Skip to main content

Structure-Properties Relationships of Nanocomposites Based on Polyethylene Oxide and Anisometric Nanoparticles

  • Conference paper
  • First Online:
Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 279))

Abstract

The electrical properties of systems based on polyethylene oxide (PEO), carbon nanotubes (CNTs), and organoclays were studied using the methods of X-ray diffraction analysis, optical microscopy, and impedance spectroscopy. It is established that the introduction of nanofillers into the PEO matrix leads to a significant reduction in its degree of crystallinity. For systems filled with CNTs, a percolation transition is observed, which was analyzed in the framework of the scaling approach. It was found that the structure of composites that contain organoclays significantly depends on their type. For systems containing montmorillonite, the process of intercalation is observed, and for systems filled with laponite, there is exfoliation of organoclay. It is shown that when organomodified laponite (OLP) is introduced into the system, the percolation threshold is shifted to the region of lower CNT concentrations. At the same time, loosening of aggregates from CNT is observed. Modeling of impedance spectra for systems based on PEO by the method of equivalent circuits is carried out. It is established that the introduction of OLP more than 0.4% into the system leads to a significant reduction in electrical conductivity. This effect is explained by the fact that the OLP plates form their own network and prevent the formation of direct contacts between nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fu S, Sun Z, Huang P, Li Y, Hu N (2019) Some basic aspects of polymer nanocomposites: a critical review. Nano Mater Sci 1(1):2

    Article  Google Scholar 

  2. Lysenkov EA, Klepko VV, Lysenkova IP (2020) Features of structural organization of nanodiamonds in the polyethylene glycol matrix. J Nano Electron Phys 12(4):04006

    Article  Google Scholar 

  3. Lysenkov EA, Lysenkova IP (2020) Influence of nanodiamonds on the structure and thermophysical properties of polyethylene glycol-based systems. Func Mater 27(4):774

    Google Scholar 

  4. Shameem MM, Sasikanth SM, Annamalai R, Raman RG (2021) A brief review on polymer nanocomposites and its applications. Mater Today Proc 45(2):2536

    Article  Google Scholar 

  5. Ghoshal S (2017) Polymer/carbon nanotubes (CNT) nanocomposites processing using additive manufacturing (three-dimensional printing) technique: an overview. Fibers 5(4):40

    Article  Google Scholar 

  6. Lysenkov EA, Klepko VV, Yakovlev YV (2016) Specifics of percolation behavior in the polyether–carbon nanotube systems doped with LiClO4. Surf Eng Appl Electrochem 52(2):186

    Article  Google Scholar 

  7. Lysenkov EA, Klepko VV (2015) Characteristic features of the thermophysical properties of a system based on polyethylene oxide and carbon nanotubes. J Engin Phys Thermophys 88(4):1008

    Article  Google Scholar 

  8. Guo F, Aryana S, Han Y, Jiao Y (2018) A review of the synthesis and applications of polymer-nanoclay composites. Appl Sci 8:1696

    Article  Google Scholar 

  9. Lysenkov EA, Klepko VV, Lysenkova IP (2017) Features of microstructure and percolation behavior of polypropylene glycol, filled by multiwalled carbon nanotubes. J Nano Electron Phys 9(5):05021

    Article  Google Scholar 

  10. Cancan B, Yangchuan K, Xu H, Liang X, Yi Z, Shichao L, Yuan L (2020) Preparation and properties of amphiphilic hydrophobically associative polymer/montmorillonite nanocomposites. R Soc Open Sci 7(5):200199

    Article  Google Scholar 

  11. Da Silva JRM, Damasceno CI, Da Silva NJE, Soares AT, Renata B (2016) Characterization of bionanocomposites PHB, PEG and organophilic clay. Mater Sci Forum 869:303

    Article  Google Scholar 

  12. Gurses A, Ejder-Korucu M, Dogar C (2012) Preparation of PEO/clay nanocomposites using organoclay produced via micellar adsorption of CTAB. Sci World J 2012:270452. https://doi.org/10.1100/2012/270452

    Article  Google Scholar 

  13. Loginov M, Lebovka N, Vorobiev E (2012) Laponite assisted dispersion of carbon nanotubes in water. J Colloid Interface Sci 365:127

    Article  ADS  Google Scholar 

  14. Yaroshchuk O, Tomylko S, Kovalchuk O, Lebovka N (2014) Liquid crystal suspensions of carbon nanotubes assisted by organically modified laponite nanoplatelets. Carbon 68:389

    Article  Google Scholar 

  15. Chalmpes N, Kouloumpis A, Zygouri P, Karouta N, Spyrou K, Stathi P, Tsoufis T, Georgakilas V, Gournis D, Rudolf P (2019) Layer-by-layer assembly of clay−carbon nanotube hybrid superstructures. ACS Omega 4(19):18100

    Article  Google Scholar 

  16. Song SH (2018) The effect of clay/multiwall carbon nanotube hybrid fillers on the properties of elastomer nanocomposites. Hindawi Int J Polym Sci 2018:5295973

    Google Scholar 

  17. Al-Saleh MH (2015) Effect of clay addition on the properties of carbon nanotubes-filled immiscible polyethylene/polypropylene blends. J Macromol Sci Part B Phys 54(10):1259

    Article  ADS  Google Scholar 

  18. Khajehpour M, Arjmand M, Sundararaj U (2014) Dielectric properties of multiwalled carbon nanotube/clay/polyvinylidene fluoride nanocomposites: effect of clay incorporation. Polym Compos 37:161

    Article  Google Scholar 

  19. Lysenkov EA, Lebovka NI, Yakovlev YV, Klepko VV, Pivovarova NS (2012) Percolation behaviour of polypropylene glycol filled with multiwalled carbon nanotubes and laponite. Compos Sci Technol 72:1191

    Article  Google Scholar 

  20. Lysenkov EA, Leonova NG, Zhiltsova SV (2019) Effect of the silicon-containing phase on the hierarchy of the structure of epoxy-silica nanocomposites. Theor Exper Chem 55(4):250

    Article  Google Scholar 

  21. Stauffer D, Aharony A (1994) Introduction to percolation theory. Taylor and Francis, London, p 318

    Google Scholar 

  22. Tomylko S, Koval’chuk A, Yaroshchuk O, Lebovka N (2017) Structural evolution and dielectric properties of suspensions of carbon nanotubes in nematic liquid crystals. Phys Chem Chem Phys 19(25):16456

    Google Scholar 

  23. Sen D, Dasgupta K, Bahadur J et al (2008) Morphology of carbon nanotubes prepared via chemical vapour deposition technique using acetylene: a small angle neutron scattering investigation. J Phys 71(5):971

    Google Scholar 

  24. Sato H, Sano M (2008) Characteristics of ultrasonic dispersion of carbon nanotubes aided by antifoam. Col Surf A Physicochem Eng Aspects 322:103

    Article  Google Scholar 

  25. Efros AL, Shklovskii BI (1973) Critical behaviour of conductivity and dielectric constant near the metal-non-metal transition threshold. Phys Stat Sol B 76:475

    Article  ADS  Google Scholar 

  26. Mitescu CD, Musolf MJ (1983) Critical exponent for 3-D percolation conductivity. J Physique 44:L-679

    Google Scholar 

  27. Lysenkov EA, Klepko VV (2016) Analysis of percolation behavior of electrical conductivity of the systems based on polyethers and carbon nanotubes. J Nano Electron Phys 8(1):01017

    Article  Google Scholar 

  28. Elimat ZM, Al-Hussami SA, Zihlif AM (2012) Effect of carbon black on the thermoelectrical properties of poly(ethylene-oxide) composites. J Compos Mater 47(28):3525

    Article  Google Scholar 

  29. Hajar MDS, Supri AG, Hanif MPM, Yazid MIM (2017) Effect of graphite loading on the electrical and mechanical properties of poly (ethylene oxide)/poly (vinyl chloride) polymer films. IOP Conf Ser J Phys 908:012020

    Article  Google Scholar 

  30. Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69:1486

    Article  Google Scholar 

  31. Lysenkov EA, Klepko VV (2016) Features of percolation transition in nanocomposites based on polyethers and carbon nanotubes. J Phys Stud 20(3):3702

    Article  Google Scholar 

  32. Yadav RM, Dobal PS (2012) Structural and electrical characterization of bamboo-shaped C-N nanotubes–poly ethylene oxide (PEO) composite films. J Nanopart Res 14:1155

    Article  Google Scholar 

  33. Chatterjee T, Yurekli K, Hadjiev VG, Krishnamoorti R (2005) Single-walled carbon nanotube dispersions in poly(ethylene oxide). Adv Fund Mater 75:1832

    Article  Google Scholar 

  34. Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Ultra­low electrical percolation threshold in carbon­nanotube epoxy composites. Polymer 44:5893

    Article  Google Scholar 

  35. Kilbride BE, Coleman JN, Fraysse J, Fournet P, Cadek M, Drury A, Hutzler S, Roth S, Blau WJ (2002) Experimental observation of scaling laws for alternating current and direct current conductivity in polymer­carbon nanotube composite thin films. J Appl Phys 92(7):4024

    Article  ADS  Google Scholar 

  36. Foygel M, Morris RD, Anez D, French S, Sobolev VL (2005) Theoretical and computational studies of carbon nanotube composites and suspensions: electrical and thermal conductivity. Phys Rev B 71(10):104201

    Article  ADS  Google Scholar 

  37. Panda M, Thakur AK, Srinivas V (2010) Thermal effects on the percolation behavior of polyvinylidene fluoride/nickel composites. J Appl Polym Sci 117:3023

    Google Scholar 

  38. Li YJ, Xu M, Feng JQ, Dang Z-M (2006) Dielectric behavior of a metal-polymer composite with low percolation threshold. Appl Phys Lett 89:072902

    Article  ADS  Google Scholar 

  39. Chang J, Liang G, Gu A, Cai S, Yuan L (2012) The production of carbon nanotube/epoxy composites with a very high dielectric constant and low dielectric loss by microwave curing. Carbon 50(2):689

    Article  Google Scholar 

  40. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187

    Article  Google Scholar 

  41. Ciselli P, Zhang R, Wang Z (2009) Oriented UHMW-PE/CNT composite tapes by a solution casting-drawing process using mixed-solvents. Eur Polym J 45:2741

    Article  Google Scholar 

  42. Kotaki JM, Wang K, Toh ML, Chen L, Wong SY, He CB (2006) Electrically conductive epoxy/clay/vapor grown carbon fiber hybrids. Macromolecules 39(3):908

    Article  ADS  Google Scholar 

  43. Feller JF, Bruzaud S, Grohens Y (2004) Influence of clay nanofiller incorporation on electrical and rheological properties of conductive polymer composite (CPC). Mater Lett 58:739

    Article  Google Scholar 

  44. Levchenko V, Ye M, Boiteux G (2011) Influence of organo-clay on electrical and mechanical properties of PP/MWCNT/OC nanocomposites. Eur Polym J 147:1351

    Article  Google Scholar 

  45. Etika KC, Liu L, Hess LA, Grunlan JC (2009) The influence of synergistic stabilization of carbon black and clay on the electrical and mechanical properties of epoxy composites. Carbon 47:3128

    Article  Google Scholar 

  46. Lysenkov E, Melnyk I, Bulavin L, Klepko V, Lebovka N (2015) Structure of polyglycols doped by nanoparticles with anisotropic shape. In: Bulavin L, Lebovka N (eds) Physics of liquid matter: modern problems, springer proceedings in physics. Springer International Publishing, Switzerland, pp 165–198

    Google Scholar 

  47. Lebovka NI, Lysenkov EA, Goncharuk AI, Gomza YuP, Klepko VV, Boiko YuP (2011) Phase behaviour, microstructure, and percolation of poly (ethylene glycol) filled by multiwalled carbon nanotubes and organophilic montmorillonite. J Compos Mater 45(24):2555

    Article  Google Scholar 

  48. Feder J (2013) Fractals. Springer Science & Business Media, 284 p

    Google Scholar 

  49. Deriabina O, Lebovka N, Bulavin L, Goncharuk A (2014) Regulation of dispersion of carbon nanotubes in mixture of good and bad solvents. Phys E 59:150

    Article  Google Scholar 

  50. Sahimi M (1994) Applications of percolation theory. Taylor and Francis, Boca Raton, Fla, USA, p 276

    Book  Google Scholar 

  51. Macdonald J (1987) Impedance spectroscopy. Wiley, New York, p 346

    Google Scholar 

  52. Lysenkov EA, Klepko VV (2011) Influence of anisometric fillers on electrical properties of polypropylene glycol-based nanocomposites. Ukr J Phys 56(5):484

    Google Scholar 

  53. Kochowski S, Nitsch K (2002) Description of the frequency behaviour of metal–SiO2–GaAs structure characteristics by electrical equivalent circuit with constant phase element. Thin Solid Films 415:133

    Google Scholar 

  54. Sun W, Yang Y, Wang T, Huang H, Liu X, Tong Z (2012) Effect of adsorbed poly(ethylene glycol) on the gelation evolution of laponite suspensions: aging time-polymer concentration superposition. J Colloid Interface Sci 376(1):76

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Lysenkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lysenkov, E.A., Klepko, V., Lazarenko, M.M. (2023). Structure-Properties Relationships of Nanocomposites Based on Polyethylene Oxide and Anisometric Nanoparticles. In: Fesenko, O., Yatsenko, L. (eds) Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications . Springer Proceedings in Physics, vol 279. Springer, Cham. https://doi.org/10.1007/978-3-031-18096-5_25

Download citation

Publish with us

Policies and ethics