Skip to main content

Hybrid Magnetic Particles Based on Laponite RD®: Structure, Stability, and Electrosurface Properties

  • Conference paper
  • First Online:
Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 279))

  • 243 Accesses

Abstract

Hybrid magnetic particles based on Laponite® (Lap) (Rockwood Additives Ltd., UK) and nanomagnetic (NM) particles have been synthesized. The NM was synthesized using the Elmore method. For preparation of LapM hybrids, the Lap and NM were mixed in aqueous suspensions at pH 7.3 and T = 298 K. The concentration of NM particles at suspensions was fixed at 0.75 wt%, and concentration of Lap was varied in the range of 0.0375–1.5 wt% (the mass ratio Xm = mNM/mLap was varied within the range 20.0–0.5). The Lap, LapM, and NM particles were characterized using FTIR-spectroscopy, X-ray diffraction, magnetic susceptometry, transmission electron microscopy, measurements of particle size distribution function, and electrophoretic mobility. The observed variations in magnetic susceptibility χ, ζ-potential and overcharging were explained by the deep integration between Lap and NM particles, and interplaying between hydrophobic and electrostatic interactions in LapM hybrids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

FTIR:

Fourier-transform infrared

Lap:

Laponite®

LapM:

Magnetically modified Lap

NM:

Nanomagnetite

TEM:

Transmission electron microscopy

XRD:

X-Ray diffraction

References

  1. Zeinali S, Tatian S (2019) Vanadium removal from fuel oil and waste water in power plant using humic acid coated magnetic nanoparticles. Int J Nanosci Nanotechnol 15(4):249–263

    Google Scholar 

  2. Ding L, Hu Y, Luo Y, Zhu J, Wu Y, Yu Z, Cao X, Peng C, Shi X, Guo R (2016) LAPONITE® -stabilized iron oxide nanoparticles for in vivo MR imaging of tumors. Biomater Sci 4:474–482. https://doi.org/10.1039/C5BM00508F

    Article  Google Scholar 

  3. Mahdavinia GR, Ettehadi S, Amini M, Sabzi M (2015) Synthesis and characterization of hydroxypropyl methylcellulose-g-poly(acrylamide)/LAPONITE RD nanocomposites as novel magnetic- and pH-sensitive carriers for controlled drug release. RSC Adv 5:44516–44523. https://doi.org/10.1039/C5RA03731J

    Article  ADS  Google Scholar 

  4. Ghadiri M, Chrzanowski W, Rohanizadeh R (2015) Biomedical applications of cationic clay minerals. RSC Adv 5:29467–29481. https://doi.org/10.1039/C4RA16945J

    Article  ADS  Google Scholar 

  5. Neumann BS (1965) Behaviour of a synthetic clay in pigment dispersions. Rheol Acta 4:250–255. https://doi.org/10.1007/BF01973660

    Article  Google Scholar 

  6. Shafran K, Jeans C, Kemp SJ, Murphy K (2020) Dr Barbara S. Neumann: clay scientist and industrial pioneer; creator of Laponite®. Clay Miner 55:256–260. https://doi.org/10.1180/clm.2020.35

    Article  ADS  Google Scholar 

  7. Zhang J, Zhou CH, Petit S, Zhang H (2019) Hectorite: synthesis, modification, assembly and applications. Appl Clay Sci 177:114–138. https://doi.org/10.1016/j.clay.2019.05.001

    Article  Google Scholar 

  8. Gholamipour-Shirazi A, Carvalho MS, Huila MFG, Araki K, Dommersnes P, Fossum JO (2016) Transition from glass-to gel-like states in clay at a liquid interface. Sci Rep 6:37239. https://doi.org/10.1038/srep37239

    Article  ADS  Google Scholar 

  9. Samoylenko O, Korotych O, Manilo M, Samchenko Y, Shlyakhovenko V, Lebovka N (2021) Chapter 15. Biomedical Applications of Laponite®-based Nanomaterials and Formulations. In: Bulavin L, Lebovka N (eds) Soft matter systems for biomedical applications. Springer Proceedings in Physics, pp 385–452

    Google Scholar 

  10. Goncharuk O, Samchenko Y, Kernosenko L, Korotych O, Poltoratska T, Pasmurtseva N, Oranska O, Sternik D, Mamyshev I (2020) Thermoresponsive hydrogels physically crosslinked with magnetically modified LAPONITE® nanoparticles. Soft Matter 16:5689–5701. https://doi.org/10.1039/D0SM00929F

    Article  ADS  Google Scholar 

  11. Goncharuk O, Samchenko Y, Sternik D, Kernosenko L, Poltorats’ka T, Pasmurtseva N, Abramov M, Pakhlov E, Derylo-Marczewska A (2020b) Thermosensitive hydrogel nanocomposites with magnetic laponite nanoparticles. Appl Nanosci 1–11. https://doi.org/10.1007/s13204-020-01388-w

  12. Lebovka NI, Samchenko YM, Kernosenko LO, Poltoratska TP, Pasmurtseva NO, Mamyshev IE, Gigiberiya VA (2020) Temperature sensitive hydrogels cross-linked by magnetic laponite RD: effects of particle magnetization. Mater Adv 1:2994–2999. https://doi.org/10.1039/D0MA00687D

    Article  Google Scholar 

  13. Mahdavinia GR, Mousanezhad S, Hosseinzadeh H, Darvishi F, Sabzi M (2016) Magnetic hydrogel beads based on PVA/sodium alginate/laponite RD and studying their BSA adsorption. Carbohydr Polym 147:379–391. https://doi.org/10.1016/j.carbpol.2016.04.024

    Article  Google Scholar 

  14. Tzitzios V, Basina G, Bakandritsos A, Hadjipanayis CG, Mao H, Niarchos D, Hadjipanayis GC, Tucek J, Zboril R (2010) Immobilization of magnetic iron oxide nanoparticles on Laponite discs – an easy way to biocompatible ferrofluids and ferrogels. J Mater Chem 20:5418. https://doi.org/10.1039/c0jm00061b

    Article  Google Scholar 

  15. Cousin F, Cabuil V, Grillo I, Levitz P (2008) Competition between entropy and electrostatic interactions in a binary colloidal mixture of spheres and platelets. Langmuir 24:11422–11430. https://doi.org/10.1021/la8015595

    Article  Google Scholar 

  16. Cousin F, Cabuil V, Levitz P (2002) Magnetic colloidal particles as probes for the determination of the structure of laponite suspensions. Langmuir 18:1466–1473. https://doi.org/10.1021/la010947u

    Article  Google Scholar 

  17. Galicia JA, Sandre O, Cousin F, Guemghar D, Ménager C, Cabuil V (2003) Designing magnetic composite materials using aqueous magnetic fluids. J Phys Condens Matter 15:S1379. https://doi.org/10.1088/0953-8984/15/15/306

    Article  ADS  Google Scholar 

  18. de Paula FLO, da Silva GJ, Aquino R, Depeyrot J, Fossum JO, Knudsen KD, Helgesen G, Tourinho FA (2009) Gravitational and magnetic separation in self-assembled clay-ferrofluid nanocomposites. Braz J Phys 39:163–170. https://doi.org/10.1590/S0103-97332009000200007

    Article  ADS  Google Scholar 

  19. Weeber R, Hermes M, Schmidt AM, Holm C (2018) Polymer architecture of magnetic gels: a review. J Phys Condens Matter 30:63002. https://doi.org/10.1088/1361-648X/aaa344

    Article  Google Scholar 

  20. Mahdavinia GR, Soleymani M, Etemadi H, Sabzi M, Atlasi Z (2018) Model protein BSA adsorption onto novel magnetic chitosan/PVA/laponite RD hydrogel nanocomposite beads. Int J Biol Macromol 107:719–729. https://doi.org/10.1016/j.ijbiomac.2017.09.042

    Article  Google Scholar 

  21. Soleymani M, Akbari A, Mahdavinia GR (2019) Magnetic PVA/laponite RD hydrogel nanocomposites for adsorption of model protein BSA. Polym Bull 76:2321–2340. https://doi.org/10.1007/s00289-018-2480-1

    Article  Google Scholar 

  22. Mahdavinia GR, Rahmani Z, Mosallanezhad A, Karami S, Shahriari M (2016) Effect of magnetic laponite RD on swelling and dye adsorption behaviors of κ-carrageenan-based nanocomposite hydrogels. Desalin Water Treat 57:20582–20596. https://doi.org/10.1080/19443994.2015.1111808

    Article  Google Scholar 

  23. Mahdavinia GR, Soleymani M, Sabzi M, Azimi H, Atlasi Z (2017) Novel magnetic polyvinyl alcohol/laponite RD nanocomposite hydrogels for efficient removal of methylene blue. J Environ Chem Eng 5:2617–2630. https://doi.org/10.1016/j.jece.2017.05.017

    Article  Google Scholar 

  24. Mola-ali-abasiyan S, Mahdavinia GR (2018) Polyvinyl alcohol-based nanocomposite hydrogels containing magnetic laponite RD to remove cadmium. Environ Sci Pollut Res 25:14977–14988. https://doi.org/10.1007/s11356-018-1485-5

    Article  Google Scholar 

  25. Thompson DW, Butterworth JT (1992) The nature of laponite and its aqueous dispersions. J Colloid Interface Sci 151:236–243. https://doi.org/10.1016/0021-9797(92)90254-J

    Article  ADS  Google Scholar 

  26. Fripiat JJ, Letellier M, Cases JM, Francois M, Delon JF, Rouquerol J (1982) Comportement microdynamique et thermodynamique de l’eau dans les suspensions argileuses. Stud Surf Sci Catal 10:449–477

    Article  Google Scholar 

  27. Anonymous (2018) Technical Information B-RI 21 Laponite. Performance Additives. BYK

    Google Scholar 

  28. Mahadevan S, Gnanaprakash G, Philip J, Rao BPC, Jayakumar T (2007) X-ray diffraction-based characterization of magnetite nanoparticles in presence of goethite and correlation with magnetic properties. Phys E 39:20–25. https://doi.org/10.1016/j.physe.2006.12.041

    Article  Google Scholar 

  29. Lugovskoy N, Berzhansky V, Semuk E, Shaposhnikov A (2019) Susceptibility and FMR in ferrite garnet epitaxial films for eddy current magneto-optical defectoscopy. J Phys Conf Ser 1389:12102

    Article  Google Scholar 

  30. de Guimarães AMF, Ciminelli VST, Vasconcelos WL (2007) Surface modification of synthetic clay aimed at biomolecule adsorption: synthesis and characterization. Mater Res 10:37–41. https://doi.org/10.1590/S1516-14392007000100009

    Article  Google Scholar 

  31. Pálková H, Madejová J, Zimowska M, Serwicka EM (2010) Laponite-derived porous clay heterostructures: II. FTIR study of the structure evolution. Microporous Mesoporous Mater 127:237–244. https://doi.org/10.1016/j.micromeso.2009.07.012

    Article  Google Scholar 

  32. Balan E, Saitta AM, Mauri F, Lemaire C, Guyot F (2002) First-principles calculation of the infrared spectrum of lizardite. Am Mineral 87:1286–1290. https://doi.org/10.2138/am-2002-1003

    Article  ADS  Google Scholar 

  33. Moenke HHW (1974) Vibrational spectra and the crystal-chemical classification of minerals. In: Farmer VS (ed) The infrared spectra of minerals, VC, mineralogical society monograph. Cambridge University Press, London (Mineralogical Society), pp 111–118

    Chapter  Google Scholar 

  34. El-Mahdy GA, Atta AM, Al-Lohedan HA (2014) Synthesis and evaluation of poly (sodium 2-acrylamido-2-methylpropane sulfonate-co-styrene)/magnetite nanoparticle composites as corrosion inhibitors for steel. Mol 19:1713–1731. https://doi.org/10.3390/molecules19021713

    Article  Google Scholar 

  35. Manuel J, Kim J-K, Ahn J-H, Cheruvally G, Chauhan GS, Choi J-W, Kim K-W (2008) Surface-modified maghemite as the cathode material for lithium batteries. J Power Sources 184:527–531. https://doi.org/10.1016/j.jpowsour.2008.02.079

    Article  Google Scholar 

  36. Morales MP, Veintemillas-Verdaguer S, Montero MI, Serna CJ, Roig A, Casas L, Martinez B, Sandiumenge F (1999) Surface and internal spin canting in γ-Fe2O3 nanoparticles. Chem Mater 11:3058–3064. https://doi.org/10.1021/cm991018f

    Article  Google Scholar 

  37. Iurascu B, Siminiceanu I, Vione D, Vicente MA, Gil A (2009) Phenol degradation in water through a heterogeneous photo-Fenton process catalyzed by Fe-treated laponite. Water Res 43:1313–1322. https://doi.org/10.1016/j.watres.2008.12.032

    Article  Google Scholar 

  38. Le Luyer C, Lou L, Bovier C, Plenet JC, Dumas JG, Mugnier J (2001) A thick sol–gel inorganic layer for optical planar waveguide applications. Opt Mater (Amst) 18:211–217. https://doi.org/10.1016/S0925-3467(01)00111-2

    Article  ADS  Google Scholar 

  39. Cabrera L, Gutierrez S, Menendez N, Morales MP, Herrasti P (2008) Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim Acta 53:3436–3441. https://doi.org/10.1016/j.electacta.2007.12.006

    Article  Google Scholar 

  40. González-Martín R, Gutiérrez-Serpa A, Pino V (2021) The use of ferrofluids in analytical sample preparation: a review. Sep 8:47. https://doi.org/10.3390/separations8040047

    Article  Google Scholar 

  41. Huke B, Lücke M (2004) Magnetic properties of colloidal suspensions of interacting magnetic particles. Rep Prog Phys 67:1731. https://doi.org/10.1088/0034-4885/67/10/R01

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the funding of the National research foundation of Ukraine, Project #2020.02/0138 “Electrokinetic phenomena in natural nano/micro-fluidic and disperse systems: characterizing, treatment, modeling”, and by the funding from the National Academy of Sciences of Ukraine, Projects 7/9/3-f-4-1230-2020 #0120U100226 and # 0120U102372/20-N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryna Manilo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Manilo, M., Borodinova, T., Klepko, V., Cherepov, S., Lebovka, N. (2023). Hybrid Magnetic Particles Based on Laponite RD®: Structure, Stability, and Electrosurface Properties. In: Fesenko, O., Yatsenko, L. (eds) Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications . Springer Proceedings in Physics, vol 279. Springer, Cham. https://doi.org/10.1007/978-3-031-18096-5_29

Download citation

Publish with us

Policies and ethics