Skip to main content

Uni4Eye: Unified 2D and 3D Self-supervised Pre-training via Masked Image Modeling Transformer for Ophthalmic Image Classification

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13438))

Abstract

A large-scale labeled dataset is a key factor for the success of supervised deep learning in computer vision. However, a limited number of annotated data is very common, especially in ophthalmic image analysis, since manual annotation is time-consuming and labor-intensive. Self-supervised learning (SSL) methods bring huge opportunities for better utilizing unlabeled data, as they do not need massive annotations. With an attempt to use as many as possible unlabeled ophthalmic images, it is necessary to break the dimension barrier, simultaneously making use of both 2D and 3D images. In this paper, we propose a universal self-supervised Transformer framework, named Uni4Eye, to discover the inherent image property and capture domain-specific feature embedding in ophthalmic images. Uni4Eye can serve as a global feature extractor, which builds its basis on a Masked Image Modeling task with a Vision Transformer (ViT) architecture. We employ a Unified Patch Embedding module to replace the origin patch embedding module in ViT for jointly processing both 2D and 3D input images. Besides, we design a dual-branch multitask decoder module to simultaneously perform two reconstruction tasks on the input image and its gradient map, delivering discriminative representations for better convergence. We evaluate the performance of our pre-trained Uni4Eye encoder by fine-tuning it on six downstream ophthalmic image classification tasks. The superiority of Uni4Eye is successfully established through comparisons to other state-of-the-art SSL pre-training methods.

Z. Cai and L. Lin—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atito, S., Awais, M., Kittler, J.: Sit: self-supervised vision transformer. arXiv preprint arXiv: 2104.03602 (2021)

  2. Bao, H., Dong, L., et al.: BEIT: BERT pre-training of image transformers. In: International Conference on Learning Representations, ICLR (2022)

    Google Scholar 

  3. Cai, Z., Lin, L., He, H., Tang, X.: Corolla: an efficient multi-modality fusion framework with supervised contrastive learning for glaucoma grading. arXiv preprint arXiv: 2201.03795 (2022)

  4. Chaitanya, K., Erdil, E., Karani, N., Konukoglu, E.: Contrastive learning of global and local features for medical image segmentation with limited annotations. In: Advances in Neural Information Processing Systems, NeurIPS, vol. 33 (2020)

    Google Scholar 

  5. Chen, L., Bentley, P., et al.: Self-supervised learning for medical image analysis using image context restoration. IEEE Trans. Med. Imaging 58, 101539 (2019). https://doi.org/10.1016/j.media.2019.101539

    Article  Google Scholar 

  6. Chen, S., Ma, K., et al.: Med3D: transfer learning for 3D medical image analysis. arXiv preprint arXiv: 1904.00625 (2019)

  7. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. arXiv preprint arXiv: 2002.05709 (2020)

  8. Cordeiro, F.R., Sachdeva, R., et al.: LongReMix: robust learning with high confidence samples in a noisy label environment. arXiv preprint arXiv: 2103.04173 (2021)

  9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, pp. 248–255 (2009)

    Google Scholar 

  10. Donahue, J., Simonyan, K.: Large scale adversarial representation learning. In: Advances in Neural Information Processing Systems, NeurIPS, vol. 32 (2019)

    Google Scholar 

  11. Dosovitskiy, A., Beyer, L., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv: 2010.11929 (2021)

  12. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. arXiv preprint arXiv:1803.07728 (2018)

  13. Goodfellow, I.J., Pouget-Abadie, J., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, NeurIPS, vol. 27 (2014)

    Google Scholar 

  14. He, H., Lin, L., Cai, Z., Tang, X.: JOINED: prior guided multi-task learning for joint optic disc/cup segmentation and fovea detection. In: International Conference on Medical Imaging with Deep Learning, MIDL (2022)

    Google Scholar 

  15. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. arXiv preprint arXiv: 2111.06377 (2021)

  16. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, pp. 9729–9738 (2020)

    Google Scholar 

  17. Huang, Y., Lin, L., Cheng, P., Lyu, J., Tang, X.: Lesion-based contrastive learning for diabetic retinopathy grading from fundus images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 113–123. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_11

    Chapter  Google Scholar 

  18. Kanopoulos, N., Vasanthavada, N., Baker, R.L.: Design of an image edge detection filter using the Sobel operator. IEEE J. Solid State Circuits 23(2), 358–367 (1988)

    Article  Google Scholar 

  19. Li, X., Hu, X., et al.: Rotation-oriented collaborative self-supervised learning for retinal disease diagnosis. IEEE Trans. Med. Imaging 40(9), 2284–2294 (2021)

    Article  Google Scholar 

  20. Li, X., Jia, M., Islam, M.T., Yu, L., Xing, L.: Self-supervised feature learning via exploiting multi-modal data for retinal disease diagnosis. IEEE Trans. Med. Imaging 39(12), 4023–4033 (2020)

    Article  Google Scholar 

  21. Lin, L., et al.: The SUSTech-SYSU dataset for automated exudate detection and diabetic retinopathy grading. Sci. Data 7(1), 1–10 (2020)

    Article  Google Scholar 

  22. Lin, L., et al.: BSDA-Net: a boundary shape and distance aware joint learning framework for segmenting and classifying OCTA images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 65–75. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_7

    Chapter  Google Scholar 

  23. Loshchilov, I., Hutter, F.: Fixing weight decay regularization in adam. arXiv preprint arXiv: 1711.05101 (2017)

  24. Oliver, A., Odena, A., Raffel, C., Cubuk, E.D., Goodfellow, I.J.: Realistic evaluation of deep semi-supervised learning algorithms. In: Advances in Neural Information Processing Systems, NeurIPS, vol. 31 (2019)

    Google Scholar 

  25. Paszke, A., Gross, S., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, NeurIPS, vol. 32 (2019)

    Google Scholar 

  26. Taleb, A., Loetzsch, W., et al.: 3D self-supervised methods for medical imaging. In: Advances in Neural Information Processing Systems, NeurIPS, vol. 33 (2020)

    Google Scholar 

  27. Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, ICML, pp. 6105–6114 (2019)

    Google Scholar 

  28. Wei, C., Fan, H., Xie, S., Wu, C.Y., Yuille, A., Feichtenhofer, C.: Masked feature prediction for self-supervised visual pre-training. arXiv preprint arXiv: 2112.09133 (2021)

  29. Ye, M., Zhang, X., Yuen, P.C., Chang, S.F.: Unsupervised embedding learning via invariant and spreading instance feature. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, pp. 6210–6219 (2019)

    Google Scholar 

  30. Zhou, H.Y., Lu, C., et al.: Preservational learning improves self-supervised medical image models by reconstructing diverse contexts. In: The IEEE International Conference on Computer Vision, ICCV, pp. 3499–3509 (2021)

    Google Scholar 

  31. Zhuang, X., Li, Y., Hu, Y., Ma, K., Yang, Y., Zheng, Y.: Self-supervised feature learning for 3D medical images by playing a Rubik’s cube. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 420–428. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_46

    Chapter  Google Scholar 

Download references

Acknowledgement

This study was supported by the Shenzhen Basic Research Program (JCYJ20190 809120205578); the National Natural Science Foundation of China (62071210); the Shenzhen Science and Technology Program (RCYX20210609103056042); the Shenzhen Basic Research Program (JCYJ20200925153847004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoying Tang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 193 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cai, Z., Lin, L., He, H., Tang, X. (2022). Uni4Eye: Unified 2D and 3D Self-supervised Pre-training via Masked Image Modeling Transformer for Ophthalmic Image Classification. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13438. Springer, Cham. https://doi.org/10.1007/978-3-031-16452-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16452-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16451-4

  • Online ISBN: 978-3-031-16452-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics