Skip to main content

Utilization of Saccharomyces cerevisiae as a Source of Natural Food Additives

  • Chapter
  • First Online:
Natural Additives in Foods

Abstract

Saccharomyces cerevisiae is the most powerful, single-cell eukaryotic system for biological research and industrial applications, due to its remarkable resistance/tolerance to high sugar concentrations and production of several products of commercial interest. S. cerevisiae biomass can be obtained from the brewery process bleeding (spent yeast) or cultured by using strategies to attain high cell densities. Agri-food wastes or biomasses can be used as main carbon sources for its cultivation, with the aim of reducing production costs. The main product of this process is yeast extract or inactive yeast that can be integrally used as food additive due to the high content of vitamins, proteins, peptides, and amino acids or fractionated to obtain umami taste and meaty flavor, cell wall, polyphosphate and ergosterol food additives. S. cerevisiae can also be genetically modified to produce important molecules in the food additive industry. This chapter aims to provide the state of the art and some perspectives and advances in the S. cerevisiae food additives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldman H, et al. Life with 6000 genes. Science. 1996;274:546–67.

    Article  CAS  Google Scholar 

  2. Duan SF, Han PJ, Wang QM, Liu WQ, Shi JY, Li K, et al. The origin and adaptive evolution of domesticated populations of yeast from Far East Asia. Nat Commun. 2018;9(1):2690.

    Article  Google Scholar 

  3. McGovern PE, Zhang J, Tang J, Zhang Z, Hall GR, Moreau RA, et al. Fermented beverages of pre-and proto-historic China. Proc Natl Acad Sci U S A. 2004;101:17593–8.

    Article  CAS  Google Scholar 

  4. Liti G. The natural history of model organisms: the fascinating and secret wildlife of the budding yeast S. cerevisiae. elife. 2015;4(4):e05835.

    Article  Google Scholar 

  5. Sampaio JP, Gonçalves P. Natural populations of Saccharomyces kudriavzevii in Portugal are associated with Oak bark and are sympatric with S. cerevisiae and S. paradoxus. Appl Environ Microbiol. 2008;74:2144–52.

    Article  CAS  Google Scholar 

  6. Reed G, Nagodawithana TW. Yeast technology, vol. 2. Netherlands: Springer; 1990. p. 1–459.

    Book  Google Scholar 

  7. Bertolo AP, Biz AP, Kempka AP, Rigo E, Cavalheiro D. Yeast (Saccharomyces cerevisiae): evaluation of cellular disruption processes, chemical composition, functional properties and digestibility. J Food Sci Technol. 2019;56:3697–706.

    Article  CAS  Google Scholar 

  8. Bzducha-Wróbel A, Błażejak S, Kieliszek M, Pobiega K, Falana K, Janowicz M. Modification of the cell wall structure of Saccharomyces cerevisiae strains during cultivation on waste potato juice water and glycerol towards biosynthesis of functional polysaccharides. J Biotechnol. 2018;281:1–10.

    Article  Google Scholar 

  9. Pérez-Torrado R, Gamero E, Gómez-Pastor R, Garre E, Aranda A, Matallana E. Yeast biomass, an optimised product with myriad applications in the food industry. Trends Food Sci Technol, Elsevier Ltd. 2015;46:167–75.

    Article  Google Scholar 

  10. Parapouli M, Vasileiadis A, Afendra AS, Hatziloukas E. Saccharomyces cerevisiae and its industrial applications. AIMS Microbiol. 2020;6:1–31.

    Article  CAS  Google Scholar 

  11. Biorigen. Biorigen - Arte em Ingredientes Naturais. 2022. Available from: https://www.biorigin.net/biorigin/index.php/pt/

  12. Biospringer. Yeast extract is an ingredient on the rise. 2022. Available from: https://biospringer.com/en/yeast-extract-an-ingredient-on-the-rise/

  13. FDA. Food Additive Status List. 2022.

    Google Scholar 

  14. FAO. Regulation (EC) No. 1334/2008 of the European Parliament and of the Council on flavourings and certain food ingredients with flavouring properties for use in and on foods and amending Council Regulation (EEC) No. 1601/91, Regulations (EC) No. 2232/96 and (EC) No. 110/2008 and Directive 2000/13/EC. 2008

    Google Scholar 

  15. Markets and Markets TM. Yeast Market by Type (Baker’s Yeast, Brewer’s Yeast, Wine Yeast, Probiotics Yeast), Form (Active, Instant, Fresh), Genus (Saccharomyces, Kluyveromyces), Application (Food, Feed), and Region - Global Forecast to 2025. 2022

    Google Scholar 

  16. Jach ME, Serefko A. Nutritional yeast biomass: characterization and application. Diet Microbiome. Health Elsevier. 2018;1:237–70.

    Article  Google Scholar 

  17. Bacha U, Nasir M, Khalique A, Anjum AA, Jabbar MA. Comparative assessment of various agro-industrial wastes for Saccharomyces cerevisiae biomass production and its quality evaluation as single cell protein. J Anim Plant Sci. 2011;21:2011.

    Google Scholar 

  18. Ganatsios V, Terpou A, Bekatorou A, Plessas S, Koutinas AA, Koutinas AA, et al. Refining Citrus wastes: from discarded oranges to efficient brewing biocatalyst, aromatic beer, and alternative yeast extract production. Beverages. 2021;7:1–13.

    Article  Google Scholar 

  19. Lavová B, Hároniková A, Márová I, Urminská D, Lavová IB. Production of ergosterol by Saccharomyces cerevisiae. J Microbiol. 2013;2:1934–40.

    Google Scholar 

  20. Tan T, Zhang M, Gao H. Ergosterol production by fed-batch fermentation of Saccharomyces cerevisiae. Enzyme Microbial Technol Elsevier Inc. 2003;33:366–70.

    Article  CAS  Google Scholar 

  21. Wu H, Li Y, Song G, Xue D. Producing ergosterol from corn straw hydrolysates using Saccharomyces cerevisiae. Afr J Biotechnol. 2012;11(50):11160–67

    Google Scholar 

  22. Cheng MH, Sun L, Jin YS, Dien B, Singh V. Production of xylose enriched hydrolysate from bioenergy sorghum and its conversion to β-carotene using an engineered Saccharomyces cerevisiae. Bioresour Technol. 2020;308:1–18.

    Article  Google Scholar 

  23. Sadowska A, Dybkowska E, Swiderski F. Spent yeast as natural source of functional food additives. RoczPanstw Zakl Hig. 2018;68:115–21.

    Google Scholar 

  24. Gómez-Pastor R, Pérez-Torrado R, Garre E, Matallana E. Recent advances in yeast biomass production. Biomass - Detect Product Usage. 2011;1:201–22.

    Google Scholar 

  25. Pereira PR, Freitas CS, Paschoalin VMF. Saccharomyces cerevisiae biomass as a source of next-generation food preservatives: evaluating potential proteins as a source of antimicrobial peptides. Compr Rev Food Sci Food Saf. 2021;20:4450–79.

    Article  CAS  Google Scholar 

  26. Maemura H, Morimura S, Kida K. Effects of aeration during the cultivation of pitching yeast on its characteristics during the subsequent fermentation of wort. J Inst Brew. 1998;104:207–11.

    Article  CAS  Google Scholar 

  27. de Andrade APC, da Silva HL, Pinto GAS. Yeast biomass production with potential for biological control: process strategies for increasing yield. Res Soc Dev. 2020;9(4):1515–24

    Google Scholar 

  28. Agbogbo FK, Coward-Kelly G. Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnol Lett. 2008;30:1515–24.

    Article  CAS  Google Scholar 

  29. Bonan CIDG, Biazi LE, Dionísio SR, Soares LB, Tramontina R, Sousa AS, et al. Redox potential as a key parameter for monitoring and optimization of xylose fermentation with yeast Spathaspora passalidarum under limited-oxygen conditions. Bioprocess Biosyst Eng. 2020;43:1509–19.

    Article  CAS  Google Scholar 

  30. Jacob FF, Striegel L, Rychlik M, Hutzler M, Methner FJ. Yeast extract production using spent yeast from beer manufacture: influence of industrially applicable disruption methods on selected substance groups with biotechnological relevance. Eur Food Res Technol. 2019;245:1169–82.

    Article  CAS  Google Scholar 

  31. Dimopoulos G, Stefanou N, Andreou V, Taoukis P. Effect of pulsed electric fields on the production of yeast extract by autolysis. Innov Food Sci Emerg Technol. 2018;48:287–95.

    Article  CAS  Google Scholar 

  32. Rakowska R, Sadowska A, Dybkowska E, Swiderski F. Spent yeast as natural source of functional food additives. RoczPanstw Zakl Hig. 2017;68:115–21.

    CAS  Google Scholar 

  33. Jackson RS. Post fermentation treatments and related topics. Wine Sci. 2008:418–519.

    Google Scholar 

  34. Breddam K, Beenfeldt T. Applied microbiology biotechnology acceleration of yeast autolysis by chemical methods for production of intracellular enzymes. Appl Microbiol Biotechnol. 1991;35:323–9.

    Article  CAS  Google Scholar 

  35. Šuklje K, Antalick G, Buica A, Coetzee ZA, Brand J, Schmidtke LM, et al. Inactive dry yeast application on grapes modify Sauvignon Blanc wine aroma. Food Chem. 2016;197:1073–84.

    Article  Google Scholar 

  36. Pozo-Bayón MÁ, Andujar-Ortiz I, Alcaide-Hidalgo JM, Martín-Álvarez PJ, Moreno-Arribas MV. Characterization of commercial inactive dry yeast preparations for enological use based on their ability to release soluble compounds and their behavior toward aroma compounds in model wines. J Agric Food Chem. 2009;57:10784–92.

    Article  Google Scholar 

  37. In M, Kim DC, Chae HJ. Downstream process for the production of yeast extract using Brewer’s yeast cells. Biotechnol Bioprocess Eng. 2005;10:85–90.

    Article  CAS  Google Scholar 

  38. Ninomiya K. Science of umami taste: adaptation to gastronomic culture. Flavour. 2015;4(13):1–5

    Google Scholar 

  39. Alves EM, de Souza JF, de Oliva NP. Advances in yeast autolysis technology - a faster and safer new bioprocess. Brazil J Food Technol. 2021;25:e2020249.

    Article  Google Scholar 

  40. Alim A, Yang C, Song H, Liu Y, Zou T, Zhang Y, et al. The behavior of umami components in thermally treated yeast extract. Food Res Int. 2019;120:534–43.

    Article  CAS  Google Scholar 

  41. Osumi M. The ultrastructure structure and. Micron. 1998;29:207–33.

    Article  CAS  Google Scholar 

  42. Normand V, Dardelle G, Bouquerand PE, Nicolas L, Johnston DJ. Flavor encapsulation in yeasts: limonene used as a model system for characterization of the release mechanism. J Agric Food Chem. 2005;53:7532–43.

    Article  CAS  Google Scholar 

  43. Borovikova D, Teparić R, Mrša V, Rapoport A. Anhydrobiosis in yeast: cell wall mannoproteins are important for yeast Saccharomyces cerevisiae resistance to dehydration. Yeast. 2016;33:347–53.

    Article  CAS  Google Scholar 

  44. Klis FM, Mol P, Hellingwerf K, Brul S. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev. 2002;26:239–56.

    Article  CAS  Google Scholar 

  45. Varelas V, Liouni M, Calokerinos AC, Nerantzis ET. An evaluation study of different methods for the production of β-D-glucan from yeast biomass. Drug Test Anal John Wiley and Sons Ltd. 2016;8:47–56.

    CAS  Google Scholar 

  46. Dalonso N, Goldman GH, Gern RMM. β-(1→3),(1→6)-Glucans: medicinal activities, characterization, biosynthesis and new horizons. Appl Microbiol Biotechnol. 2015;99:7893–906.

    Article  CAS  Google Scholar 

  47. Xu S, Zhang GY, Zhang H, Kitajima T, Nakanishi H, Gao XD. Effects of Rho1, a small GTPase on the production of recombinant glycoproteins in Saccharomyces cerevisiae. Microb Cell Factories. 2016;15:179.

    Article  Google Scholar 

  48. Kollár R, Reinhold BB, PetráKová E, Yeh HJC, Ashwell G, Drgonová J, et al. Architecture of the yeast cell wall - beta-1,6-glucan interconnects mannoprotein, beta-1,3-glucan, and chitin. J Biol Chem. 1997;272:17762–75.

    Article  Google Scholar 

  49. Dardelle G, Normand V, Steenhoudt M, Bouquerand PE, Chevalier M, Baumgartner P. Flavour-encapsulation and flavour-release performances of a commercial yeast-based delivery system. Food Hydrocoll. 2007;21:953–60.

    Article  CAS  Google Scholar 

  50. Shi G, Rao L, Yu H, Xiang H, Yang H, Ji R. Stabilization and encapsulation of photosensitive resveratrol within yeast cell. Int J Pharm. 2008;349:83–93.

    Article  CAS  Google Scholar 

  51. Rajarajaran A, Dakshanamoorthy A. Beta-Glucans: a biomimetic approach for reducing chronicity in delayed wound healing. J Dermatol Skin Sci. 2020;2:16–21.

    Google Scholar 

  52. Vetvicka V, Vetvickova J. Effects of yeast-derived β-glucans on blood cholesterol and macrophage functionality Glucans, blood cholesterol, and macrophage function V. Vetvicka and J. Vetvickova. J Immunotoxicol. 2009;6:30–5.

    Article  CAS  Google Scholar 

  53. Vlassopoulou M, Yannakoulia M, Pletsa V, Zervakis GI, Kyriacou A. Effects of fungal beta-glucans on health-a systematic review of randomized controlled trials. Food Funct. Royal Society of Chemistry. 2021;12:3366–80.

    Article  CAS  Google Scholar 

  54. EFSA. Scientific opinion on the safety of ‘yeast beta-glucans’ as a novel food ingredient. EFSA J. 2011;9(5):2137

    Google Scholar 

  55. Thammakiti S, Suphantharika M, Phaesuwan T, Verduyn C. Preparation of spent brewer’s yeast b-glucans for potential applications in the food industry. Int J Food Sci Technol. 2004;39:21–9.

    Article  CAS  Google Scholar 

  56. Piotrowska M, Masek A. Saccharomyces cerevisiae cell wall components as tools for ochratoxin A decontamination. Toxins. 2015;7:1151–62.

    Article  CAS  Google Scholar 

  57. Waszkiewicz-Robak B, Bartnikowska E. Effects of spent brewer’s yeast and biological β-glucans on selected parameters of lipid metabolism in blood and liver in rats. J Anim Feed Sci. 2009;18:699–708.

    Article  Google Scholar 

  58. FDA. GRAS Notice 000239: Yeast beta-glucan. 2008

    Google Scholar 

  59. Brazil. National Health Surveillance Agency (ANVISA). IN vol:1–30, n 28, 26/07/2018. 2018.

    Google Scholar 

  60. Li J, Karboune S. A comparative study for the isolation and characterization of mannoproteins from Saccharomyces cerevisiae yeast cell wall. Int J Biol Macromol. 2018;119:654–61.

    Article  CAS  Google Scholar 

  61. de Melo ANF, de Souza EL, da Silva Araujo VB, Magnani M. Stability, nutritional and sensory characteristics of French salad dressing made with mannoprotein from spent brewer’s yeast. LWT. 2015;62:771–4.

    Article  Google Scholar 

  62. da Silva Araújo VB, de Melo ANF, Costa AG, Castro-Gomez RH, Madruga MS, de Souza EL, et al. Followed extraction of β-glucan and mannoprotein from spent brewer’s yeast (Saccharomyces uvarum) and application of the obtained mannoprotein as a stabilizer in mayonnaise. Innov Food Sci Emerg Technol. 2014;23:164–70.

    Article  Google Scholar 

  63. Caridi A. Enological functions of parietal yeast mannoproteins. Anton Leeuw Int J Gen Mol Microbiol. 2006;89:417–22.

    Article  Google Scholar 

  64. Ganan M, Carrascosa AV, de Pascual-Teresa S, Martinez-Rodriguez AJ. Effect of Mannoproteins on the growth, gastrointestinal viability, and adherence to Caco-2 cells of lactic acid bacteria. J Food Sci. 2012;77(3):M176.

    Article  Google Scholar 

  65. Orlean P. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics. 2012;192:775–818.

    Article  CAS  Google Scholar 

  66. Liu HZ, Liu L, Hui H, Wang Q. Structural characterization and antineoplastic activity of Saccharomyces cerevisiae mannoprotein. Int J Food Prop. 2015;18:359–71.

    Article  CAS  Google Scholar 

  67. de Nobel JG, Klis FM, Priem J, Munnik T, van den Ende H. The glucanase-soluble mannoproteins limit cell wall porosity in Saccharomyces cerevisiae. Yeast. 1990;6:491–9.

    Article  Google Scholar 

  68. Jordá T, Puig S. Regulation of ergosterol biosynthesis in Saccharomyces cerevisiae. Genes MDPI AG. 2020;11:1–18.

    Google Scholar 

  69. Hu Y, Zhu Z, Nielsen J, Siewers V. Engineering Saccharomyces cerevisiae cells for production of fatty acid-derived biofuels and chemicals. Open Biol. 2019;9(5):190049.

    Article  Google Scholar 

  70. Blaga AC, Ciobanu C, Caşcaval D, Galaction AI. Enhancement of ergosterol production by Saccharomyces cerevisiae in batch and fed-batch fermentation processes using n-dodecane as oxygen-vector. Biochem Eng J. 2018;131:70–6.

    Article  CAS  Google Scholar 

  71. Corrêa RCG, Barros L, Fernandes Â, Sokovic M, Bracht A, Peralta RM, et al. A natural food ingredient based on ergosterol: optimization of the extraction from: Agaricus blazei, evaluation of bioactive properties and incorporation in yogurts. Food Funct. 2018;9:1465–74.

    Article  Google Scholar 

  72. Kulakovskaya TV, Vagabov VM, Kulaev IS. Inorganic polyphosphate in industry, agriculture and medicine: modern state and outlook. Process Biochem. 2012;47:1–10.

    Article  CAS  Google Scholar 

  73. EFSA. EFSA issues new advice on phosphates. 2019.

    Google Scholar 

  74. Christ JJ, Blank LM. Saccharomyces cerevisiae containing 28% polyphosphate and production of a polyphosphate-rich yeast extract thereof. FEMS Yeast Res. 2019;19(3):foz011.

    Article  Google Scholar 

  75. Christ JJ, Smith SA, Willbold S, Morrissey JH, Blank LM. Biotechnological synthesis of water-soluble food-grade polyphosphate with Saccharomyces cerevisiae. Biotechnol Bioeng. 2020;117:2089–99.

    Article  CAS  Google Scholar 

  76. Li M, Borodina I. Application of synthetic biology for the production of chemicals in yeast Saccharomyces cerevisiae. FEMS Yeast Res. 2015;15:1–12.

    Google Scholar 

  77. Cherry JM, Adler C, Ball C, Chervitz SA, Dwight SS, Hester ET, et al. SGD: Saccharomyces genome database. Nucleic Acids Res. 1998;26:73–9.

    Article  CAS  Google Scholar 

  78. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Véronneau S, et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature. 2002;418:387–91.

    Article  CAS  Google Scholar 

  79. Legras JL, Galeote V, Bigey F, Camarasa C, Marsit S, Nidelet T, et al. Adaptation of S. cerevisiae to fermented food environments reveals remarkable genome plasticity and the footprints of domestication. Mol Biol Evol. 2018;35:1712–27.

    Article  CAS  Google Scholar 

  80. Rizvi SMA, Prajapati HK, Ghosh SK. The 2 micron plasmid: a selfish genetic element with an optimized survival strategy within Saccharomyces cerevisiae. Curr Genet. Springer Verlag. 2018;64:25–42.

    Article  CAS  Google Scholar 

  81. Hanlon P, Sewalt V. GEMs: genetically engineered microorganisms and the regulatory oversight of their uses in modern food production. Crit Rev Food Sci Nutr. Bellwether Publishing, Ltd. 2021;61:959–70.

    Article  CAS  Google Scholar 

  82. Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science. 1999;285:901–6.

    Article  CAS  Google Scholar 

  83. Delneri D, Gardner DCJ, Bruschi C, v, Oliver SG. Disruption of seven hypothetical aryl alcohol dehydrogenase genes from Saccharomyces cerevisiae and construction of a multiple Knock-out strain. Yeast. 1999;15:1681–9.

    Article  CAS  Google Scholar 

  84. Fraczek MG, Naseeb S, Delneri D. History of genome editing in yeast. Yeast. 2018;35:361–8.

    Article  CAS  Google Scholar 

  85. Dicarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 2013;41:4336–43.

    Article  CAS  Google Scholar 

  86. Li M. Engineering of Saccharomyces cerevisiae for production of resveratrol and its derivatives. The Novo Nordisk Foundation. 2016;9(1):1–137.

    Google Scholar 

  87. Zhang Y, Li SZ, Li J, Pan X, Cahoon RE, Jaworski JG, et al. Using unnatural protein fusions to engineer resveratrol biosynthesis in yeast and mammalian cells. J Am Chem Soc. 2006;128:13030–1.

    Article  CAS  Google Scholar 

  88. Trantas E, Panopoulos N, Ververidis F. Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae. Metab Eng. 2009;11:355–66.

    Article  CAS  Google Scholar 

  89. Beekwilder J, Wolswinkel R, Jonker H, Hall R, de Rie Vos CH, Bovy A. Production of resveratrol in recombinant microorganisms. Appl Environ Microbiol. 2006;72:5670–2.

    Article  CAS  Google Scholar 

  90. Sydor T, Schaffer S, Boles E. Considerable increase in resveratrol production by recombinant industrial yeast strains with use of rich medium. Appl Environ Microbiol. 2010;76:3361–3.

    Article  CAS  Google Scholar 

  91. Li M, Borodina I. Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae. FEMS Yeast Res. Oxford University Press. 2015;15:1–12.

    Google Scholar 

  92. Rodriguez A, Kildegaard KR, Li M, Borodina I, Nielsen J. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metab Eng. 2015;15:1–12.

    Google Scholar 

  93. Borja GM, Rodriguez A, Campbell K, Borodina I, Chen Y, Nielsen J. Metabolic engineering, and transcriptomic analysis of Saccharomyces cerevisiae producing p-coumaric acid from xylose. Microb Cell Factories. 2019;18(1):191.

    Article  Google Scholar 

  94. Sun L, Kwak S, Jin YS. Vitamin A production by engineered Saccharomyces cerevisiae from xylose via two-phase in situ extraction. ACS Synth Biol. 2019;8:2131–40.

    Article  CAS  Google Scholar 

  95. Sauer M, Branduardi P, Valli M, Porro D. Production of L-ascorbic acid by metabolically engineered Saccharomyces cerevisiae and Zygosaccharomyces bailii. Appl Environ Microbiol. 2004;70:6086–91.

    Article  CAS  Google Scholar 

  96. Levisson M, Patinios C, Hein S, de Groot PA, Daran JM, Hall RD, et al. Engineering de novo anthocyanin production in Saccharomyces cerevisiae. Microb Cell Factories. 2018;17(1):103.

    Article  Google Scholar 

  97. Eichenberger M, Hansson A, Fischer D, Dürr L, Naesby M. De novo biosynthesis of anthocyanins in Saccharomyces cerevisiae. FEMS Yeast Res. 2018;18(4):1–13.

    Google Scholar 

  98. Su B, Song D, Zhu H. Metabolic engineering of Saccharomyces cerevisiae for enhanced carotenoid production from xylose-glucose mixtures. Front Bioeng Biotechnol. 2020;8:1–11.

    Article  CAS  Google Scholar 

  99. Kim IK, Roldão A, Siewers V, Nielsen J. A systems-level approach for metabolic engineering of yeast cell factories. FEMS Yeast Res. 2012;12:228–48.

    Article  CAS  Google Scholar 

  100. Otero JM, Cimini D, Patil KR, Poulsen SG, Olsson L, Nielsen J. Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory. PLoS One. 2013;8(1):e54144.

    Article  Google Scholar 

  101. Brochado AR, Matos C, Møller BL, Hansen J, Mortensen UH, Patil KR. Improved vanillin production in baker’s yeast through in silico design. Microb Cell Factories. 2010;9:1–15.

    Article  Google Scholar 

  102. Raab AM, Gebhardt G, Bolotina N, Weuster-Botz D, Lang C. Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid. Metab Eng. 2010;12:518–25.

    Article  CAS  Google Scholar 

  103. Ishida N, Saitoh S, Ohnishi T, Tokuhiro K, Nagamori E, Kitamoto K, et al. Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure L-(+)-lactic acid. Vol. 795. Appl Biochem Biotechnol. 2006;129:795–807.

    Article  Google Scholar 

  104. van Maris AJA, Geertman JMA, Vermeulen A, Groothuizen MK, Winkler AA, Piper MDW, et al. Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast. Appl Environ Microbiol. 2004;70:159–66.

    Article  Google Scholar 

  105. Zelle RM, de Hulster E, van Winden WA, de Waard P, Dijkema C, Winkler AA, et al. Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ Microbiol. 2008;74:2766–77.

    Article  CAS  Google Scholar 

  106. Kogje A, Ghosalkar A. Xylitol production by Saccharomyces cerevisiae overexpressing different xylose reductases using non-detoxified hemicellulosic hydrolysate of corncob. 3 Biotech. 2016;6(2):127.

    Article  Google Scholar 

  107. Denby CM, Li RA, Vu VT, Costello Z, Lin W, Chan LJG, et al. Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer. Nat Commun. 2018;9(1):965.

    Article  Google Scholar 

  108. Heitmann M, Zannini E, Arendt E. Impact of Saccharomyces cerevisiae metabolites produced during fermentation on bread quality parameters: a review. Crit Rev Food Sci Nutr. 2018;58:1152–64.

    Article  CAS  Google Scholar 

  109. Shin SY, Jung SM, Kim MD, Han NS, Seo JH. Production of resveratrol from tyrosine in metabolically engineered Saccharomyces cerevisiae. Enzym Microb Technol. 2012;51:211–6.

    Article  CAS  Google Scholar 

  110. Bae SM, Park YC, Lee TH, Kweon DH, Choi JH, Kim SK, et al. Production of xylitol by recombinant Saccharomyces cerevisiae containing xylose reductase gene in repeated fed-batch and cell-recycle fermentations. Enzyme Microbial Technol. 2004;35:545–9.

    Article  CAS  Google Scholar 

  111. Oh EJ, Ha SJ, Rin Kim S, Lee WH, Galazka JM, Cate JHD, et al. Enhanced xylitol production through simultaneous co-utilization of cellobiose and xylose by engineered Saccharomyces cerevisiae. Metab Eng. 2013;15:226–34.

    Article  CAS  Google Scholar 

  112. Cheng M-H, Sun L, Jin Y-S, Dien B, Singh V. Production of xylose enriched hydrolysate from bioenergy sorghum and its conversion to β-carotene using an engineered Saccharomyces cerevisiae. Bioresour Technol. 2020;308:1–18.

    Article  Google Scholar 

  113. Hong J, Park SH, Kim S, Kim SW, Hahn JS. Efficient production of lycopene in Saccharomyces cerevisiae by enzyme engineering and increasing membrane flexibility and NAPDH production. Appl Microbiol Biotechnol. 2019;103:211–23.

    Article  CAS  Google Scholar 

  114. Wang M, Wei Y, Ji B, Nielsen J. Advances in metabolic engineering of Saccharomyces cerevisiae for Cocoa butter equivalent production. Front Bioeng Biotechnol. Frontiers Media SA. 2020;8:1–8.

    Google Scholar 

  115. Almahbashi M, Baldwin G, Byran A, Chang W, Chavez M, Cassab M, et al. Real vegan cheese: Casein production in Saccharomyces cerevisiae. iGEM SF-Bay- Area- DIY bio-Championship Posters. Available from: http://2014.igem.org/files/posters/SF_Bay_Area_DIYbio_Championship.pdf

  116. Amyris. REALSWEET™ REB M. 2022. Available from: https://amyris.com/ingredient/rebm

  117. EVOLVA. Health Ingredients. 2022. Available from: https://evolva.com/business-segment/health-ingredients/

  118. Husnik JI, Volschenk H, Bauer J, Colavizza D, Luo Z, van Vuuren HJJ. Metabolic engineering of malolactic wine yeast. Metab Eng. 2006;8:315–23.

    Article  CAS  Google Scholar 

  119. Brazil. National Technical Commission for biosecurity (CTNBio). Table of microorganisms - commercial use genetically modified micro-organisms and their derivates commercially approved for commercial use in Brazil. 2022. Available from: http://ctnbio.mctic.gov.br/liberacao-comercial/-/document_library_display/SqhWdohU4BvU/view/1687332;jsessionid=E257CCEE4D07707B964D695B4F29B252.columba#/liberacao-comercial/consultar-processo

Download references

Acknowledgments

The authors acknowledge fellowships from the Coordination for the Improvement of Higher Education Personnel—CAPES (processes number 88887.619536/2021-00 and 88887.495360/2020-00).

Conflicts of Interest

The author declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaciane Lutz Ienczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ienczak, J.L., de Oliveira Pereira, I., da Silveira, J.M. (2023). Utilization of Saccharomyces cerevisiae as a Source of Natural Food Additives. In: Valencia, G.A. (eds) Natural Additives in Foods. Springer, Cham. https://doi.org/10.1007/978-3-031-17346-2_7

Download citation

Publish with us

Policies and ethics