(6):263–270

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Santos RR, Fink-Gremmels J (2015) Analyzing the antibacterial effects of food ingredients: model experiments with allicin and garlic extracts on biofilm formation and viability of Staphylococcus epidermidis. Food Sci Nutr 3(2):158–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Sun J, Haytowitz DB, Harnly JM, Chen P, Pehrsson PR. Challenges of developing a valid dietary glucosinolate database. J Food Compos Anal 2017;64(October 2016):78–84

    Google Scholar 

  • Xie J, Qian YY, Yang Y, Peng LJ, Mao JY, Yang MR et al (2022) Isothiocyanate from moringa oleifera seeds inhibits the growth and migration of renal cancer cells by regulating the PTP1B-dependent Src/Ras/Raf/ERK signaling pathway. Front Cell Dev Biol:9

    Google Scholar 

  • Yadav M, Das M, Bhatt S, Shah P, Jadeja R, Thakore S (2021) Rapid selective optical detection of sulfur containing agrochemicals and amino acid by functionalized cyclodextrin polymer derived gold nanoprobes. Microchem J 169(July):106630

    Article  CAS  Google Scholar 

  • Yamazaki S, Ziyatdinov MK, Nonaka G (2020) Fermentative production of sulfur-containing amino acid with engineering putative L-cystathionine and L-cysteine uptake systems in Escherichia coli. J Biosci Bioeng 130(1):14–19

    Article  CAS  PubMed  Google Scholar 

  • Zainal M, Mohamad Zain N, Mohd Amin I, Ahmad VN (2021) The antimicrobial and antibiofilm properties of allicin against Candida albicans and Staphylococcus aureus – A therapeutic potential for denture stomatitis. Saudi Dent J. 33(2):105–11

    Google Scholar 

  • Zechmann B, Müller M (2010) Subcellular compartmentation of glutathione in dicotyledonous plants. Protoplasma 246(1):15–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zenda T, Liu S, Dong A, Duan H (2021) Revisiting sulphur—the once neglected nutrient: it’s roles in plant growth, metabolism, stress tolerance and crop production. Agriculture 11(7)

    Google Scholar 

  • Zhang H, Schonhof I, Krumbein A, Gutezeit B, Li L, Stützel H et al (2008) Water supply and growing season influence glucosinolate concentration and composition in turnip root (Brassica rapa ssp. rapifera L.). J Plant Nutr Soil Sci 171(2):255–265

    Article  CAS  Google Scholar 

  • Zhang X, Liu Y, Fang Z, Li Z, Yang L, Zhuang M et al (2016) Comparative transcriptome analysis between broccoli (Brassica oleracea var. italica) and wild cabbage (Brassica macrocarpa guss.) in response to plasmodiophora brassicae during different infection stages. Front Plant Sci 7(December 2016)

    Google Scholar 

  • Zhang J, Zhang R, Zhan Z, Li X, Zhou F, Xing A et al (2017) Beneficial effects of sulforaphane treatment in Alzheimer’s disease may be mediated through reduced HDAC1/3 and increased P75NTR expression. Front Aging Neurosci:9

    Google Scholar 

  • Zhang M, Xu Y, Jiang L (2020) Sulforaphane attenuates angiotensin II-induced human umbilical vein endothelial cell injury by modulating ROS-mediated mitochondrial signaling. Hum Exp Toxicol 39(5):734–747

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Sultan SA, Rehka T, Chen X (2021) Biotechnological applications of S-adenosyl-methionine-dependent methyltransferases for natural products biosynthesis and diversification. Bioresour Bioprocess 8(1)

    Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6(2):66–71

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research leading to these results was supported by MICINN supporting the Ramón y Cajal grant for M.A. Prieto (RYC-2017-22891), the María Zambrano grant for R. Perez-Gregorio (CO34991493-20220101ALE481), the FPU grant for A. Soria-Lopez (FPU2020/06140) and the Juan de la Cierva Incorporación for Hui Cao (IJC2020-046055-I); by Xunta de Galicia for supporting the program EXCELENCIA-ED431F 2020/12, the post-doctoral grant of M. Fraga-Corral (ED481B-2019/096), and the pre-doctoral grant of M. Carpena (ED481A 2021/313). The research leading to these results was supported by the European Union through the “NextGenerationEU” program supporting the “Margarita Salas” grant awarded to P. Garcia-Perez. Authors are grateful to Ibero-American Program on Science and Technology (CYTED—AQUA-CIBUS, P317RT0003), to the Bio Based Industries Joint Undertaking (JU) under grant agreement No 888003 UP4HEALTH Project (H2020-BBI-JTI-2019) that supports the work of M. Barral-Martínez. The JU receives support from the European Union’s Horizon 2020 research and innovation program and the Bio Based Industries Consortium. The project SYSTEMIC Knowledge hub on Nutrition and Food Security has received funding from national research funding parties in Belgium (FWO), France (INRA), Germany (BLE), Italy (MIPAAF), Latvia (IZM), Norway (RCN), Portugal (FCT), and Spain (AEI) in a joint action of JPI HDHL, JPI-OCEANS, and FACCE-JPI launched in 2019 under the ERA-NET ERA-HDHL (n° 696295). The authors acknowledge the financial support provided by the FCT-Portuguese Foundation for Science and Technology (PD/BD/150264/2019) under the Doctoral Program “Agricultural Production Chains – from fork to farm” (PD/00122/2012) and from the European Social Funds and the Regional Operational Program Norte 2020. This study was also supported by CITAB research unit (UIDB/04033/2020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Simal-Gandara or M. A. Prieto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Castro, V. et al. (2023). Sulfur-Containing Compounds from Plants. In: Carocho, M., Heleno, S.A., Barros, L. (eds) Natural Secondary Metabolites. Springer, Cham. https://doi.org/10.1007/978-3-031-18587-8_11

Download citation

Publish with us

Policies and ethics