Skip to main content

Comparing the Evolution of the Extinct, Endemic Carnivorous Mammals of South America and Africa (Sparassodonts and Hyaenodonts)

  • Chapter
  • First Online:
Evolution of Cenozoic Land Mammal Faunas and Ecosystems

Abstract

Sparassodonts in South America and hyaenodonts in Africa present an interesting test case for comparing the evolutionary trajectories of ecologically similar clades on once isolated continents. Despite being distantly related within Mammalia (sparassodonts are metatherians and hyaenodonts are eutherians), they share many adaptations for a carnivorous diet, including an entire molar row modified into carnassials. Using data from the NOW database, we find that both groups became increasingly carnivorous during the Cenozoic, though only hyaenodonts showed a corresponding increase in body size. This difference may be due to different reproductive strategies in the two groups. Further comparisons between these groups and comparisons with modern carnivorans are necessary to determine the degree to which parallels and differences in the evolutionary trajectories of all three are related to the number of pairs of carnassialized teeth (i.e., several versus only one) and the adaptability of the distal tooth row.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, R. I., & Hadly, E. A. (2013). Genetic diversity within vertebrate species is greater at lower latitudes. Evolutionary Ecology, 27, 133–143.

    Article  Google Scholar 

  • Alroy, J. (1998). Cope’s rule and the dynamics of body mass evolution in North American fossil mammals. Science, 280, 731–743.

    Article  Google Scholar 

  • Ameghino, F. (1904). Nuevas especies de mamíferos cretáceos y terciarios de la República Argentina. Anales de la Sociedad Científica Argentina, 58, 225–291.

    Google Scholar 

  • Antoine, P. O., Marivaux, L., Croft, D. A., Billet, G., Ganerød, M., Jaramillo, C., et al. (2012). Middle Eocene rodents from Peruvian Amazonia reveal the pattern and timing of caviomorph origins and biogeography. Proceedings of the Royal Society B: Biological Sciences, 279, 1319–1326.

    Article  Google Scholar 

  • Antoine, P. O., Abello, M. A., Adnet, S., Altamirano Sierra, A. J., Baby, P., Billet, G., et al. (2016). A 60-million-year Cenozoic history of western Amazonian ecosystems in Contamana, eastern Peru. Gondwana Research, 31, 30–59.

    Article  Google Scholar 

  • Atkins, J. L., Long, R. A., Pansu, J., Daskin, J. H., Potter, A. B., Stalmans, M. E., et al. (2019). Cascading impacts of large-carnivore extirpation in an African ecosystem. Science, 364, 173–177.

    Article  Google Scholar 

  • Badgley, C. (2010). Tectonics, topography, and mammalian diversity. Ecography, 33, 220–231.

    Google Scholar 

  • Baker, J., Meade, A., Pagel, M., & Venditti, C. (2015). Adaptive evolution toward larger size in mammals. Proceedings of the National Academy of Sciences, USA, 112, 5093–5098.

    Article  Google Scholar 

  • Balisi, M., & Van Valkenburgh, B. (2020). Iterative evolution of large-bodied hypercarnivory in canids benefits species but not clades. Communications Biology, 3, 461.

    Article  Google Scholar 

  • Barry, J. C. (1988). Dissopsalis, a Middle and Late Miocene Proviverrine Creodont (Mammalia) from Pakistan and Kenya. Journal of Vertebrate Paleontology, 8, 25–45.

    Article  Google Scholar 

  • Biewener, A. A. (1989). Scaling body support in mammals: Limb posture and muscle mechanics. Science, 245, 45–48.

    Article  Google Scholar 

  • Bond, M., & Pascual, R. (1983). Nuevos y elocuentes restos craneanos de Proborhyaena gigantea Ameghino, 1897 (Marsupialia, Borhyaenidae, Proborhyaeninae) de la edad Deseadense. Un ejemplo de coevolución. Ameghiniana, 20, 47–60.

    Google Scholar 

  • Bond, M., Tejedor, M. F., Campbell, K. E., Chornogubsky, L., Novo, N., & Goin, F. (2015). Eocene primates of South America and the African origins of New World monkeys. Nature, 520, 538–541.

    Article  Google Scholar 

  • Borths, M. R., & Seiffert, E. R. (2017). Craniodental and humeral morphology of a new species of Masrasector (Teratodontinae, Hyaenodonta, Placentalia) from the late Eocene of Egypt and locomotor diversity in hyaenodonts. PLoS ONE, 12, e0173527.

    Article  Google Scholar 

  • Borths, M. R., & Stevens, N. J. (2017). The first hyaenodont from the late Oligocene Nsungwe Formation of Tanzania: Paleoecological insights into the Paleogene-Neogene carnivore transition. PLoS ONE, 12, e0185301.

    Article  Google Scholar 

  • Borths, M., & Stevens, N. J. (2019). Simbakubwa kutokaafrika, gen. et sp. nov. (Hyainailourinae, Hyaenodonta, ‘Creodonta,’ Mammalia), a gigantic carnivore from the earliest Miocene of Kenya. Journal of Vertebrate Paleontology, 39, e1570222.

    Google Scholar 

  • Borths, M. R., Holroyd, P. A., & Seiffert, E. R. (2016). Hyainailourine and teratodontine cranial material from the late Eocene of Egypt and the application of parsimony and Bayesian methods to the phylogeny and biogeography of Hyaenodonta (Placentalia, Mammalia). PeerJ, 4, e2639.

    Article  Google Scholar 

  • Bown, T., & Krause, M. (1988). Geology and paleoenvironment of the Oligocene Jebel Qatrani Formation and adjacent rocks, Fayum Depression, Egypt. U.S. Geological Survey Professional Paper, 1452, 1–64.

    Google Scholar 

  • Burness, G. P., Diamond, J., & Flannery, T. (2001). Dinosaurs, dragons, and dwarfs: The evolution of maximal body size. Proceedings of the National Academy of Sciences, USA, 98, 14518–14523.

    Article  Google Scholar 

  • Candela, A. M., & Morrone, J. J. (2003). Biogeografía de puercoespines neotropicales (Rodentia, Hystricognathi); integrando datos fósiles y actuales a través de un enfoque panbiogeográfico. Ameghiniana, 40, 361–378.

    Google Scholar 

  • Carbone, C., Teacher, A., & Rowcliffe, J. M. (2007). The costs of carnivory. PLoS Biology, 5, e22.

    Article  Google Scholar 

  • Carlini, A. A., Ciancio, M. R., & Scillato-Yané, G. J. (2010). Middle Eocene—Early Miocene Dasypodidae (Xenarthra) of southern South America: Faunal succession at Gran Barranca—Biostratigraphy and paleoecology. In R. H. Madden, A. A. Carlini, M. G. Vucetich, & R. F. Kay (Eds.), The paleontology of Gran Barranca. Evolution and environmental change through the middle Cenozoic of Patagonia (pp. 106–129). Cambridge University Press.

    Google Scholar 

  • Carrillo, J. D., Forasiepi, A., Jaramillo, C., & Sánchez-Villagra, M. R. (2015). Neotropical mammal diversity and the Great American Biotic Interchange: Spatial and temporal variation in South America’s fossil record. Frontiers in Genetics, 5, 451.

    Article  Google Scholar 

  • Christiansen, P., & Wroe, S. (2007). Bite forces and evolutionary adaptations to feeding ecology in carnivores. Ecology, 88, 347–358.

    Article  Google Scholar 

  • Cooper, W. J., & Steppan, S. J. (2010). Developmental constraint on the evolution of marsupial forelimb morphology. Australian Journal of Zoology, 58, 1–15.

    Article  Google Scholar 

  • Croft, D. A. (2006). Do marsupials make good predators? Insights from predator-prey diversity ratios. Evolutionary Ecology Research, 8, 1193–1214.

    Google Scholar 

  • Croft, D. A. (2007). The middle Miocene (Laventan) Quebrada Honda fauna, southern Bolivia, and a description of its notoungulates. Palaeontology, 50, 277–303.

    Article  Google Scholar 

  • Croft, D. A. (2016). Horned armadillos and rafting monkeys: The fascinating fossil mammals of South America. Indiana University Press.

    Google Scholar 

  • Croft, D. A., Flynn, J. J., & Wyss, A. R. (2008). The Tinguiririca Fauna of Chile and the early stages of “modernization” of South American mammal faunas. Arquivos do Museu Nacional, Rio de Janeiro, 66, 191–211.

    Google Scholar 

  • Croft, D. A., Carlini, A. A., Ciancio, M. R., Brandoni, D., Drew, N. E., Engelman, R. K., & Anaya, F. (2016). New mammal faunal data from Cerdas, Bolivia, a middle-latitude Neotropical site that chronicles the end of the Middle Miocene Climatic Optimum in South America. Journal of Vertebrate Paleontology, 36, e1163574.

    Article  Google Scholar 

  • Croft, D. A., Engelman, R. K., Dolgushina, T., & Wesley, G. (2018). Diversity and disparity of sparassodonts (Metatheria) reveal non-analogue nature of ancient South American mammalian carnivore guilds. Proceedings of the Royal Society B: Biological Sciences, 285, 20172012.

    Article  Google Scholar 

  • Croft, D. A., Gelfo, J. N., & López, G. M. (2020). Splendid innovation: The South American native ungulates. Annual Review of Earth and Planetary Sciences, 48, 249–290.

    Article  Google Scholar 

  • DeMaster, D. P., & Stirling, I. (1981). Ursus maritimus. Mammalian Species, 145, 1–7.

    Article  Google Scholar 

  • Dunn, R. E., Madden, R. H., Kohn, M. J., Schmitz, M. D., Strömberg, C. A. E., Carlini, A. A., et al. (2013). A new chronology for middle Eocene-early Miocene South American Land Mammal Ages. Geological Society of America Bulletin, 125, 539–555.

    Article  Google Scholar 

  • Dunn, R. E., Strömberg, C. A. E., Madden, R. H., Kohn, M. J., & Carlini, A. A. (2015). Linked canopy, climate, and faunal change in the Cenozoic of Patagonia. Science, 347, 258–261.

    Article  Google Scholar 

  • Echarri, S., Ercoli, M. D., Chemisquy, M. A., Turazzini, G., & Prevosti, F. J. (2017). Mandible morphology and diet of the South American extinct metatherian predators (Mammalia, Metatheria, Sparassodonta). Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 106, 277–288.

    Article  Google Scholar 

  • Edwards, M. J., & Deakin, J. E. (2013). The marsupial pouch: Implications for reproductive success and mammalian evolution. Australian Journal of Zoology, 61, 41–47.

    Article  Google Scholar 

  • Emerson, S. B., & Radinsky, L. (1980). Functional analysis of sabertooth cranial morphology. Paleobiology, 6, 295–312.

    Article  Google Scholar 

  • Engelman, R. K., & Croft, D. A. (2019). Strangers in a strange land: Ecological dissimilarity to metatherian carnivores may partly explain early colonization of South America by Cyonasua-group procyonids. Paleobiology, 45, 598–611.

    Article  Google Scholar 

  • Engelman, R. K., Anaya, F., & Croft, D. A. (2017). New palaeothentid marsupials (Paucituberculata) from the middle Miocene of Quebrada Honda, Bolivia, and their implications for the palaeoecology, decline and extinction of the Palaeothentoidea. Journal of Systematic Palaeontology, 15, 787–820.

    Article  Google Scholar 

  • Engelman, R. K., Flynn, J. J., Wyss, A. R., & Croft, D. A. (2020). Eomakhaira molossus, a new saber-toothed sparassodont (Metatheria: Thylacosmilinae) from the early Oligocene (?Tinguirirican) Cachapoal locality, Andean Main Range, Chile. American Museum Novitates, 3957, 1–76.

    Article  Google Scholar 

  • Ewer, R. F. (1973). The Carnivores. Cornell University Press.

    Google Scholar 

  • Feakins, S. J., & Demenocal, P. B. (2010). Global and African regional climate during the Cenozoic. In L. Werdelin & W. J. Sanders (Eds.), Cenozoic mammals of Africa (pp. 45–56). University of California Press.

    Chapter  Google Scholar 

  • Figueirido, B., Pérez-Claros, J. A., Hunt, R. M., & Palmqvist, P. (2011). Body mass estimation in amphicyonid carnivoran mammals: A multiple regression approach from the skull and skeleton. Acta Palaeontologica Polonica, 56, 225–256.

    Article  Google Scholar 

  • Flynn, J. J., & Swisher, C. C., III (1995). Cenozoic South American Land Mammal Ages: Correlation to global geochronologies. In W. A. Berggren, D. V. Kent, M.-P. Aubry, & J. Hardenbol (Eds.), Geochronology, time scales, and global stratigraphic correlation (pp. 317–333). SEPM Special Publication

    Google Scholar 

  • Flynn, J. J., Wyss, A. R., Croft, D. A., & Charrier, R. (2003). The Tinguiririca Fauna, Chile: Biochronology, paleoecology, biogeography, and a new earliest Oligocene South American Land Mammal “Age.” Palaeogeography, Palaeoclimatology, Palaeoecology, 195, 229–259.

    Article  Google Scholar 

  • Flynn, J. J., Charrier, R., Croft, D. A., & Wyss, A. R. (2012). Cenozoic Andean faunas: Shedding new light on South American mammal evolution, biogeography, environments, and tectonics. In B. D. Patterson, & L. P. Costa (Eds.), Bones, clones, and biomes. The history and geography of Recent Neotropical mammals (pp. 51–75). University of Chicago Press.

    Google Scholar 

  • Forasiepi, A. M. (2009). Osteology of Arctodictis sinclairi (Mammalia, Metatheria, Sparassodonta) and phylogeny of Cenozoic metatherian carnivores from South America. Monografias del Museo Argentino de Ciencias Naturales, 6, 1–174.

    Google Scholar 

  • Forasiepi, A. M., Martinelli, A. G., & Goin, F. J. (2007). Revisión taxonómica de Parahyaenodon argentinus Ameghino y sus implicancias en el conocimiento de los grandes mamíferos carnívoros del Mio-Plioceno de América de Sur. Ameghiniana, 44, 143–159.

    Google Scholar 

  • Friscia, A. R., & Van Valkenburgh, B. (2010). Ecomorphology of North American Eocene carnivores: Evidence for competition between carnivorans and creodonts. In A. Goswami & A. Friscia (Eds.), Carnivoran evolution (pp. 311–341). Cambridge University Press.

    Chapter  Google Scholar 

  • Friscia, A. R., Van Valkenburgh, B., & Biknevicius, A. R. (2007). An ecomorphological analysis of extant small carnivorans. Journal of Zoology, 272, 82–100.

    Article  Google Scholar 

  • Friscia, A. R., Macharwas, M., Muteti, S., Ndiritu, F., & Rasmussen, D. T. (2020). A transitional mammalian carnivore community from the Paleogene-Neogene boundary in northern Kenya. Journal of Vertebrate Paleontology, 40, e1833895.

    Article  Google Scholar 

  • Garzione, C. N., Hoke, G. D., Libarkin, J. C., Withers, S., MacFadden, B., Eiler, J., et al. (2008). Rise of the Andes. Science, 320, 1304–1307.

    Article  Google Scholar 

  • Gheerbrant, E., & Rage, J. C. (2006). Paleobiogeography of Africa: How distinct from Gondwana and Laurasia? Palaeogeography, Palaeoclimatology, Palaeoecology, 241, 224–246.

    Article  Google Scholar 

  • Gittleman, J. L. (1986). Carnivore life history patterns: Allometric, phylogenetic, and ecological associations. The American Naturalist, 127, 744–771.

    Article  Google Scholar 

  • Gittleman, J. L. (Ed.). (1996). Carnivore behavior, ecology, and evolution, (Vol. II). Cornell University Press.

    Google Scholar 

  • Goin, F. J., Abello, M. A., & Chornogubsky, L. (2010). Middle Tertiary marsupials from central Patagonia (early Oligocene of Gran Barranca): understanding South America’s Grande Coupure. In R. H. Madden, A. A. Carlini, M. G. Vucetich, & R. F. Kay (Eds.), The paleontology of Gran Barranca. Evolution and environmental change through the middle Cenozoic of Patagonia (pp. 69–105). Cambridge University Press.

    Google Scholar 

  • Goin, F. J., Gelfo, J. N., Chornogubsky, L., Woodburne, M. O., & Martin, T. (2012). Origins, radiations, and distribution of South American mammals from greenhouse to icehouse worlds. In B. D. Patterson & L. P. Costa (Eds.), Bones, clones, and biomes. The history and geography of Recent Neotropical mammals (pp. 20–50). University of Chicago Press.

    Google Scholar 

  • Goswami, A., Milne, N., & Wroe, S. (2011). Biting through constraints: Cranial morphology, disparity and convergence across living and fossil carnivorous mammals. Proceedings of the Royal Society B: Biological Sciences, 278, 1831–1839.

    Article  Google Scholar 

  • Gunnell, G. F., Simons, E. L., & Seiffert, E. R. (2008). New bats (Mammalia: Chiroptera) from the late Eocene and early Oligocene, Fayum Depression, Egypt. Journal of Vertebrate Paleontology, 28, 1–11.

    Google Scholar 

  • Holliday, J. A. (2010). Evolution of Carnivora: Identifying a morphological bias. In A. Goswami & A. Friscia (Eds.), Carnivoran evolution (pp. 189–224). Cambridge University Press.

    Chapter  Google Scholar 

  • Holliday, J. A., & Steppan, S. J. (2004). Evolution of hypercarnivory: The effect of specialization on morphological and taxonomic diversity. Paleobiology, 30, 108–128.

    Article  Google Scholar 

  • Holroyd, P. A. (1999). New Pterodontinae (Creodonta: Hyaenodontidae) from the late Eocene-early Oligocene Jebel Qatrani Formation, Fayum province, Egypt. Paleobios, 19, 1–18.

    Google Scholar 

  • Iversen, M., Aars, J., Haug, T., Alsos, I. G., Lydersen, C., Bachmann, L., et al. (2013). The diet of polar bears (Ursus maritimus) from Svalbard, Norway, inferred from scat analysis. Polar Biology, 36, 561–571.

    Article  Google Scholar 

  • Jacobs, B. F., Pan, A. D., Scotese, C. R., Werdelin, L., & Sanders, W. J. (2010). A review of the Cenozoic vegetation history of Africa. In L. Werdelin & W. J. Sanders (Eds.), Cenozoic mammals of Africa (pp. 57–72). University of California Press.

    Chapter  Google Scholar 

  • Johnson, C. N., Isaac, J. L., & Fisher, D. O. (2007). Rarity of a top predator triggers continent-wide collapse of mammal prey: Dingoes and marsupials in Australia. Proceedings of the Royal Society B: Biological Sciences, 274, 341–346.

    Article  Google Scholar 

  • Jones, M. E. (2003). Convergence in ecomorphology and guild structure among marsupial and placental carnivores. In M. Jones, C. Dickman, & M. Archer (Eds.), Predators with pouches: The biology of marsupial carnivores (pp. 285–296). CSIRO Publishing.

    Chapter  Google Scholar 

  • Jones, M. E., Rose, R. K., & Burnett, S. (2001). Dasyurus maculatus. Mammalian Species, 676, 1–9.

    Article  Google Scholar 

  • Kay, R. F., Vizcaíno, S. F., & Bargo, M. S. (2012). A review of the paleoenvironment and paleoecology of the Miocene Santa Cruz Formation. In S. F. Vizcaíno, R. F. Kay, & M. S. Bargo (Eds.), Early Miocene paleobiology in Patagonia: High-latitude paleocommunities of the Santa Cruz Formation (pp. 331–365). Cambridge University Press.

    Chapter  Google Scholar 

  • Kocsis, L., Gheerbrant, E., Mouflih, M., Cappetta, H., Yans, J., & Amaghzaz, M. (2014). Comprehensive stable isotope investigation of marine biogenic apatite from the late Cretaceous–early Eocene phosphate series of Morocco. Palaeogeography, Palaeoclimatology, Palaeoecology, 15, 74–88.

    Article  Google Scholar 

  • Kohn, M. J., Strömberg, C. A. E., Madden, R. H., Dunn, R. E., Evans, S., Palacios, A., & Carlini, A. A. (2015). Quasi-static Eocene-Oligocene climate in Patagonia promotes slow faunal evolution and mid-Cenozoic global cooling. Palaeogeography, Palaeoclimatology, Palaeoecology, 435, 24–37.

    Article  Google Scholar 

  • Krause, J. M., Clyde, W. C., Ibañez-Mejía, M., Schmitz, M. D., Barnum, T., Bellosi, E. S., & Wilf, P. (2017). New age constraints for early Paleogene strata of central Patagonia, Argentina: Implications for the timing of South American Land Mammal Ages. Bulletin of the Geological Society of America, 129, 886–903.

    Article  Google Scholar 

  • Kraglievich, L. (1934). La antigüedad pliocena de las faunas de Monte Hermoso y Chapadmalal, deducidas de su comparación con las que le precedieron y sucedieron. Imprenta “El Siglo Ilustrado”.

    Google Scholar 

  • Lewis, M. E., & Morlo, M. (2010). Creodonta. In L. Werdelin & W. J. Sanders (Eds.), Cenozoic mammals of Africa (pp. 543–560). University of California Press.

    Google Scholar 

  • Liu, A. G. S. C., Seiffert, E. R., & Simons, E. L. (2008). Stable isotope evidence for an amphibious phase in early proboscidean evolution. Proceedings of the National Academy of Sciences, USA, 105, 5786–5791.

    Article  Google Scholar 

  • López-Aguirre, C., Archer, M., Hand, S. J., & Laffan, S. W. (2017). Extinction of South American sparassodontans (Metatheria): Environmental fluctuations or complex ecological processes? Palaeontology, 60, 91–115.

    Article  Google Scholar 

  • Luo, Z.-X., Yuan, C.-X., Meng, Q.-J., & Ji, Q. (2011). A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature, 476, 442–445.

    Article  Google Scholar 

  • MacFadden, B. J. (1986). Fossil horses from “Eohippus” (Hyracotherium) to Equus: Scaling, Cope’s Law, and the evolution of body size. Paleobiology, 12, 355–369.

    Article  Google Scholar 

  • MacFadden, B. J. (2006). Extinct mammalian biodiversity of the ancient New World tropics. Trends in Ecology & Evolution, 21, 157–165.

    Article  Google Scholar 

  • Macgregor, D. (2015). History of the development of the East African Rift System: A series of interpreted maps through time. Journal of African Earth Sciences, 101, 232–252.

    Article  Google Scholar 

  • Madden, R. H., Kay, R. F., Vucetich, M. G., & Carlini, A. A. (2010). Gran Barranca: A 23-million-year record of middle Cenozoic faunal evolution in Patagonia. In R. H. Madden, A. A. Carlini, M. G. Vucetich, & R. F. Kay (Eds.), The paleontology of Gran Barranca. Evolution and environmental change through the middle Cenozoic of Patagonia (pp. 423–439). Cambridge University Press.

    Google Scholar 

  • Marshall, L. G. (1977). Evolution of the carnivorous adaptive zone in South America. In M. K. Hecht, P. C. Goody, & B. M. Hecht (Eds.), Major patterns in vertebrate evolution (pp. 709–721). Plenum Press.

    Chapter  Google Scholar 

  • Marshall, L. G. (1978). Evolution of the Borhyaenidae, extinct South American predaceous marsupials. University of California Publications in Geological Sciences, 117, 1–89.

    Google Scholar 

  • Marshall, L. G., Butler, R. F., Drake, R. E., Curtis, G. H., & Tedford, R. H. (1979). Calibration of the Great American Interchange. Science, 204, 272–279.

    Article  Google Scholar 

  • Marshall, L. G., Hoffstetter, R., & Pascual, R. (1983). Mammals and stratigraphy: Geochronology of the mammal-bearing Tertiary of South America. Palaeovertebrata, 19, Mémoire Extraordinaire, 1–93.

    Google Scholar 

  • Martín-Serra, A., & Benson, R. B. (2020). Developmental constraints do not influence long-term phenotypic evolution of marsupial forelimbs as revealed by interspecific disparity and integration patterns. The American Naturalist, 195, 547–560.

    Article  Google Scholar 

  • Mattingly, S. G., Beard, K. C., Coster, P. M. C., Salem, M. J., Chaimanee, Y., & Jaeger, J. J. (2020). A new carnivoraform from the early Oligocene of Libya: Oldest known record of Carnivoramorpha in Africa. Journal of African Earth Sciences, 172, 103994.

    Article  Google Scholar 

  • McGrath, A. J., Anaya, F., & Croft, D. A. (2020). New proterotheriids (Litopterna, Mammalia) from the middle Miocene of Quebrada Honda, Bolivia, and trends in diversity and body size of proterotheriid and macraucheniid litopterns. Ameghiniana, 52, 159–188.

    Article  Google Scholar 

  • Morlo, M., Gunnell, G. F., & Nagel, D. (2010). Ecomorphological analysis of carnivore guilds in the Eocene through Miocene of Laurasia. In A. Goswami & A. Friscia (Eds.), Carnivoran evolution: New views on phylogeny, form and function (pp. 269–310). Cambridge University Press.

    Chapter  Google Scholar 

  • de Muizon, C., & Lange-Badré, B. (1997). Carnivorous dental adaptations in tribosphenic mammals and phylogenetic reconstruction. Lethaia, 30, 353–366.

    Google Scholar 

  • de Muizon, C., Billet, G., Argot, C., Ladevèze, S., & Goussard, F. (2015). Alcidedorbignya inopinata, a basal pantodont (Placentalia, Mammalia) from the early Palaeocene of Bolivia: Anatomy, phylogeny and palaeobiology. Geodiversitas, 37, 397–631.

    Google Scholar 

  • de Muizon, C., Ladevèze, S., Selva, C., Vignaud, R., & Goussard, F. (2018). Allqokirus australis (Sparassodonta, Metatheria) from the early Palaeocene of Tiupampa (Bolivia) and the rise of the metatherian carnivorous radiation in South America. Geodiversitas, 40, 363–459.

    Google Scholar 

  • Nowak, R. M. (Ed.). (1999). Walker’s mammals of the world (6th ed.). Johns Hopkins University Press.

    Google Scholar 

  • Palazzesi, L., & Barreda, V. D. (2003). Análisis evolutivo de la vegetación cenozoica en las provincias de Chubut y Santa Cruz (Argentina) con especial atención en las comunidades herbaceo-arbustivas. Revista del Museo Argentino de Ciencias Naturales, Nueva Serie, 5, 151–161.

    Article  Google Scholar 

  • Palazzesi, L., & Barreda, V. D. (2007). Major vegetation trends in the Tertiary of Patagonia (Argentina): A qualitative paleoclimatic approach based on palynological evidence. Flora, 202, 328–337.

    Article  Google Scholar 

  • Partridge, T. C. (2010). Tectonics and geomorphology of Africa during the Phanerozoic. In L. Werdelin & W. J. Sanders (Eds.), Cenozoic mammals of Africa (pp. 3–18). University of California Press.

    Google Scholar 

  • Pascual, R., & Odreman Rivas, O. E. (1971). Evolución de las comunidades de los vertebrados del Terciario argentino; los aspectos paleozoogeográficos y paleoclimáticos relacionados. Ameghiniana, 8, 372–412.

    Google Scholar 

  • Pascual, R., & Ortiz-Jaureguizar, E. (1991). El ciclo faunístico Cochabambiano (Paleoeceno temprano): su incidencia en la historia biogeográfica de los mamíferos sudamericanos. Revista Técnica de Yacimientos Petrolíferos Fiscales Bolivianos, 12, 559–574.

    Google Scholar 

  • Pascual, R., Ortiz-Jaureguizar, E., & Prado, J. L. (1996). Land mammals: paradigm for Cenozoic South American geobiotic evolution. In G. Arratia (Ed.), Contributions of southern South America to vertebrate paleontology (pp. 265–319). Münchner Geowissenschaftliche Abhandlungen A, 30.

    Google Scholar 

  • Prevosti, F. J., & Forasiepi, A. M. (2018). Evolution of South American mammalian predators during the Cenozoic: Paleobiogeographic and paleoenvironmental contingencies. Springer Geology.

    Google Scholar 

  • Prevosti, F. J., & Soibelzon, L. H. (2012). Evolution of the South American carnivores (Mammalia, Carnivora). A paleontological perspective. In B. D. Patterson, & L. P. Costa (Eds.), Bones, clones, and biomes. The history and geography of Recent Neotropical mammals (pp. 102–122). University of Chicago Press.

    Google Scholar 

  • Prevosti, F. J., Forasiepi, A., & Zimicz, N. (2013). The evolution of the Cenozoic terrestrial mammalian predator guild in South America: Competition or replacement? Journal of Mammalian Evolution, 20, 3–21.

    Article  Google Scholar 

  • Puttick, M. N., & Thomas, G. H. (2015). Fossils and living taxa agree on patterns of body mass evolution: A case study with Afrotheria. Proceedings of the Royal Society B: Biological Sciences, 282, 20152023.

    Article  Google Scholar 

  • Rasmussen, D. T., & Simons, E. L. (1991). The oldest Egyptian hyracoids (Mammalia: Pliohyracidae): New species of Saghatherium and Thyrohyrax from the Fayum. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 182, 187–209.

    Article  Google Scholar 

  • Ripple, W. J., Estes, J. A., Beschta, R. L., Wilmers, C. C., Ritchie, E. G., Hebblewhite, M., et al. (2014). Status and ecological effects of the world’s largest carnivores. Science, 343, 1241484.

    Article  Google Scholar 

  • Roberts, E. M., Stevens, N. J., O’Connor, P. M., Dirks, P. H. G. M., Gottfried, M. D., Clyde, W. C., et al. (2012). Initiation of the western branch of the East African Rift coeval with the eastern branch. Nature Geoscience, 5, 289–294.

    Article  Google Scholar 

  • Rose, R. K., Pemberton, D. A., Mooney, N. J., & Jones, M. E. (2017). Sarcophilus harrisii (Dasyuromorphia: Dasyuridae). Mammalian Species, 49, 1–17.

    Article  Google Scholar 

  • Rovinsky, D. S., Evans, A. R., Martin, D. G., & Adams, J. W. (2020). Did the thylacine violate the costs of carnivory? Body mass and sexual dimorphism of an iconic Australian marsupial. Proceedings of the Royal Society B: Biological Sciences, 287, 20201537.

    Article  Google Scholar 

  • Saarinen, J. J., Boyer, A. G., Brown, J. H., Costa, D. P., Ernest, S. K. M., Evans, A. R., et al. (2014). Patterns of maximum body size evolution in Cenozoic land mammals: Eco-evolutionary processes and abiotic forcing. Proceedings of the Royal Society B: Biological Sciences, 281, 20132049.

    Article  Google Scholar 

  • Sallam, H. M., Seiffert, E. R., Steiper, M. E., & Simons, E. L. (2009). Fossil and molecular evidence constrain scenarios for the early evolutionary and biogeographic history of hystricognathous rodents. Proceedings of the National Academy of Sciences, USA, 106, 16722–16727.

    Google Scholar 

  • Sallam, H. M., Seiffert, E. R., & Simons, E. L. (2011). Craniodental morphology and systematics of a new family of hystricognathous rodents (Gaudeamuridae) from the late Eocene and early Oligocene of Egypt. PLoS ONE, 6, e16525.

    Article  Google Scholar 

  • Sallam, H. M., Seiffert, E. R., & Simons, E. L. (2012). A basal phiomorph (Rodentia, Hystricognathi) from the late Eocene of the Fayum Depression, Egypt. Swiss Journal of Palaeontology, 131, 283–301.

    Article  Google Scholar 

  • Sánchez-Villagra, M. R. (2013). Why are there fewer marsupials than placentals? On the relevance of geography and physiology to evolutionary patterns of mammalian diversity and disparity. Journal of Mammalian Evolution, 20, 279–290.

    Article  Google Scholar 

  • Schluter, D., & Pennell, M. W. (2017). Speciation gradients and the distribution of biodiversity. Nature, 546, 48–55.

    Article  Google Scholar 

  • Scillato-Yané, G. J. (1977). Sur quelques Glyptodontidae nouveaux (Mammalia, Edentata) du Déséadien (Oligocène inférieur) de Patagonie (Argentine). Bulletin du Muséum National d’Histoire Naturelle, Section C, Sciences de la Terre, Paléontologie, Géologie, Minéralogie, 64, 259–269.

    Google Scholar 

  • Sears, K. E. (2004). Constraints on the morphological evolution of marsupial shoulder girdles. Evolution, 58, 2353–2370.

    Google Scholar 

  • Seiffert, E. R. (2010). Chronology of Paleogene mammal localities. In L. Werdelin & W. J. Sanders (Eds.), Cenozoic mammals of Africa (pp. 18–26). University of California Press.

    Chapter  Google Scholar 

  • Seiffert, E. R., Simons, E. L., Ryan, T. M., Bown, T. M., & Attia, Y. (2007). New remains of Eocene and Oligocene Afrosoricida (Afrotheria) from Egypt, with implications for the origin(s) of afrosoricid zalambdodonty. Journal of Vertebrate Paleontology, 27, 963–972.

    Article  Google Scholar 

  • Seiffert, E. R., Tejedor, M. F., Fleagle, J. G., Novo, N. M., Cornejo, F. M., Bond, M., et al. (2020). A parapithecid stem anthropoid of African origin in the Paleogene of South America. Science, 197, 194–197.

    Article  Google Scholar 

  • Sen, S. (2013). Dispersal of African mammals in Eurasia during the Cenozoic: Ways and whys. Geobios, 46, 159–172.

    Article  Google Scholar 

  • Sileem, A. H., Sallam, H. M., Hewaidy, A. G. A., Miller, E. R., & Gunnell, G. F. (2016). A new anthracothere (Artiodactyla) from the early Oligocene, Fayum, Egypt, and the mystery of African “Rhagatherium” solved. Journal of Paleontology, 90, 170–181.

    Article  Google Scholar 

  • Simons, E. L. (1990). Discovery of the oldest known anthropoidean skull from the Paleogene of Egypt. Science, 247, 1567–1569.

    Article  Google Scholar 

  • Simons, E. L., Seiffert, E. R., Chatrath, P. S., & Attia, Y. (2001). Earliest record of a parapithecid anthropoid from the Jebel Qatrani Formation, Northern Egypt. Folia Primatologica, 72, 316–331.

    Article  Google Scholar 

  • Simpson, G. G. (1940). Review of the mammal-bearing Tertiary of South America. Proceedings of the American Philosophical Society, 83, 649–710.

    Google Scholar 

  • Simpson, G. G. (1948). The beginning of the age of mammals in South America. Part I. Introduction. Systematics: Marsupialia, Edentata, Condylarthra, Litopterna and Notioprogonia. Bulletin of the American Museum of Natural History, 91, 1–232.

    Google Scholar 

  • Simpson, G. G. (1967). The beginning of the age ofmMammals in South America. Part 2. Systematics: Notoungulata, concluded (Typotheria, Hegetotheria, Toxodonta, Notoungulata incertae sedis), Astrapotheria, Trigonostylopoidea, Pyrotheria, Xenungulata, Mammalia incertae sedis. Bulletin of the American Museum of Natural History, 137, 1–259.

    Google Scholar 

  • Simpson, G. G. (1980). Splendid isolation: The curious history of South American mammals. Yale University Press.

    Google Scholar 

  • Smith, F. A., Boyer, A. G., Brown, J. H., Costa, D. P., Dayan, T., Ernest, S. K. M., et al. (2010). The evolution of maximum body size of terrestrial mammals. Science, 330, 1216–1219.

    Article  Google Scholar 

  • Smith, F. A., Payne, J. L., Heim, N. A., Balk, M. A., Finnegan, S., Kowalewski, M., et al. (2016). Body size evolution across the Geozoic. Annual Review of Earth and Planetary Sciences, 44, 523–553.

    Article  Google Scholar 

  • Soibelzon, L. H., & Schubert, B. W. (2011). The largest known bear, Arctotherium angustidens, from the early Pleistocene Pampean region of Argentina: With a discussion of size and diet trends in bears. Journal of Paleontology, 85, 69–75.

    Article  Google Scholar 

  • Soibelzon, L. H., Rinderknecht, A., Tarquini, J., & Ugalde, R. (2019). First record of fossil procyonid (Mammalia, Carnivora) from Uruguay. Journal of South American Earth Sciences, 92, 368–373.

    Article  Google Scholar 

  • Solé, F., & Ladevèze, S. (2017). Evolution of the hypercarnivorous dentition in mammals (Metatheria, Eutheria) and its bearing on the development of tribosphenic molars. Evolution & Development, 19, 56–68.

    Article  Google Scholar 

  • Solé, F., Gheerbrant, E., Amaghzaz, M., & Bouya, B. (2009). Further evidence of the African antiquity of hyaenodontid (“Creodonta”, Mammalia) evolution. Zoological Journal of the Linnean Society, 156, 827–846.

    Article  Google Scholar 

  • Solé, F., Smith, T., Tabuce, R., & Marandat, B. (2016). New dental elements of the oldest proviverrine mammal, Parvagula palulae, from the Early Eocene of Southern France support possible African origin of the subfamily. Acta Palaeontologica Polonica, 61, 527–538.

    Article  Google Scholar 

  • Sorkin, B. (2008). A biomechanical constraint on body mass in terrestrial mammalian predators. Lethaia, 41, 333–347.

    Article  Google Scholar 

  • Tarquini, S., Chemisquy, M. A., & Prevosti, F. J. (2020a). Evolution of the carnassial in living mammalian carnivores (Carnivora, Didelphimorphia, Dasyuromorphia): Diet, phylogeny, and allometry. Journal of Mammalian Evolution, 27, 95–109.

    Article  Google Scholar 

  • Tarquini, J., Soibelzon, L. H., Salas-Gismondi, R., & de Muizon, C. (2020b). Cyonasua (Carnivora, Procyonidae) from late Miocene of Peru shed light on the early dispersal of carnivorans in South America. Journal of Vertebrate Paleontology, 40, e1834406.

    Article  Google Scholar 

  • Terborgh, J., Lopez, L., Nuñez, P., Rao, M., Shahabuddin, G., Orihuela, G., et al. (2001). Ecological meltdown in predator-free forest fragments. Science, 294, 1923–1926.

    Article  Google Scholar 

  • Tejedor, M. F., Goin, F. J., Gelfo, J. N., López, G., Bond, M., Carlini, A. A., et al. (2009). New early Eocene mammalian fauna from western Patagonia, Argentina. American Museum Novitates, 3638, 1–43.

    Article  Google Scholar 

  • Tucker, M. A., & Rogers, T. L. (2014). Examining predator-prey body size, trophic level and body mass across marine and terrestrial mammals. Proceedings of the Royal Society B: Biological Sciences, 281, 20142103.

    Google Scholar 

  • Tyndale-Biscoe, H. (2005). Life of marsupials. CSIRO Publishing.

    Book  Google Scholar 

  • Van Couvering, J. A., & Delson, E. (2020). African Land Mammal Ages. Journal of Vertebrate Paleontology, 40, e1803340.

    Article  Google Scholar 

  • Van Valkenburgh, B. (1985). Locomotor diversity within past and present guilds of large predatory mammals. Paleobiology, 11, 406–428.

    Article  Google Scholar 

  • Van Valkenburgh, B. (1990). Skeletal and dental predictors of body mass in predators. In J. Damuth & B. J. MacFadden (Eds.), Body size in mammalian paleobiology: Estimation and biological implications (pp. 181–206). Cambridge University Press.

    Google Scholar 

  • Van Valkenburgh, B. (1991). Iterative evolution of hypercarnivory in canids (Mammalia: Carnivora): evolutionary interactions among sympatric predators. Paleobiology, 17, 340–362.

    Google Scholar 

  • Van Valkenburgh, B. (2007). Déjà vu: The evolution of feeding morphologies in the Carnivora. Integrative and Comparative Biology, 47, 147–163.

    Article  Google Scholar 

  • Van Valkenburgh, B., & Koepfli, K.-P. (1993). Cranial and dental adaptations to predation in canids. Symposia of the Zoological Society London, 65, 15–37.

    Google Scholar 

  • Van Valkenburgh, B., Wang, X., & Damuth, J. (2004). Cope’s Rule, hypercarnivory and extinction in North American canids. Science, 306, 101–104.

    Article  Google Scholar 

  • Vaughan, T. A., Ryan, J. M., & Czaplewski, N. J. (2015). Mammalogy (6th ed.). Jones and Bartlett.

    Google Scholar 

  • Werdelin, L. (1986). Comparison of skull shape in marsupial and placental carnivores. Australian Journal of Zoology, 34, 109–118.

    Article  Google Scholar 

  • Werdelin, L. (1987). Jaw geometry and molar morphology in marsupial carnivores: Analysis of a constraint and its macroevolutionary consequences. Paleobiology, 13, 342–350.

    Article  Google Scholar 

  • Werdelin, L. (1996). Community-wide character displacement in Miocene hyaenas. Lethaia, 29, 97–106.

    Article  Google Scholar 

  • Werdelin, L., & Lewis, M. E. (2013). Temporal change in functional richness and evenness in the eastern African Plio-Pleistocene carnivoran guild. PLoS ONE, 8, 1–11.

    Article  Google Scholar 

  • Werdelin, L., & Wesley-Hunt, G. D. (2010). The biogeography of carnivore ecomorphology. In A. Goswami & A. Friscia (Eds.), Carnivoran evolution: New views on phylogeny, form, and function (pp. 225–245). Cambridge University Press.

    Chapter  Google Scholar 

  • Werdelin, L., & Wesley-Hunt, G. D. (2014). Carnivoran ecomorphology: Patterns below the family level. Annales Zoologici Fennici, 51, 259–268.

    Article  Google Scholar 

  • Wesley-Hunt, G. D. (2005). The morphological diversification of carnivores in North America. Paleobiology, 31, 35–55.

    Article  Google Scholar 

  • Wilf, P., Cúneo, N. R., Escapa, I. H., Pol, D., & Woodburne, M. O. (2013). Splendid and seldom isolated: The paleobiogeography of Patagonia. Annual Review of Earth and Planetary Sciences, 41, 561–603.

    Article  Google Scholar 

  • Wilson, G. P., Ekdale, E. G., Hoganson, J. W., Calede, J. J., & van der Linden, A. (2016). A large carnivorous mammal from the Late Cretaceous and the North American origin of marsupials. Nature Communications, 7, 13734.

    Article  Google Scholar 

  • Woodburne, M. O. (2010). The Great American Biotic Interchange: Dispersals, tectonics, climate, sea level and holding pens. Journal of Mammalian Evolution, 17, 245–264.

    Article  Google Scholar 

  • Woodburne, M. O., Goin, F. J., Bond, M., Carlini, A. A., Gelfo, J. N., López, G. M., et al. (2014). Paleogene land mammal faunas of South America; a response to global climatic changes and indigenous floral diversity. Journal of Mammalian Evolution, 21, 1–73.

    Article  Google Scholar 

  • Wroe, S. (2002). A review of terrestrial mammalian and reptilian carnivore ecology in Australian fossil faunas, and factors influencing their diversity: The myth of reptilian domination and its broader ramifications. Australian Journal of Zoology, 50, 1–24.

    Article  Google Scholar 

  • Wroe, S., Myers, T. J., Wells, R. T., & Gillespie, A. (1999). Estimating the weight of the Pleistocene marsupial lion, Thylacoleo carnifex (Thylacoleonidae : Marsupialia): Implications for the ecomorphology of a marsupial super-predator and hypotheses of impoverishment of Australian marsupial carnivore faunas. Australian Journal of Zoology, 47, 489–498.

    Article  Google Scholar 

  • Wroe, S., Myers, T., Seebacher, F., Kear, B., Gillespie, A., Crowther, M., & Salisbury, S. (2003). An alternative method for predicting body mass: The case of the Pleistocene marsupial lion. Paleobiology, 29, 403–411.

    Article  Google Scholar 

  • Wroe, S., Argot, C., & Dickman, C. (2004a). On the rarity of big, fierce carnivores and primacy of isolation and area: Tracking large mammalian carnivore diversity on two isolated continents. Proceedings of the Royal Society B: Biological Sciences, 271, 1203–1211.

    Article  Google Scholar 

  • Wroe, S., Crowther, M., Dortch, J., & Chong, J. (2004b). The size of the largest marsupial and why it matters. Proceedings of the Royal Society B: Biological Sciences, 271(Suppl.), S34–S36.

    Google Scholar 

  • Yoder, A. D., Delefosse, T., Burns, M. M., Goodman, S. M., Zehr, S., Flynn, J. J., & Veron, G. (2003). Single origin of Malagasy Carnivora from an African ancestor. Nature, 421, 734–737.

    Article  Google Scholar 

  • Zachos, J. C., Dickens, G. R., & Zeebe, R. E. (2008). An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451, 279–283.

    Article  Google Scholar 

  • Zhou, Y., Wang, S. R., & Ma, J. Z. (2017). Comprehensive species set revealing the phylogeny and biogeography of Feliformia (Mammalia, Carnivora) based on mitochondrial DNA. PLoS ONE, 12, e0174902.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the editors of this volume, C. Janis, I. Casanovas-Vilar, J. Saarinen, and L. van den Hoek Ostende for the invitation to contribute and for pulling it all together. We also thank M. Juhn for providing R code for data visualization and C. Janis for a thought-provoking discussion of possible constraints in metatherians as well as additional comments on our manuscript. The manuscript was improved thanks to critical evaluations by F. Prevosti and two anonymous reviewers, and we endeavored to incorporate as many of their suggestions as possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony R. Friscia .

Editor information

Editors and Affiliations

Appendix 5.1

Appendix 5.1

List of genera and associated data. Sparassodonts that are generically distinct but have not been formally named are referred to by their specimen number (see Croft et al., 2018). Abbreviations: mL, largest molar length; Max Age, maximum age (oldest remains); Min Age, minimum age (youngest remains); RBL, relative blade length.

Genus

Order

Familya

mL

RBL

Max age

Min age

Acrocyon

Sparassodonta

Borhyaenidae

13

NA

21.1

16

Acyon

Sparassodonta

Hathliacynidae

12

0.7583

21.1

12.4

Anachlysictis

Sparassodonta

Proborhyaenidae

13.4

0.8507

13.5

11.5

Angelocabrerus

Sparassodonta

Borhyaenoidea

14.4

NA

42

39

Arctodictis

Sparassodonta

Borhyaenidae

15.5

NA

21.1

14

Arminiheringia

Sparassodonta

Proborhyaenidae

21

0.8857

42

39

Australohyaena

Sparassodonta

Borhyaenidae

NA

0.91

29

24.5

Borhyaena

Sparassodonta

Borhyaenidae

18.1

0.8785

21.1

14

Borhyaenidium

Sparassodonta

Hathliacynidae

6.3

0.7937

9

3.4

Callistoe

Sparassodonta

Proborhyaenidae

17

0.8706

42

39.5

Chasicostylus

Sparassodonta

Hathliacynidae

9.6

NA

9.5

9

Chlorocyon

Sparassodonta

Borhyaenoidea

9.6

NA

37.4

35.5

Cladosictis

Sparassodonta

Hathliacynidae

9.6

0.7604

21.1

14

Dukecynus

Sparassodonta

Borhyaenoidea

17.1

0.8246

13.5

11.5

Eomakhaira

Sparassodonta

Proborhyaenidae

12

0.9417

34

32

Hondadelphys

Sparassodonta

Hondadelphidae

7.9

0.557

13.5

11.5

IGM251108

Sparassodonta

Proborhyaenidae

8.6

0.6163

13.5

11.5

indet

Sparassodonta

Borhyaenidae

15

NA

9

7

Lycopsis

Sparassodonta

Borhyaenoidea

12.5

0.752

18

9

MPEFPV4770

Sparassodonta

Hathliacynidae

8.6

0.8372

21

19

Nemolestes

Sparassodonta

Sparassodonta

8.9

0.6292

53

37

Notictis

Sparassodonta

Hathliacynidae

4.9

NA

9

7

Notocynus

Sparassodonta

Hathliacynidae

6.4

0.7188

7

4

Notogale

Sparassodonta

Hathliacynidae

7.8

0.7692

29

24.5

Paraborhyaena

Sparassodonta

Proborhyaenidae

29

0.95

27

26

Patagosmilus

Sparassodonta

Proborhyaenidae

11.9

0.9

21.1

12.4

Patene

Sparassodonta

Sparassodonta

4.5

0.4889

53

30.3

Perathereutes

Sparassodonta

Hathliacynidae

5.6

0.6786

18

16

Pharsophorus

Sparassodonta

Borhyaenoidea

16.3

0.865

30.8

24.5

Plesiofelis

Sparassodonta

Borhyaenoidea

18.8

0.8511

38

37

Proborhyaena

Sparassodonta

Proborhyaenidae

36.6

0.9454

29

24.5

Prothylacynus

Sparassodonta

Borhyaenoidea

15.1

0.8675

18

14

Pseudonotictis

Sparassodonta

Hathliacynidae

NA

0.64

18

10.8

Pseudothylacynus

Sparassodonta

Borhyaenoidea

12.1

0.7438

21.1

18.6

Sallacyon

Sparassodonta

Hathliacynidae

5.3

0.72

27

26

Sipalocyon

Sparassodonta

Hathliacynidae

6.6

0.72

21.1

14

Stylocynus

Sparassodonta

Sparassodonta

15

0.6867

9

7

Thylacosmilus

Sparassodonta

Proborhyaenidae

15.9

0.9182

9

3.4

Akhnatenavus

Hyaenodonta

Hyainailourinae

14.27

0.825

35

33.7

Anasinopa

Hyaenodonta

Teratodontinae

14.82

0.609

19

15

Apterodon

Hyaenodonta

Apterodontinae

17.21

0.6234

37

30.5

Boualitomus

Hyaenodonta

Koholinae

3.9

0.62

55.8

54

Brychotherium

Hyaenodonta

Teratodontinae

8.41

0.62

35

33.9

Buhakia

Hyaenodonta

Hyainailourinae

10.12

0.68

18

16.8

Dissopsalis

Hyaenodonta

Teratodontinae

16.48

0.67

15

9

Furodon

Hyaenodonta

Teratodontinae

8.3

0.55

49.3

45.7

Glibzegdouia

Hyaenodonta

Teratodontinae

7.7

0.48

49.3

45.7

Hyainailouros

Hyaenodonta

Hyainailourinae

45.5

0.84

22

15

Isohyaenodon

Hyaenodonta

Hyainailourinae

11.64

0.9043

20

15

Koholia

Hyaenodonta

Koholinae

8.4

0.65

51.8

51

Lahimia

Hyaenodonta

Koholinae

5.53

0.64

61.6

59.2

Leakitherium

Hyaenodonta

Hyainailourinae

20.17

0.888

17.8

15

Masrasector

Hyaenodonta

Teratodontinae

6.115

0.5638

35

30.6

Megistotherium

Hyaenodonta

Hyainailourinae

44.38

0.87

19

14

Metapterodon

Hyaenodonta

Hyainailourinae

9.22

0.78

20

15

Metasinopa

Hyaenodonta

Hyainailourinae

11.8

0.63

33

22.6

Mlanyama

Hyaenodonta

Hyainailourinae

12.4

0.879

22

22

Pterodon

Hyaenodonta

Hyainailourinae

24.09

0.7367

33.9

28.5

Quasiapterodon

Hyaenodonta

Apterodontinae

6.495

0.6052

30

28.5

Simbakubwa

Hyaenodonta

Hyainailourinae

41.95

0.9858

22.5

22

Sinopa

Hyaenodonta

Hyainailourinae

8.39

0.77

33.9

33.7

Teratodon

Hyaenodonta

Teratodontinae

7.61

0.605

23

15

Tinerhodon

Hyaenodonta

Koholinae

1.64

0.55

56.5

55.8

  1. aSparassodonts referred to Borhyaenoidea are basal members of the clade and not currently allocated to a family. Referral of thylacosmilines to Proborhyaenidae follows Engelman et al. (2020).

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Friscia, A.R., Borths, M.R., Croft, D.A. (2023). Comparing the Evolution of the Extinct, Endemic Carnivorous Mammals of South America and Africa (Sparassodonts and Hyaenodonts). In: Casanovas-Vilar, I., van den Hoek Ostende, L.W., Janis, C.M., Saarinen, J. (eds) Evolution of Cenozoic Land Mammal Faunas and Ecosystems. Vertebrate Paleobiology and Paleoanthropology. Springer, Cham. https://doi.org/10.1007/978-3-031-17491-9_5

Download citation

Publish with us

Policies and ethics